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ABSTRACT 

Data from a range of different environments indicate that the incidence of death is not 

randomly distributed across families but, rather, that there is a clustering of death amongst 

siblings. A natural explanation of this would be that there are (observed or unobserved) 

differences across families, for example in genetic frailty, education or living standards. 

Another hypothesis of considerable interest for both theory and policy is that there is a causal 

process whereby the death of a child influences the risk of death of the succeeding child in the 

family. Drawing language from the literature on the economics of unemployment, the causal 

effect is referred to here as scarring. This paper investigates the extent of scarring in India, 

distinguishing this from family-level risk factors common to siblings. It offers a number of 

methodological innovations upon previous research in the area. Estimates are obtained for 

each of three Indian states, which exhibit dramatic differences in socio-economic and 

demographic variables. The results suggest significant scarring in each of the three regions. 

Eliminating scarring, it is estimated, would reduce the infant mortality rate by 7% in the state 

of Uttar Pradesh, 3.1% in West Bengal and 2.9% in Kerala. 
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1. INTRODUCTION  

It is well known that low-income countries have a high incidence of infant mortality. Recent 

research has revealed the less well-known and striking phenomenon of sibling death 

clustering. Data from a range of different environments indicate that the incidence of 

childhood death is not randomly distributed across families but, rather, that there is a positive 

association of sibling deaths.1 A natural explanation of this would be that families in which 

child deaths are concentrated are poorer or share genetic or environmental risk factors that 

predispose all of their children to higher death risks. Another, more intriguing explanation is 

what, here, is called scarring: this is a process whereby the death of a child causes an increase 

in the risk of death of the subsequent child in the same family.  

A causal process of particular interest operates by the death of a child shortening the 

time to the next birth. As it can take up to 24 months for the mother to recuperate 

physiologically from a birth2, a short preceding birth interval for the index child elevates this 

child�s mortality risk.3 This process may operate in either of two ways. One possibility is that 

the death of an infant child results in the mother ceasing to breastfeed and, thereby, being able 

to conceive sooner than otherwise.4 Henceforth, this is referred to as the fecundity hypothesis. 

An alternative possibility is that the death of a child leads parents to (intentionally) conceive 

sooner in a desire to �replace� their loss (e.g. Preston 1985). This is the replacement 

                                                 
1 See, for example, Zenger (1993), Guo (1993), Curtis et al (1993), Miller et al (1992), Das Gupta (1990), Bean 

et al (1988) and Hobcraft et al (1985).  
2  A new pregnancy requires replenishment of vital nutrients like calcium and iron that are needed to support 

foetal development (e.g. daVanzo and Pebley 1993, Scrimshaw 1996). This problem is likely to be more acute 
in developing countries where bioavailability of these nutrients from staples like cereal is low and nutrient 
losses associated with infections challenge the capacity of women to produce healthy children. 

3   The mortality-raising effect of short birth intervals is illustrated in, for example, Hobcraft et al (1983), Cleland 
and Sathar (1984), Koenig et al (1990), Gribble (1993) and Nath et al (1994). 

4   See Bongaarts and Potter (1983), Cantrelle et al (1978), Chen et al (1974).  
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hypothesis. A further possibility, hitherto unrecognised in this literature, is that the event of a 

child death leaves the mother depressed, as a result of which her subsequent child�s health is 

compromised, both in the womb and in early infancy (see, for example, Steer et al. 1992). This 

is referred to here as the depression hypothesis.5  The depression argument is empirically 

distinguishable from the other two hypotheses because it does not work via the birth interval. 

Although it is of policy significance to establish which mechanism or mechanisms underlie 

scarring and there is little definitive research in this area, this paper does not attempt to offer 

any conclusive results in this direction. It is, instead, concerned primarily with the prior task of 

correctly identifying the extent of scarring.  

In the last decade and a half, demographers have shown an active interest in death 

clustering. This research has focused on two aspects of the problem. First, it has demonstrated 

the significance of family-level unobservables in equations for childhood mortality. Second, it 

has shown that the correlation of risks amongst siblings needs to be taken into account in 

generating standard errors for the estimated parameters. This study contributes, first, by 

recasting the issue as one of distinguishing a causal effect flowing from the actual event of a 

sibling death (scarring) from a positive correlation of sibling death risks that arises because 

siblings are exposed to many common influences, some of which are unobservable 

(unobserved heterogeneity).6 Second, it discusses and attempts to resolve a number of 

                                                 
5   It is plausible that there are learning effects, which result in the mortality risk of the index child falling on 

account of the death of the preceding sibling. For instance, if the older sibling died of diarrhoea, the mother 
may rush to learn how to prevent diarrhoea-related infant death. Any positive degree of scarring that is 
identified is then net of learning effects. 

6  A few of these studies do include the previous child�s survival status in a model along with controls for 
unobserved heterogeneity. However, the distinction between causality and common risks is not made. Instead, 
they focus on the role of unobserved heterogeneity, treating the previous child�s survival status as just another 
exogenous regressor (e.g. Curtis et al 1993, Guo 1993 and Sastry 1997a & 1997b, Bolstad and Manda 2001). 
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specification issues that arise in models that incorporate both �dynamic effects� like scarring 

and unobserved heterogeneity. It argues that the statistical procedures used in previous 

research are inappropriate. The methodological issues raised can be summarised as follows. 

It is common practise in the existing literature to discard information on children born 

before a certain date and, further, to discard the first child of each mother in the sample. In a 

causal model with unobserved family-level heterogeneity, this will tend to bias the estimator 

of the scarring parameter (see Section 4.2). This paper avoids this problem by using the 

complete birth history of each mother and specifying a separate reduced form model for first-

born children. A test for the relevance of this problem is provided and, in order to assess the 

extent of the bias associated with procedures used in previous research, the estimates are 

compared with estimates obtained using the sample selections and specifications employed in 

earlier work.  Another feature of most previous work is that it tends not to provide a clear 

estimate of the scarring effect because it conditions on the birth interval, the alteration of 

which, under certain hypotheses (discussed above), is what drives scarring. This paper reports 

results with and without the preceding birth interval included as a regressor. We argue that the 

model that suppresses the birth interval provides a more appropriate estimate of total scarring. 

Comparison with the model that includes the birth interval offers insight into the nature of the 

mechanism underlying scarring (see Section 4.1). Other specification issues raised in this 

paper relate to distributional assumptions, time-inconsistency and sensitivity to recall bias or 

measurement error in reporting of the age of death (see Section 4). Results are presented to 

show the percentage of observed persistence that can be explained by genuine scarring (i.e. by 

                                                                                                                                                          
Zenger (1993) estimates alternative models, including either the previous child�s survival status or 
unobserved heterogeneity but not both. 
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the survival status of the preceding sibling), and the reduction in mortality that would be 

achieved if scarring were eliminated. 

The analysis is conducted for three Indian states, in each of which we find evidence of 

significant scarring.  This immediately raises the payoff to policy interventions that reduce 

mortality because it implies that preventing the death of a child also contributes to preventing 

the death of siblings of that child.  

The next Section describes the data used, the overall incidence of infant death and the 

extent of sibling death clustering. The econometric model is set out in Section 3, where 

scarring is formally defined and distinguished from unobserved heterogeneity. Issues that arise 

in estimation of the model given the nature of the available data are discussed in Section 4, 

which also delineates the relation of this paper to previous research. Section 5 describes the 

empirical model and defines the variables. The results are set out in Section 6. The sensitivity 

of the estimated scarring effect to alternative specifications and procedures used in the existing 

literature is investigated in Section 7. Section 8 concludes with a discussion of the findings 

and limitations of this study.  

2. THE DATA & DEATH CLUSTERING IN INDIA 

This paper uses the second round of the National Family Health Survey of India (NFHS-II), 

which interviewed 90000 ever-married women aged 15-49 in 1998-99 and recorded complete 

fertility histories for the 73775 mothers amongst them, including the time and incidence of 

child deaths. There are 248785 children in the sample, the mean number per mother being 3.4 

and the median number 3. NFHS-II was conducted in 26 Indian states and covered more than 
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99 percent of India's population. For details on sampling strategy and context, see IIPS and 

ORC Macro (2000). The data are in the public domain and can be downloaded from 

www.macrodhs.com. The analysis is performed for the three states of Uttar Pradesh (UP), 

West Bengal (WB) and Kerala, which exhibit remarkable differences in social, demographic, 

economic and political development (see Dreze and Sen 1997). UP is the largest Indian state 

with social and demographic indicators that put it below the Indian average. Kerala is an 

exceptional state that leads India in almost every index of human development. West Bengal 

lies between the two in social-demographic development while exhibiting better economic 

indicators (level of per capita income, poverty incidence) than the other two states. A profile 

of the three states is presented in Table 1. Of every 1000 births in India, 82 die before the age 

of 12 months. There is remarkable inter-state variation. The corresponding numbers are 116 in 

UP, 76 in WB and 36 in Kerala (see Table 1).7 

 The top panel of Table 2 shows the raw data probabilities of infant death conditional 

on the survival status of the preceding sibling.8 This is a useful description since, in the formal 

analysis conducted in this study and also in some previous studies, a first-order Markov model 

is specified in which, conditional on the survival status of the preceding child, the survival 

status of earlier children does not influence the survival status of the index child (see Section 

3). Consider, for illustration, the state of UP. The probability of infant death is higher by 0.15 

(i.e. it is 0.24 rather than 0.09) if the preceding sibling died as an infant. An alternative 

                                                 
7   These figures are averages over the data sample. As this contains complete retrospective fertility histories, it 

includes children born across almost four decades, 1961-1999. The average number of infant deaths per 1000 
live births in India is estimated to have been 67 in the year 2001 (UNDP 2003). 

8  For each child within a family (except the first born), probabilities of death are calculated conditional first on 
the death of the previous child and, second, on the survival of the previous child. The difference between these 
two probabilities is averaged over the sample to obtain an estimate of the scarring. An alternative way of 
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expression of the relative risk is that an infant in UP is 2.6 times as likely to die if the 

preceding sibling died rather than survived. Overall, the Indian data exhibit a remarkable 

degree of death clustering. Without further analysis, however, it is impossible to say whether 

this reflects genuine scarring or whether it merely reflects risks common to siblings on account 

of shared family characteristics.  

3.  THE ECONOMETRIC MODEL 

This Section sets out an econometric model that permits identification of scarring, taking care 

of the potentially confounding effects of unobserved inter-family heterogeneity.  

Let there be ni children in family i. For child j  (j=2,…,ni) in family i (i=1,2,…, N), the 

unobservable propensity to experience an infant death, yij
*, is specified as 

 yij
* = xij

′β + γyij-1 + αi  + uij       (1) 

where x is a vector of strictly exogenous observable child and family specific characteristics 

that influence yij
* and β is the vector of coefficients associated with x. A child is observed to 

die when his or her propensity for death crosses a threshold; in this case, when yij
* > 0.  It is 

assumed that this unobservable propensity is a function of the observed survival status of the 

previous child in the family, denoted yij-1, so that it is the actual experience of death of the 

previous child rather than his or her propensity to die that affects the survival status of the 

index child. The null of no scarring implies γ=0. This is consistent with the scarring 

hypotheses considered in Section 1.9 The term αi accounts for all time-invariant unobserved 

and, possibly, unobservable family characteristics which influence the index child�s 

                                                                                                                                                          
representing the data is to look at the ratio of the two average conditional probabilities. Both the difference 
and the ratio statistics are presented.  

9  The estimated parameter γ should be interpreted as the �average� effect of scarring over the time period 
considered. In work in progress we investigate whether scarring has declined over time. 
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propensity to die. This will include genetic characteristics and variables such as innate 

maternal ability. Note that, in this model, conditional on yij-1, xij and αI, the survival status of 

older children other than the immediately preceding child is assumed to have no impact on yij
*.   

 Since (1) is a recursive model, some assumptions regarding the survival status of the 

first child in the family, yi1, are required.   A reduced form equation for the first child is 

specified as    

 yi1
* =zi1

′λ  + ηi1    i=1,....,N  and j=1       (2) 

where zi1  is a vector of exogenous covariates, var(ηi)=σ2
η and corr(αi ,ηi)=ρ.10  In principle, 

the vector of covariates in x and z need not be the same. The possibility of non-zero ρ is 

allowed for by the linear specification,  

 ηi1 = θ αi  +  ui1        (3) 

where, by construction, αi and ui1 are orthogonal to one another, θ =ρ ση/σα and 

var(ui1)= σ2
η(1− ρ2).  Hence, it follows that, 

 yi1
* =zi1

’
 λ + θ αi + ui1               i=1,....,N  and j=1         (4) 

 yij
* = xij�β + γyij-1 + αi  + uij,   i=1,....,N  and j=2,..,ni (1) 

Equations (4) and (1) specify a complete model for the infant survival process, equation (4) 

describing the start of this process. We assume that the family-specific unobservables, αi, are 

independent and identically distributed with density h and that the conditional distributions of 

both yij
* and yi1

* are independently distributed with a distribution function F. Further 

discussion of h and F is in Section 4.5. 

                                                 
10  In principle, there is no reason why the specification for the first-born should be the same as the rest of the 

model especially when the latter is a conditional model in the sense that it conditions on the survival status of 
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Family or mother-specific unobservables are thus captured by a random effect (αi). The 

alternative of treating these as fixed effects (i.e. parameters) and estimating them along with 

the other parameters of the model gives rise to the incidental parameters problem (Neyman 

and  Scott 1948). Although the maximum likelihood estimator is inconsistent in the fixed-

effects model, in the model with β=0 and uij distributed as a logistic, it is possible to obtain 

consistent estimator of the scarring parameter, γ, by maximising the conditional likelihood 

function (CML) where the conditioning is carried out with respect to a set of sufficient 

statistics- this eliminates the family specific unobservables from the likelihood function 

(Chamberlain 1985). Although the CML estimator has the advantage of not requiring an 

assumption about the distribution of αi, against it is the fact that it involves a considerable loss 

of information. For example, only the subset of families who have experienced at least one 

death contribute to the CMLE (Table 1 shows that this would involve losing 69.3%, 83.9% 

and 92.4% of observations in UP, WB and Kerala respectively). 

Marginalising the likelihood with respect to αi gives the likelihood function for family i  

(i  
2

L  [( '  ) (2 1)
in

ij-1 ij
j

F y yαγ σ α
∞

=−∞

= + + − ∏∫ β !ijx                                      

)i[( '   )  (2 1)]  h( ) di1F yαθ σ α α α+ −z λ ! ! !      (5) 

where, α~ = α/σα. We obtain parameter estimates by maximising this likelihood using Stata�s 

maximum likelihood routines (Stata 7 2000).11 

                                                                                                                                                          
the previous sibling. This is an assumption we make in this paper. Heckman (1981c) shows that this 
approximation works quite well in applications. 

11  For an account of dynamic (causal) models with unobserved heterogeneity in the econometrics literature, see 
Wooldridge (2002). The distinction made in this paper between scarring and unobserved heterogeneity has 
been made in other contexts in both statistics and economics (see Heckman 1978, 1981a, 1981b, 1981c) 
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4. ISSUES OF MODEL SPECIFICATION AND TESTING 

This Section describes potential problems that arise in an empirical specification of the model, 

indicating the nature of the parameter estimator biases in some previous studies and how this 

paper attempts to avoid such biases. In Section 4.1, it is argued that conditioning on the 

preceding birth interval will tend to lead to under-estimation of scarring, in addition to which 

are problems of endogeneity and measurement error associated with birth intervals.12 Section 

4.2 argues that the practice of left-truncation of the data common to most previous studies 

results in potential over-estimation of the extent of scarring.  This can be avoided by using the 

complete birth history and estimating a reduced form model for first-born children jointly with 

the �dynamic� model for second and younger children. The longer time range of the data 

employed can, in principle, exacerbate problems of measurement error and time-inconsistent 

variables, which are therefore discussed in Sections 4.3 and 4.4 respectively. Measurement 

error in age of death may create an upward bias in the scarring coefficient. The use of time-

varying covariates measured at the time of the survey is inappropriate when the infant deaths 

that are being analysed may have occurred decades before the survey. Discussion of 

distributional assumptions for yij
* and for unobserved heterogeneity, αi, is in Section 4.5. 

                                                                                                                                                          
although its relevance to death clustering has not formerly been recognised. For example, in the literature on 
the economics of unemployment, scarring refers to the effect of a past episode of unemployment on the future 
probability of experiencing unemployment, after controlling for all observable (e.g. education) and 
unobservable (e.g. ability) individual characteristics. Scarring is alternatively referred to as state dependence. 
It is useful to clarify the language for the current context. The idea is that the event of death of a child scars or 
marks the survival prospects of the succeeding sibling. Alternatively, defining a state as a realisation of a 
stochastic process, one may think of state dependence in terms of the mortality risk facing a child being 
dependent upon the state (died in infancy or not) revealed for the previous child in the family. Since time is 
implicit in the sequencing of children, models that include the previous child�s survival status are analogous to 
dynamic models. 

12  Endogeneity refers to the birth interval being a behavioural or choice variable. In particular, families that 
exhibit longer birth intervals may systematically be families that are better able to avert child deaths. The 
statistical implication is that the birth interval is potentially correlated with the error term in the model 
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4.1.      Specification of Scarring Effects 

As discussed in Section 1, previous studies are not specifically looking to identify scarring 

effects as distinct from unobserved heterogeneity across families. This is reflected in the 

specifications that they employ. Most demographic analyses of death clustering model 

unobserved heterogeneity alone, although a few include variables related to the scarring 

process. The associated statistical and interpretational problems were summarised in Section 1 

and are discussed in more detail in Section 4.2. This section discusses the specification of 

variables.  In some studies, the number of surviving older siblings is used instead of the 

survival status of the previous child (e.g. Bhargava 2003, Muhuri and Preston 1991). This is a 

compound indicator of fertility and mortality in the family. Moreover, it is insensitive to 

sequencing.  For both reasons, it may not reflect true �scarring� as defined in Section 3. Other 

studies include the survival status of the previous sibling (Curtis et al 1993, Guo 1993, Sastry 

1997a & 1997b, Bolstad and Manda 2001). However, all of these studies also include the 

preceding birth interval. To the extent that the previous child�s survival status, yij-1, impacts on 

the index child�s death risk, yij
*, by altering the length of the birth interval, conditioning on the 

birth interval will tend to weaken the coefficient on yij-1. As a result, the degree of scarring will 

tend to be under-estimated. Another problem with this specification is that the birth interval is 

an endogenous variable and one for which valid instruments may be difficult to find.13 There 

are also measurement problems with birth intervals as they may be shorter on account of 

                                                                                                                                                          
describing mortality risk for the index child. If this is not dealt with, the estimator of the coefficient on the 
birth interval will be biased. 

13  Endogeneity is defined in the previous footnote. Although uptake of contraception is a choice variable 
(endogenous), the availability of contraception is a potential instrument for birth interval. This does not appear 
to have been considered in the previous literature. Since information on contraception in the NFHS data is 
limited to recent births and using it would involve endogenous left truncation of the data (see Section 4.2), this 
exploration is left to future work. 
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premature birth (e.g., Gribble 1993) or longer on account of miscarriage (e.g. Madise and 

Diamond 1995). If these events are sufficiently common in the data, the coefficient on birth 

interval will reflect a compound of these effects. 

In this paper, the scarring effect is captured entirely by the coefficient on previous 

sibling�s survival status. To allow comparison with previous studies and, for the Indian data, 

to assess the impact on γ, results are presented, in Section 7, for a variant of the model in 

which preceding birth interval is included as an additional regressor. If the estimated scarring 

effect were diminished, the data would seem to be consistent with the fecundity or 

replacement hypotheses. If a positive degree of scarring persists, then there is room for the 

depression hypothesis or, indeed, other causal mechanisms that operate independently of the 

birth interval (see Section 1). Of course, in the absence of controls for the endogeneity of birth 

spacing, these results are only indicative.14 

4.2  The Initial Conditions Problem in a Dynamic Model  

A pervasive practise in previous research is to discard information on children born before an 

often arbitrarily selected date, such as five, ten or fifteen years before the date of the survey 

(e.g., Guo 1993, Curtis, et al 1993, Madise and Diamond 1995, Sastry 1997a & 1997b, 

Bolstad and Manda 2001, Bhargava 2003).15 Studies that include the previous sibling�s 

survival status or the preceding birth interval as a regressor also discard the first child in the 

truncated sample (since yij-1 is undefined for these children). Left truncation of this sort, 

                                                 
14  We are currently investigating a model that allows simultaneous determination of mortality risk and birth 

intervals in a paper in which the main objective is to identify the extent to which scarring can be explained by 
birth spacing. In this paper, the objective is to identify the extent of scarring as distinct from unobserved 
heterogeneity, rather than to identify the mechanism driving scarring. 

15  The fact this left truncation of the data by calendar time occurs at different points in the birth history of 
different households creates additional complications. 
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whether by calendar time or by birth-order of child, results in the problem that the start of the 

sample does not coincide with the start of the stochastic process under study. On account of 

the presence of family unobservable characteristics, αi, in equation (1), the survival status of 

the previous child, yij-1, is endogenous and so discarding observations at the beginning of the 

sample results in an endogenously truncated sample.16 This is the �initial conditions problem� 

in dynamic models (see Heckman (1981c), for example).  

In principle, consistent estimators can be obtained from an endogenously truncated 

sample if an equation for the first-child is specified and an appropriate identifying restriction 

can be found, that is, a variable that influences the first sample observation but does not 

appear in the equations for higher birth order children. In general, it may be difficult to find a 

valid identifying restriction although, in a non-linear model, identification may be achieved on 

the basis of covariates that change with j, the index child (Chamberlain 1984; Hyslop 1999). 

This study takes the alternative route of using all of the retrospective information available so 

that the first observation refers to the first-born child for each mother (which is the initial 

condition of the process).17 As is clear from Section 3, a separate reduced form equation for 

the first-born child is specified and included in the model.18 Identification of our model is 

                                                 
16  Since αi is time-invariant it will appear in the equation for every child in the family. In particular, it will 

appear in the equation for yij
* and also in the equation for yij-1

*. Therefore, in the equation for yij
*, the 

regressor, yij-1, is necessarily correlated with the error-component, αi.. This is what is meant by endogeneity of 
yij-1 and, left unaddressed, it will tend to produce a (positive) bias on the coefficient of yij-1, which indicates 
scarring. 

17  There are applications in which data on the start of the process are unavailable. For example, in studying 
unemployment spells of individuals, researchers would ideally like to have data on school-leavers but must 
often make do with data that do not include the first spell of unemployment for each individual. On the other 
hand the series of Demographic and Health Surveys (DHS) available for developing countries do typically 
contain information on all children of a mother including the first-born. This paper argues the importance of 
using this information. 

18  If the first conception is a miscarriage then the first-born child may not adequately represent the initial 
condition of the process. This problem cannot be directly addressed since the DHS data (including the NFHS-
II used in this paper) do not contain information on miscarriages. However, it is shown in Section 7 that, even 
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further aided by inclusion of a covariate that is different for each child in the family, namely, 

the age of mother at the birth of the index child. 

Most previous studies neglect to recognise this problem.19 Discarding initial 

observations creates an unnecessary20 and often severe loss of information (see the number of 

observations recorded in rows 1-4 of Table 3). Moreover, it is an important issue in analyses 

of death clustering, as it will tend to bias the estimator of scarring. Given that the correlation 

between yij-1 and αi is positive, the bias will be positive. The direction and size of this bias is 

assessed in Section 7.  Section 6 reports a test of the null hypothesis that θ=0 in (3). This is a 

test of the hypothesis that the initial sample observation within a family (indexed j=1) can be 

treated as exogenous. Clearly, if θ=0 then unobservables in the equation for the first 

observation are uncorrelated with unobservables in the [dynamic] equations for subsequent 

observations. In this case, the model described by (1) and (4) reduces to a simple random 

effects model; a separate specification of the equation for the initial sample observation is 

unnecessary. A further testable restriction that is investigated is θ=1, which implies perfect 

correlation between the family specific unobservables in equations (1) and (4).  

4.3 Measurement Error 

                                                                                                                                                          
when data on the first-born child are unavailable, consistent estimates of the scarring effect may be obtainable 
if a distinct equation for the first-observed child in the truncated sample is included in the estimation. For this 
reason, even if miscarriages do occur at the start of the process for some women, the resulting bias in γ is 
expected to be small.  

19  This is true of all of the relevant demographic research that we are aware of. The only study that reflects 
awareness of the endogeneity problem arising via the correlation of the survival status of previous children 
and family unobservables is Bhargava (2003). He uses samples of data restricted to 5 and 10 years before the 
date of the survey (NFHS-I for the state of UP alone 1991/92) and addresses the endogeneity problem by 
imposing the restriction that household possessions (indicators for whether bicycle, radio etc are owned at the 
time of the survey) and the number of boys and girls born before the index child influence the number of 
surviving older children but, conditional on this variable, have no influence on the mortality risk of the index 
child. 
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A reason sometimes offered in previous studies for left-truncation of the sample is that this is 

done to minimise recall error in the recorded date of child death, which is assumed to be larger 

the further away the mother is from the event (e.g. Sastry 1997a). It may seem implausible, a 

priori, that mothers ever forget the date of death of a child but the data do exhibit some age-

heaping. In particular, the Indian data that are used in this study show heaping at six-month 

intervals (also see IIPS and ORC Macro 2000: Section 6.2). Since the model has infant death 

on both sides of the equation, with the index child�s risk a function of the preceding child�s 

survival status, positively correlated measurement error in these variables will tend to create 

an upward bias in the scarring coefficient. 

The dependent variable and the survival status of the preceding child are both coded as 

binary variables that are unity if the child dies before the age of 12 months and zero otherwise. 

To investigate sensitivity of the estimates to age-heaping at 12 months the models were re-

estimated with these variables defined to include deaths occurring at 12 months. The results 

were very similar (and so are not shown but available on request).  

4.4.  Time Inconsistency  

Survey data used to study childhood mortality typically contain complete retrospective 

histories of births and child deaths experienced by ever-married women aged 15-49. The data 

we use for India are similar. A woman aged 49 in 1999 may have experienced a birth and an 

infant death as long ago as 1969. As a result, data on the current assets of her household or the 

facilities available in her village are unlikely to be informative in an analysis of childhood 

                                                                                                                                                          
20  Sometimes left-truncation of the data is forced upon the researcher by the nature of the survey. Section 7 

suggests how consistent estimates may be obtained in this case. 
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deaths. This is the time-inconsistency problem.21 Several previous analyses use time-

inconsistent information for variables such as household assets, toilet facility, electricity or 

access to piped water.22 The results, which in principle are highly policy relevant, are unlikely 

to be robust. A further problem with some of these variables is that they are endogenous. For 

example, families will tend to simultaneously decide what resources to allocate to the purchase 

of a bicycle or a TV and what resources to spend on inputs into child health that will reduce 

child mortality risk (see Becker 1991, for example). Or access to facilities like piped water 

may be endogenous if families migrate to regions with piped water.  

A few recent papers model community-level random effects (e.g. Bolstad and Manda 

2000; Sastry 1997a). Bolstad and Manda show that omission of controls for community-level 

unobservables biases the standard errors of the estimates, while Sastry argues that neglecting 

to model community effects leads to over-estimation of the family effect.23 However, 

community random effects run into the time inconsistency problem when the underlying 

                                                 
21  There is plenty of evidence in the literature that both income mobility and geographical mobility in developing 

countries is considerable. The recent availability of household and individual-level longitudinal data for 
developing countries has made it possible to study income distribution dynamics. This research indicates 
considerable �churning� in the distribution with the identity of households classified as poor changing quite 
rapidly through time (see Baulch and Hoddinott 2000). There is also a non-negligible degree of geographical 
migration (see Williamson 1998). Community infrastructure tends to grow rapidly from a low base in the 
process of economic development. Social norms also often change rapidly with growth and migration. 
Together, these facts make implausible the assumption that current household assets or current community 
infrastructure are a good proxy for the socio-economic status of the household at the time that the children in 
question were exposed to the risk of infant death. 

22  Clearly the problem is mitigated by the fact that these studies left-truncate the data. Nevertheless, constancy of 
these variables for the time spans of 10-15 years covered in these studies remains questionable.  

23  In this paper, the emphasis is on obtaining an unbiased estimate of scarring, with the family component of the 
error term performing the job of mopping up any family-level variation in the data that is not explained by the 
exogenous covariates (x or z). There is no problem with community-level variation becoming part of this term. 
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unobservables (ranging from community infrastructure to social norms) are subject to rapid 

change (see footnote 20).24 

The left-truncation of the data referred to in Section 4.2 mitigates the time inconsistency 

problem by severing the retrospective information before it gets into the distant past.  In the 

preferred specification in this paper, which involves using information on the entire history of 

births for every woman in the sample, time inconsistency is avoided by including in the model 

only those conditioning variables that are time-invariant or at least relatively sluggish (see 

Section 5). A covariate that varies with the index child is the age of the mother at birth of the 

index child. This, of course, does not pose any time-inconsistency problems and is useful for 

identification (see Section 4.2). 

4.5. Distributional Assumptions  

Conditional distribution of yij
* (F) 

 A popular assumption for F, the distribution of yij
* conditional on αi, xij  and  yij-1 is that it is 

logistic. In order to check for the sensitivity of the estimates to this assumption, the models 

were estimated with F specified, alternatively, as logistic, standard normal and extreme-value. 

Unlike the logistic and the standard normal, the extreme value distribution is not symmetric 

and, if tail behaviour is important in determining infant death probabilities, then results from 

the standard normal model might differ from the logistic. Since the results obtained were not 

very sensitive to the choice of F, we only report and discuss results where F is specified as a 

logit (other results available upon request). 

Distribution of unobserved heterogeneity, αi (h) 

                                                 
24  Mother-specific (i.e. family-level) random effects included in this and previous studies are much more likely 

to be stable. We expect mother-specific unobservables in a model of child mortality to include genetic factors, 
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Following the literature, it is initially assumed that αi, the component of the error term 

representing unobserved family-level heterogeneity, is independently and identically 

distributed as a normal variate. A weakness of this assumption is that it may not allow enough 

flexibility to model the fact that some families never experience any child deaths and that in 

some families all children die. This is the well-known mover-stayer problem in the statistical 

literature. Referring back to equations (1) and (4), a very large positive (negative) value for 

αι will give a very large (small) value for yij
* and hence a very large (small) probability of 

observing death of the index child. This can be accommodated by allowing for empirically 

determined masses at the two extremes, that is, at plus and minus infinity of the Normal 

mixing distribution.25  This gives the following likelihood for family i, 
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where Li is given by equation (5) and ψ0 and ψ1 are the unknown end-point parameters. The 

estimated proportion of families who will have a very large or a very small αi  is given by p1 

and p0 respectively, where, 
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In order to ensure the non-negativity of ψ, it was parameterised as exp(κ) and κ was estimated. 

In practice, the data may not contain enough variation in order to allow us to identify ψ1 and 

this is, indeed, what was found in this study (see Table 1 where the proportion of families that 

lose all or none of their children in infancy is reported).  

                                                                                                                                                          
attitudes or inherent maternal ability, all of which can plausibly be assumed stable over time. 
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Testing for the significance of inter-family heterogeneity 

Let  corr(αi+uij ,αi+uik)=
σ

σ σ
α

α

2

2 2+ u

 =  r  say,  for all j ≠ k ≠ 1.       (8) 

The correlation coefficient r gives the proportion of total error variance that is attributed to the 

unobservable family effect, αi. For the estimates presented here, which assume a logistic 

distribution for u, σ2
u= π2/3. A test of H0: σα

2=0, which is a test that there are no unobservable 

family characteristics in the model and therefore that it collapses to a simple binary dependent 

variable model, is equivalent to a test of H0: r=0 in equation (8). This can be tested as a 

likelihood ratio (LR) test but the test statistic will not be a standard χ2 test since the parameter 

restriction is on the boundary of the parameter space. The standard LR test statistic has a 

probability mass of 0.5 at zero and 0.5χ2(1) for positive values. Thus a one-sided 5% 

significance level test requires the use of the 10% critical value (Lawless (1987)). 

5.  THE EMPIRCAL MODEL  

The dependent variable, yij
*, is defined as unity if the child is observed to die before the age of 

12 months and zero otherwise (infant death). The regressor of interest, yij-1, is similarly 

defined as the infant survival status of the preceding sibling. Children who have not had 12 

months exposure (i.e. who are younger than 12 months) at the time of the survey are dropped 

from the sample. When the index child is not a singleton but, instead, a twin or triplet then 

care is taken to ensure that the preceding sibling is correctly identified and is the same for each 

twin.  When the previous child is one of a multiple birth, then yij-1 is defined as unity if all 

                                                                                                                                                          
25  See Narendranathan and Elias (1982) for an application of this distributional assumption in the context of 

modelling individual unemployment.  



19 

 

 

 

children of that multiple birth died in infancy and as zero otherwise.26 Sensitivity of the results 

to �heaping� in the reported age of death is investigated (see Section 4.3).  

 The rest of this Section describes the variables in the vector xij, which are assumed to 

be identical to the variables zij in the first-child equation. Means and standard deviations of all 

variables in the model are in Appendix Table 1. Covariates often used in previous research 

that are time-inconsistent or endogenous are avoided.27  The only time (i.e. sibling)-varying 

covariate used is age of the mother at birth of the index child. The only potentially endogenous 

variable in the model is yij-1 and, as discussed in Sections 3 and 4.2, addressing this potential 

problem is an important part of the statistical approach taken here. Since this involves using 

retrospective histories that go back several years in time, cohort effects are introduced into the 

model although these are seldom included in previous demographic studies.  

Child-specific regressors in the equation are child birth-order, gender and an indicator 

for whether the child is one of a multiple birth (twin, triplet, etc). Most previous studies allow 

a gender-specific intercept but virtually all discard data on multiple births. Another exogenous 

child-specific covariate that is included in the model and which assists in identifying the 

parameters of interest (see Section 4.2) is the age of the mother at birth of the index child. This 

is expected to reflect the physiological condition of the mother at a relevant time. Since 

several studies show child mortality risk to be U-shaped in mother�s age, this is specified as a 

quadratic. Education of the mother is denoted by a set of dummy variables for level of 

                                                 
26  This is the relevant assumption if the mechanism underlying scarring is the fecundity mechanism since the 

mother is only likely to stop breastfeeding if both twins or all three triplets die. We have confirmed that 
altering this definition so that yij-1 is defined, as unity when at least one of the multiple births dies does not 
change the results. This is unsurprising since multiple births are uncommon (see Table 1).  

27  For examples of time-inconsistent variables used in previous research, see Section 4.4. For discussion of 
endogeneity, see footnotes 11 and 15. Examples of endogenous variables used as regressors in related studies 
are birth spacing, breast-feeding and contraceptive use. 
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education attained. This is relatively flexible, allowing for non-linear effects.28 A similar set of 

indicators for educational level of the father is included. This is likely to be an important 

control for socio-economic status to the extent that fathers are the main earners (available data 

on household assets are not used because of the time inconsistency problem). Other family-

level observable variables included in the model are religion and caste. These allow for 

�sociological� influences on child death risks.  

Cohort effects are modelled by including dummy variables for year of birth of the 

mother. Mothers in the sample are born between 1948 and 1984. Roughly equal frequency 

groups are created by defining dummy variables for births during 1948-1959, 1960-1969 and 

1970-1984. The cohort effects are expected to pick up any secular decline in death risks over 

time, other things equal. Previous research does not appear to have allowed cohort effects but 

this is possibly because, after left-truncation (see Section 4.2), the distribution of year of birth 

of mother is more peaked.  

For observations with a large number of missing values, dummy variables are created 

to indicate missing values and these are included in the model estimation.  

6. RESULTS 

The main result is that we find evidence of scarring in each of the three Indian states after 

controlling for a number of exogenous child and family-specific characteristics and for all 

unobserved differences between families (see the bottom panel of Table 2).29 Since 

coefficients are not directly interpretable in binary dependent variable models, the marginal 

                                                 
28  For a review of the important effects of maternal education on childhood mortality, see Cleland and van 

Ginneken (1989) and Hobcraft (1993). Also see Rosenzweig and Schultz (1982). 
29  A full set of results for other covariates is available and can be requested from the authors. In this paper, 

attention is restricted to identification of the scarring parameter and associated methodological issues. 
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effect associated with γ is computed as the difference between the sample averages of the 

probability of death predicted by the estimated model when yij-1=0 and when yij-1=1.30 The 

Table also shows the ratio of these conditional probabilities. Comparing these with the 

difference and ratio of the �raw data probabilities� discussed in Section 2 (and reported in the 

top panel of Table 2) affords an estimate of the percentage of raw persistence (or clustering) 

that is explained by scarring, using the model specified in Section 3. Scarring explains about 

42% of the clustering observed in the data in UP; the corresponding proportions being 15% for 

WB and 28.9% for Kerala. As discussed, previous research has identified clustering with 

unobserved heterogeneity- these estimates show that in fact, almost half of observed clustering 

in UP is attributable to scarring, after holding constant unobserved heterogeneity. Comparing 

the averaged model predicted probability of death with that of the averaged predicted 

probability of death setting γ=0 offers an estimate of the reduction in mortality that would be 

achievable if scarring were eliminated- a useful alternative expression of its significance.31 

The estimates suggest that, in the absence of scarring, mortality rates would fall by 6.96%, 

3.09% and 2.92% in UP, WB and Kerala respectively. The hypothesis that θ=0 is decisively 

rejected in the case of UP and WB. This confirms the importance of specifying a distinct 

reduced form equation for the first child that is estimated jointly with the dynamic equations 

for other children. Further, the estimate of θ is not significantly different from unity (in all 

three states), which implies that unobserved heterogeneity terms in the equations for the first 

                                                 
30  This is approximately equivalent to the first partial derivative of the conditional probability of death of the 

index child (the conditional expectation of yij) with respect to the covariate.  
31  Since the model includes an end-point at minus infinity (p0), which allows for a proportion of families to never 

experience deaths, we have adjusted the predicted probabilities by the estimated p0. 
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child and for subsequent children are perfectly correlated.32 Also, the restriction β=λ cannot be 

rejected. 

The proportion of the variance attributable to family-level unobservables (αi) is 

estimated to be 12% in UP, 22% in WB and 7.2% in Kerala. For each state, the estimates 

decisively reject the null of no family-level unobservables (using the test statistic described in 

Section 4.5). This and the finding that exclusion of αi from the model results in over-

estimation of scarring (results not shown but available) underline the importance of 

controlling for αi. 

 Many of the covariates in the vector xij are estimated to be important (results available 

upon request). The end-point of the αi distribution at -∞, p0, is insignificant in all three states. 

There was insufficient variation in the data for p1 to be determined (these terms are defined in 

Section 4.5). Thus, the specification of h as the normal distribution appears to perform 

adequately. Of course, the additional flexibility allowed by introducing mass points at the two 

extremes of h may turn out to be important in some other data sets. 

7. SENSITIVITY OF ESTIMATED SCARRING EFFECT  

7.1 Estimates obtained on a left-truncated sample 

As discussed in Section 4.2, previous studies left-truncate the sample without seeming to 

recognise that, if the survival status of the preceding child is amongst the regressors, then this 

will result in a (positive) bias in its estimated coefficient. To confirm this prediction and to 

establish the extent of the bias, estimates of the model are obtained under these conditions 

                                                 
32  In the case of Kerala, we cannot reject the null θ=0. But, at the same time, we cannot reject θ=1. Thus, the 

degree of variation in the data for Kerala does not permit any firm conclusions to be drawn as to the size of θ. 
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(Table 3) and compared with the preferred estimates reported in Table 2. Three specifications 

are investigated. 

First, the first-born child in each family is discarded from the sample. This is relevant 

because previous studies do not model the survival status of first-borns. As expected, the 

resulting �initial conditions� problem creates a positive bias (see Section 4.2). The scarring 

effect increases in all three states, the percentage increase in WB and Kerala being quite 

dramatic (see row 2, Table 3). 

The next experiment follows the previous literature in discarding all children born 

before a certain calendar year. Most previous studies discard observations 5 or 10 years before 

the data of the survey. This again introduces the initial conditions problem and, therefore, a 

positive bias (Section 4.2). However, if scarring has been decreasing over time (which 

preliminary investigation by us suggests it has), then a smaller scarring effect may be 

observed in the sub-sample of children born 5 or 10 years before the survey date as compared 

with the full sample of children in the data, who were born over a span of 36 years. So as to 

focus on the initial conditions problem and minimise time effects, the left-truncation 

performed in this second experiment is pushed further back in time. Data are discarded for 

children born before 1971 so that information for 28 years is retained, with only the initial 

eight years of data, corresponding to 2.35% of children, being discarded. In this now truncated 

sample, yij-1 is, of course, undefined for the first-observed child in each family. In line with 

previous research, these children are also excluded from the estimated model (results in row 

3). The scarring parameter shows the expected upward bias, and it is of roughly similar 

                                                                                                                                                          

The imprecision with which θ is determined probably arises from Kerala having the smallest population and 
the lowest incidence of mortality amongst the three regions (see Table 1). 
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magnitude to that obtained in row 2. Rows 2 and 3 of Table 3 establish that in the few existing 

papers that implicitly contain estimates of scarring, these are over-estimates.  

While the literature has revealed no recognition of the initial conditions problem and 

left-truncation is performed in studies where it seems unnecessary, there are contexts in which 

left-truncation may be necessary. Thus, for example, information on breastfeeding or antenatal 

care may be essential to the purpose of a study and these data are only available (in the Indian 

NFHS and also in several other DHS surveys) for the 3-5 years preceding the survey. What 

can be done to mitigate the truncation-induced endogeneity bias arising in estimation of 

dynamic models (e.g. that contain yij-1 as a regressor) with unobserved heterogeneity (αi)? As 

indicated in Section 4.2, consistent estimates may be obtainable upon an endogenously 

truncated sample if an equation for the first-observed child in the truncated sample can be 

specified and model parameters identified. Identification, in this experiment, relies upon 

mother�s age at birth of the index child (which is unique to each child). Results are in Row-4. 

The scarring estimate is similar to the preferred estimate in row-1, indicating that this strategy 

goes a fair way towards redressing the initial conditions problem. Also, θ=0 is rejected for UP 

and WB, which confirms the relevance of modelling the first-observed child33. This result is 

likely to be of practical importance in cases where the researcher is constrained to work with a 

left-truncated sample. 

7.2 Introducing preceding birth interval as a regressor 

Refer Section 4.1 where it was argued that the preferred model is one without the birth interval 

                                                 
33  As was the case in row-1, the estimate of θ for Kerala is too imprecisely determined for any firm conclusions 

to be drawn. 
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but that a model including this variable both indicates the bias in the scarring parameter in 

previous research and offers insight into the mechanism underlying scarring. In this Section 

we present, for comparison, results obtained when birth interval is included as an additional 

explanatory variable in the model.  

The preceding birth interval for the index child is defined as a set of dummy variables 

for 8-17, 18-23, 24-29 and more than 29 months; unsurprisingly, there are no observations 

with a value of less than 8 months (the average birth interval for each sample is reported in 

Table 1).34  It is set to zero for first-born children. The data were coded to ensure that all 

children in a multiple birth have the same preceding birth interval.  The birth interval dummies 

are positive and significant and their inclusion is seen to reduce the scarring effect in each of 

the three states (see row 5 Table 3). In UP, the scarring coefficient (γ) remains significant but, 

in WB and Kerala, it is rendered insignificant. The results suggest that a mechanism 

generating short birth intervals is one part of the scarring story but that, at least in UP, there is 

also some other scarring mechanism at work. As discussed in Section 4.1, these results are 

only tentative since the endogeneity of the birth interval has not been addressed in this 

experiment.  

8.  CONCLUSIONS 

This paper has investigated the clustering of sibling infant deaths in India. In a departure from 

previous research in this area, the main aim of the paper was to identify the degree of scarring 

(defined in Section 1). Scarring is of considerable theoretical interest, contributing to 

understanding the inter-relations of family behaviour, fertility and mortality. It is also clearly 
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of interest to policy-making. As indicated in Section 1, evidence of scarring raises the payoff 

to interventions that reduce mortality. It can also be useful in targeting interventions at the 

most vulnerable households. More specific policy insight depends upon identifying the 

mechanism underlying scarring (see below). The paper offers some improvements on previous 

specifications in the literature that are argued to be important in obtaining an unbiased 

estimate of scarring after controlling for the confounding effects of observed and unobserved 

inter-family heterogeneity. The statistical issues raised in this paper are expected to be widely 

applicable in further demographic research. The Indian National Family Health Survey 

analysed here is one of about 69 Demographic and Health Surveys (DHS) available for low 

and middle income countries. The DHS data typically contain information on all children of a 

mother including the first-born. As discussed, data on first-born children have quite 

consistently been thrown away and it is argued here that this not only constitutes a 

considerable loss of information but is also a source of bias in dynamic models with 

unobserved heterogeneity. A set of testable restrictions on the model confirms the importance 

of some of the statistical innovations that are made. Estimation of some variants of the 

preferred model shows the extent of bias in the scarring parameter that would arise if some of 

the specification issues highlighted here were ignored. 

The main result is that there is a significant degree of scarring in each of the three 

Indian states for which data were analysed. In order to assess the size of this effect, it is useful 

to consider the reduction in mortality that could be achieved if scarring were set to zero by a 

hypothetical policy intervention. This is estimated to be 7% in UP, 3.1% in WB and 2.9% in 

                                                                                                                                                          
34  A set of four intervals is preferred to a quadratic in the birth interval because the distribution exhibits a long 

tail, which the quadratic form would exaggerate. The choice of intervals is guided by examination of the 



27 

 

 

 

Kerala. The fact that Kerala and West Bengal have smaller families (and a higher proportion 

of first-born children) probably limits the overall impact of scarring: the raw data also clearly 

indicate a greater degree of clustering in families with a larger number of children. It would be 

interesting to investigate, in future work, whether the degree of scarring is increasing in birth 

order and whether it varies with the gender of both the index child and the preceding sibling. 

Also, as indicated earlier, these estimates reflect average behaviour over the period under 

consideration. Further work investigating whether scarring has declined over time and 

comparing the rate of decline across states is merited. 

Preliminary investigation of alternative mechanisms driving scarring suggests that 

shorter birth intervals following the death of a child in the family constitute an important part 

of the story, although birth spacing alone does not entirely account for scarring, particularly in 

the state of UP. To the extent that the birth spacing effect observed reflects the fecundity 

mechanism rather than the replacement mechanism (see Section 1), improving availability and 

uptake of contraception may be expected to reduce death clustering and overall mortality 

rates. However, if the replacement or depression mechanisms or, indeed, some other 

unidentified mechanism is relevant, then policy implications are less straightforward. Further 

research into the processes underlying scarring is merited. 

 

                                                                                                                                                          
distribution of the variable and by the demographic literature. 
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Table 1: Descriptive Statistics 
 Uttar 

Pradesh 
West 

Bengal 
Kerala 

Demographic variables    
Probability of infant death [all live births] 0.116 0.076 0.036 
Age of mother in 1998/9 35.2 35.3 37.3 
Age of mother at first marriage 15.7 16.2 18.9 
Age of mother at first birth 18.0 18.1 20.3 
% women that have never used any method of 
contraception 

54.4 16.4 15.5 

% women who can read and write 10.5 25.7 52.5 
Total children ever born per mother 5.5 4.2 3.3 
 % women with 1-2 children 28.6 50.8 59.0 
 % women with 3-4 children 33.1 32.2 33.4 
 % women with 5 or more children 38.3 17.0 7.6 
Mean (median) birth interval in months(v) 30.4 (26) 33.0 (28) 35.2 (29) 
% families with no infant deaths 69.3 83.9 92.4 
% families in which all births die in infancy 1.32 0.58 0.47 
% multiple births 0.68 0.75 0.76 
% first-born children 24.4 33.9 39.3 
Probability of infant death amongst first-borns 0.133 0.082 0.039 
Economic & infrastructure variables    
Rank in per capita income 12 6 8 
Growth rate 2.2 3.2 3 
Poverty incidence 40.2 26 29.2 
Toilet facility 26.7 45.1 85.2 
Electricity 36.6 36.7 71.8 
Population and sample size    
Population share 17.1 7.91 3.2 
Population in millions 171.5 79.3 32.4 
Number of mothers in sample 7297 3606 2340 
Number of live births in sample 29937 10627 5950 
Notes:  
(i) The demographic variables and the sample sizes are authors� calculations from the Indian NFHS-II 

and refer to the period spanned by the entire fertility history of women aged 15-49 in 1998-9. 
Unless otherwise indicated, figures are sample averages.  

(ii) The economic variables are from World Bank (2000). Poverty incidence is for 1994, the growth rate 
of economy is for the period 1991-2 to 1996-7 and the ranking of states by per capita income is for 
1996-97. The growth rate and rankings use the 1980/81-based GDP series.  

(iii) The toilet and electricity data are from the NFHS-II Fact Sheets in the NFHS-II final report (2000).  
(iv) Population is as recorded by the Registrar-General�s Office of the 2000 Census on 1 July 2000.  
(v) This is the average preceding birth interval and so it is calculated on a sample excluding first-born 

children.  
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 Table 2: Clustering and Scarring in Sibling Infant Deaths 
 Uttar 

Pradesh 
West 

Bengal 
Kerala 

[1] Incidence of infant death 0.1164 0.0759 0.0356 
Panel 1: Raw Data Probabilities    
[2] Prob(yij=1|yij-1=1) 0.241 0.194 0.125 
[3] Prob(yij=1|yij-1=0) 0.092 0.060 0.029 
[4] Persistence due to yij-1 (difference measure)([2]-[3]) 0.150 0.134 0.096 
[5] Persistence due to yij-1 (ratio measure) ([2]/[3]) 2.63 3.25 4.31 
Panel 2:  Estimated Conditional Probabilities    
[6] Prob(yij=1|yij-1=1, .) 0.1472 0.0675 0.0601 
[7] Prob(yij=1|yij-1=0, .) 0.0838 0.0475 0.0324 
[8] Persistence due to yij-1 (diff measure) ([6]-[7]) 0.0635 0.0201 0.0277 
[9] Persistence due to yij-1 (ratio measure) ([6]/[7]) 1.76 1.42 1.86 
    
[10] % Raw persistence explained ([8]/[4]) 42.3 15.0 28.9 
[11] Predicted probability of infant death, adjusting for (p0) 0.1006 0.0550 0. 0290 
[12] % reduction in mortality if γ=0 (with respect to [11]) 6.96 3.09 2.92 
    
[13] θ [z: θ=0] 0.76 [4.4] 0.88 [3.6] 1.80 [0.6] 
[14] [z: θ=1] [1.4] [0.5] [0.3] 
[15] % variance explained by αi 12.0 22.0 7.2 

[16] LR test: 2
ασ =0 (p-value) 74.5 (0.0) 40.6 (0.0) 3.7 (0.03) 

[17] Probability mass at -∞ = p0 (standard error) 2.3x10-5 
(0.00048) 

0.48x10-5 
(0.028) 

0.15 
(0.25) 

[18] Maximised value of log likelihood -10083.41 -2599.72 -818.73 
[19] Number of women in sample 7297  3606  2340  
[20] Number of children 29937 10627 5950 
Notes:  
(i)  The estimates in Panel 2 are obtained by maximising the likelihood function in equation (5), corresponding to 

joint estimation of equations (1) and (4) in the text. F is logit, h is normal with mass point at -∞ (see Section 
4.5). In addition to the previous child�s survival status the equations include child gender, mother�s education, 
father�s education, an indicator for whether the child is one of a multiple birth, dummy variables denoting the 
birth order of the index child, indicators of ethnicity and religion, a quadratic in the age of the mother at the 
birth of the index child and cohort dummies. The effects of the covariates were allowed to be different 
between the two equations as specified in (1) and (4).  A full set of results is available from the authors. The 
dependent variable yij is1 if child j in family i died before the age of 12 months and zero otherwise. 

(ii) [6] is obtained by using the estimated parameters to predict yij for each observation under the condition that 
yij-1=1, and then averaging over all observations. [7] is similarly obtained by setting yij-1=0.  

(iii) [11] is the probability of infant death predicted by the model when the scarring coefficient (γ) is set to zero. 
Note that this prediction is for the sample of all children, including first-borns since the model includes a 
(reduced-form) equation for first-borns. It is adjusted for p0, the estimated proportion of families (p0) who 
never experience an infant death.  

(iv) For [13], [14], see Section 4.2. For [16] see Section 4.5. For [17] see equation (7).   
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Table 3 

Scarring Estimates Under Alternative Sample Selections and Specifications) 

 
Specification Uttar Pradesh West Bengal Kerala 

1. Preferred model 

(Table 2,  [8] ) 

0.0635* 

(29937) 

0.0201* 

(10627) 

0.0277* 

(5950) 

2. Drop first-borns 0.074* 

(22640) 

0.049* 

(7021) 

0.046* 

(3610) 

3. Left truncate  & drop first 

observation 

0.0733* 

(22026) 

0.0553* 

(6709) 

0.0379* 

(3466) 

4. Left truncate but model first 

observation 

0.0671* 

(29316) 

0.0246* 

(10302) 

0.0253* 

(5801) 

5. Add birth interval 0.048* 

(29937) 

0.015 

(10627) 

0.021 

(5950) 

Notes: Refer discussion in Section 7 of the text. Reported figures are marginal effects of 
scarring computed by the difference measure (see Notes to Table 2). An asterisk indicates 
significance of the estimated coefficient, γ, at the 5% level.  Figures in parentheses are the 
number of observations used in the estimation. 
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 Appendix: Table 1 � 

Means and Standard Deviations of Variables Used in the Analysis 
 

 INDIA UP WB Kerala 
 mean s.d.. mean s.d.. mean s.d.. mean s.d.. 
         
Infant mortality 0.08 0.27 0.12 0.32 0.08 0.26 0.04 0.19 
Infant mortality (sibling) 0.07 0.25 0.10 0.30 0.07 0.25 0.03 0.16 
Female 0.48 0.50 0.47 0.50 0.49 0.50 0.48 0.50 
Multiple birth  0.01 0.11 0.01 0.12 0.02 0.12 0.02 0.12 
Birth order 1  0.30 0.46 0.24 0.43 0.34 0.47 0.39 0.49 
Birth order 2  0.25 0.43 0.21 0.41 0.26 0.44 0.32 0.47 
Birth order 3  0.18 0.39 0.17 0.38 0.17 0.37 0.16 0.37 
Birth order 4  0.12 0.32 0.13 0.34 0.10 0.30 0.07 0.25 
Birth order 5  0.07 0.26 0.09 0.29 0.06 0.23 0.03 0.17 
Birth order >5  0.08 0.27 0.13 0.34 0.07 0.25 0.03 0.16 
Hindu 0.76 0.43 0.82 0.38 0.73 0.45 0.47 0.50 
Muslim 0.14 0.34 0.17 0.37 0.25 0.43 0.38 0.48 
Other religion 0.10 0.30 0.01 0.09 0.02 0.15 0.15 0.36 
Scheduled caste 0.18 0.39 0.20 0.40 0.23 0.42 0.09 0.28 
Scheduled tribe 0.13 0.34 0.02 0.14 0.06 0.23 0.01 0.10 
Caste data missing 0.01 0.09 0.05 0.22 0.00 0.07 0.00 0.00 
Ma educ missing 0.00 0.02 0.00 0.02 0.00 0.04 0.00 0.00 
Ma no education 0.60 0.49 0.75 0.43 0.50 0.50 0.11 0.32 
Ma incomp primary ed 0.10 0.30 0.05 0.21 0.20 0.40 0.20 0.40 
Ma complete prim ed 0.07 0.26 0.08 0.27 0.05 0.22 0.09 0.28 
Ma incomp sec ed 0.13 0.33 0.06 0.24 0.16 0.36 0.32 0.47 
Ma secondary, higher 0.10 0.30 0.06 0.24 0.09 0.28 0.28 0.45 
Pa educ missing 0.00 0.05 0.00 0.06 0.01 0.09 0.00 0.06 
Pa no education 0.32 0.47 0.33 0.47 0.30 0.46 0.07 0.26 
Pa incomp primary ed 0.12 0.32 0.07 0.25 0.22 0.41 0.20 0.40 
Pa complete prim ed 0.09 0.28 0.11 0.31 0.06 0.23 0.11 0.32 
Pa incomp sec ed 0.22 0.41 0.19 0.40 0.22 0.41 0.33 0.47 
Pa secondary ed 0.12 0.32 0.12 0.33 0.07 0.26 0.17 0.37 
Pa higher ed 0.14 0.34 0.17 0.37 0.12 0.32 0.10 0.30 
Age ma at birth of index 
child 22.92 5.29 23.20 5.52 21.97 4.96 23.28 4.46 
         

 
Authors� calculations based on NFHS-2 (1998-99). 
 


