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1 Introduction

Recent contributions to the New Keynesian theory of inflation have raised
doubts about the validity of the full-information version of rational expec-
tations (RE).1 The main reason for these doubts is the model’s failure to
account for the observed degree of persistence in inflation. This failure is
also characteristic of other areas: for example the application of RE to
the permanent income model of consumption does not explain the sluggish
behaviour of aggregate consumption.2 At the same time, models of expec-
tations formation which can account for the observed sluggishness, such as
adaptive expectations, are widely regarded, from a theoretical perspective,
as unattractive. In this paper we put forward an alternative to RE which
can, in principle, account for sluggishness in aggregate variables but which
is derived within a choice-theoretic framework and is not vulnerable to the
objections raised against existing alternatives to RE. We call this alternative
optimally rational expectations (ORE).

The theory we propose addresses a long-standing objection to the usual
theoretical justification for RE.3 This justification argues that since RE is
based on the assumption that agents fully exploit all available information,
no other method of forming expectations can be superior to it, and so RE
is optimal. A corollary is that RE is consistent with a system in equilib-
rium (agents will not want to change to an inferior method of expectations
formation) and accords with an equilibrium approach to modelling. Both
these arguments confuse technical and economic optimality, or at least are
relevant only when information is free. As Feige and Pearce (1976) and
Buiter (1980) argued, the agent’s decision about how to form expectations
should be analysed like any other economic decision, from a choice-theoretic

1Mankiw (2001), for example, has voiced dissatisfaction with RE in the context of
the New Keynesian model of the Phillips Curve, arguing that ‘There is a simple way to
reconcile the new Keynesian Phillips Curve with the data: adaptive expectations. ....
Because of this, some people working in this area are now questioning the assumption of
rational expectations.’ In that same context, other researchers such as Galí and Gertler
(1999), Galí, Gertler and Lopez-Salido (2001), and Ball (2000) and Mankiw and Reiss
(2001) have begun to use alternatives to RE.

2This failure led many to jettison or extend the permanent income model itself but
a number of contributors have, instead, relaxed the assumption of full information RE:
see Pischke (1995), Goodfriend (1992), and Demery and Duck (1999, 2000). Departures
from RE are becoming increasingly common in other areas of macroeconomics. Woodford
(2001) allows a departure from the full-information assumption of RE in his re-working
of Lucas’s price-surprise model of the business cycle. And Cutler, Poterba and Summers
(1991) suggest that RE also fails to explain stock-price dynamics.

3A separate objection to RE is that there is little direct evidence to support it, at
least in its strong form. For example, after reviewing the survey evidence for RE, Conlisk
(1996) concludes that these surveys ‘commonly reject the unbiasedness and efficiency
predictions of rational expectations’ (p. 672-3); and in an earlier survey, Pesaran (1987)
concluded that ‘direct observations on expectations do not support the RE [Hypothesis].
It is therefore important to consider other models of expectations formation’ (p. 244).
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framework in which the agent weighs up the costs and benefits of forming
expectations in different ways. This process will not necessarily cause the
agent to select a method of expectations formation that is technically op-
timal. Furthermore, the method of expectations formation which emerges
from such a framework, whether it is RE or not, is quite consistent with the
usual interpretation of a system in equilibrium, i.e. a situation where agents
have no incentive to change their behaviour because the marginal costs and
benefits of it are in balance, rather than a situation where marginal benefits
have been driven to zero.

From a choice-theoretic perspective RE’s assumption that agents will
condition their expectations on all the available information is valid when
all the available information is costless.4 The specific starting point for ORE
is the view that, in most contexts, this condition will not hold. The formal
acquisition cost of some information may well be trivial - information about
‘the inflation rate’ for example is readily available and widely publicised -
but even this information can be seen as costly in the wider sense of in-
volving time to acquire, store, update and process. And whilst information
about other variables, such as the behaviour of monetary aggregates, is still
relatively easy to acquire, information about more obscure variables, for ex-
ample aggregate real labour income or the true profitability of a particular
company, requires more substantial acquisition and processing costs. So it
seems sensible to view free information as the exception rather than the rule,
to view most information as having associated acquisition and other costs
that are not trivial, and to assume that, when deciding how to form expec-
tations, rational agents will improve their information set only up to the
point where the marginal benefits of doing so equal the associated marginal
costs.5

We formalise this idea in a way which is applicable to many macro-
economic, and perhaps other, contexts. We assume that the variable about
which the agent forms an expectation is one of many similar variables each of
which is subject to two types of shock: a macroeconomic or common shock;
and a microeconomic or idiosyncratic shock specific to that variable. So,
for example, the variable might be the agent’s own labour income which is
affected by a component that affects everyone’s labour income, e.g. the state

4Buiter (1980) makes the point as follows: ‘[T]he term rational ... expectations ought
to be reserved for forecasts generated by a rational, expected utility maximising decision
process in which the costs of acquiring, processing and evaluating additional information
are balanced against the anticipated benefits from further refinement of forecasts’ (p.35).
Feige and Pearce (1976) made the same point, arguing that ‘[R]ational expectations

models offer the theoretical appeal of greater consistency with the economist’s paradigm of
rational behaviour in a world of negligible information costs; however, they avoid speaking
to the empirical issue of selecting a particular information set’ (p.518).

5Galbraith (1988) made similar criticisms of RE and developed an alternative theory of
expectations formation similar in spirit to ours. In his, agents apply appropriate techniques
to models in which the explanatory variables are measured with error.
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of the business cycle, and by factors specific to the individual. The agent can
condition her forecasts of the series solely on the history of the series itself
- which in many contexts will be observed costlessly as part of the agent’s
economic activity - or can, at a cost, choose to observe the history of other
similar variables and thereby increase the accuracy of her forecasts because
the extra series contain additional information on the common shock.

Within this setting, we show how the agent will form expectations con-
ditioned on an optimal information set. The expectations so formed are
rational in the sense that the agent fully exploits her chosen information
set; and they are optimal in that the agent’s choice of an information set
can be seen as resulting from an explicit process of trading off the benefits
of greater forecast accuracy against the costs of acquiring it. RE emerges as
the special case where the chosen information set and the set of all available
information coincide.

The paper is organised as follows. In the first section we show why opti-
mising agents will generally choose to make forecasts that are less accurate
than is technically possible. In the second we link the degree of forecast
accuracy to the quality of the information set on which expectations are
conditioned, and we derive the key result that agents will form expectations
on an information set that does not include all available information. The
third section examines the general characteristics of the ORE forecast errors.
In the fourth we describe the main implications of ORE for macroeconomic
behaviour, and in the fifth we show how, in principle, ORE models may
impose testable restrictions on the data. We end with a set of conclusions.

2 Optimally Rational Expectations

Consider an agent who faces the following problem:

max
x
L = L(x,D) (1)

where x is a choice variable (or vector of such variables) and D is an ex-
ogenous variable (or vector of exogenous variables). For convenience, in this
section we omit any relevant subscripts, but note that the variables in equa-
tion (1) refer to a particular agent and time period. Assume that the agent’s
decision about x has to be made prior to the realization of D and that the
agent has therefore to form an expectation of D.

Equation (1) is general enough to cover a number of familiar macroeco-
nomic situations. For example, x could be a vector of consumption decisions
over an agent’s planning horizon and D the relevant resource constraint; or,
in the context of a New Keynesian model, x could be viewed as the firm’s
price and D the firm’s current and future marginal costs.
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For simplicity, consider x and D as scalars. If the agent were to have
full knowledge of D, the optimal value of x, x∗, would be:6

x∗ = f(D) (2)

and the resulting value of L would be:

L∗ = L(x∗, D) (3)

Since the agent is assumed to select x before the value of D is known, her
decision will be based not on D itself but on the expectation of D. Assume
that this expectation is conditioned on an information set Ω and that the
agent fully exploits that information so that:

D = E (D |Ω) + ω (4)

where ω is a mean-zero Gaussian white-noise error which is uncorrelated with
E (D |Ω) and has a constant variance σ2ω. In what follows we shall use this
variance as a measure of the accuracy of the agent’s forecasting technique:
the higher the value of σ2ω the lower the accuracy of the forecasts.

With this expectation, the agent’s optimal choice of x, xA, will be:

xA = f (E (D |Ω)) (5)

and the realized value of L will be:

LA = L(xA, D) (6)

From a Taylor-expansion of equation (6) around x∗ we write:

LA = L∗ + L1(x∗, D) ·
¡
xA − x∗¢+ 1

2
L2(x

∗,D) · ¡xA − x∗¢2 +
1

6
L3(x

∗,D) · ¡xA − x∗¢3 + ...
where Li represents the ith partial derivative of the objective function with
respect to x.

Ignoring derivatives of order higher than two, the difference between L∗

and LA, i.e. the loss resulting from an incorrect forecast ofD, can be written
as:

L∗ − LA = k ¡xA − x∗¢2
where k is 12L2(x

∗,D) and, using equations (2), (4) and (5), we can write:

L∗ − LA = h (E (D |Ω) ,ω) (7)

6A feature of the next section is that the costs of acquiring information about D enter
into the agent’s optimising problem. For the moment we ignore these costs.
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The expected value of equation (7) is:

E
¡
L∗ − LA¢ = Z ∞

−∞
h (E (D |Ω) ,ω) · g(w)dω (8)

where g(ω) is the density function for ω. Writing ω as σω · z, where z ∼
N(0, 1) allows equation (8) to be written as:

E
¡
L∗ − LA¢ = Z ∞

−∞
h (E (D |Ω) ,σωz) · 1

σω
φ(z)σωdz (9)

where φ(z) is the density function for a standard normal variable.
As equations (4) to (9) indicate, any choice of information set can be

seen as implying a particular value for σ2ω and hence a particular expected
deviation of utility from its maximum, L∗. Conventional optimising princi-
ples suggest that the actual information set selected will be the result of a
process of weighing up the costs of acquiring a richer information set and
the gain in utility from the more accurate forecasts it produces. For the
moment we shall assume that agents can select σ2ω; in the next section we
provide a specific model of how the choice of σ2ω translates into a choice of
information set. So in this section the agent’s optimising problem involves
calculating the marginal cost and benefits of reducing σ2ω.

The extra benefits of greater accuracy can be found by differentiating
equation (9) with respect to σ2ω. This shows the loss in expected utility that
results from a higher value of σ2ω to be:

∂E
¡
L∗ − LA¢
∂σ2ω

=

Z ∞

−∞
∂h (E (D |Ω) ,σωz)

∂σ2ω
φ(z)dz

Since:

∂h (E (D |Ω) ,σωz)
∂σ2ω

=
∂h (E (D |Ω) ,σωz)

∂(σωz)
· ∂(σωz)

∂σ2ω

=
∂h (E (D |Ω) ,σωz)

∂(σωz)
· z

2σω

it follows from this that:

∂E
¡
L∗ − LA¢
∂σ2ω

> 0 if
∂h (E (D |Ω) ,σωz)

∂ω
.
ω

2σ2ω
> 0

This condition is satisfied if sign(ω) = sign
³
∂h(E(D |Ω),σωz)

∂ω

´
. So, the fall in

utility due to a higher value of σ2ω will be positive under a very weak restric-
tion on the nature of the h (.) function: that h (E (D |Ω) ,ω) is increasing in
the absolute value of ω. This condition is likely to be satisfied by any plau-
sible objective function: it requires that negative and positive forecasting
errors lead to losses and that the higher these errors are in absolute terms
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the greater the loss. So, the higher is σ2ω, the higher, in general, will be an
agent’s expected loss from forming imperfect expectations of D.

We shall assume that the costs of reducing σ2ω are positive. Subject
of course to certain second-order conditions, a unique and stable optimum
value of σ2ω will exist where a marginal increase in σ

2
ω involves an equal fall in

expected utility and drop in costs (measured in units of utility).7 In general,
there is no reason why optimising agents will choose the lowest possible value
of σ2ω. They will do so if the marginal costs of greater accuracy are zero, or
if the marginal benefits always exceed marginal costs; but these are clearly
special cases. In general, the value of σ2ω which solves the optimisation
problem will be higher than its potential minimum, and agents will not
choose the most accurate forecasting technique open to them. Since RE is
the most accurate forecasting technique open to them, the analysis presented
here suggests that they will select RE only in special circumstances. The
expectations formed in the absence of these special conditions are what
we call ORE, expectations which accept a degree of avoidable inaccuracy
because the costs of eliminating it are too high.

3 ORE and the choice of information set

The previous section suggested that agents will form expectations which
are less accurate than RE implies, but it left open the question of precisely
how agents might choose the optimal degree of inaccuracy. In this section
we provide a model of this choice that has wide applicability, especially in
macroeconomics.

We assume that the agent needs to forecast the current and/or future
values of the exogenous variable Dj and that there are N such series whose
average value in period t, Dt, is 1

N

PN
j=1Dj,t. We can express Dj,t, as:

Dj,t ≡ Dt + [Dj,t −Dt] (10)

We shall assume that both Dt and [Dj,t −Dt] are stationary and are un-
correlated with each other. Movements in Dj,t are therefore the sum of two
distinct sets of influences: common or macroeconomic influences on the one
hand, and idiosyncratic influences on the other.8 For example, where the
agent is an individual deciding how much to consume, one of the variables to
be forecast would be her labour income. This will be influenced by the state
of the business cycle, clearly a macroeconomic influence, and factors related

7A sufficient set of conditions is that the marginal cost of acheiving greater accuracy
(reducing σ2ω) will increase as the degree of accuracy increases, and that as σ

2
ω increases

the drop in utility increases. The latter condition places conditions on the h(.) function -
that there is a sufficiently large increase in the loss of utility as σ2ω increases.

8 It would be possible to extend equation (10) to include a third set of influences, for
example regional or industry-wide influences, that are common to a subset of agents. The
substantive results we draw from equation (10) would be unaffected by such extensions.
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to her own particular characteristics. In what follows we shall assume that
the variable to be forecast is of this type, so that j indexes both the agent
who is making the forecast and the series being forecast.9

We represent the stationary, aggregate component, Dt, in the following
invertible moving-average error form:

Dt = d+ α(L)εt = d+
T1X
i=0

αiεt−i (11)

where d is a constant, α(L) is a polynomial in the lag operator with α0 = 1
and ε is a Gaussian white-noise error process with zero mean and variance
σ2ε.

10

Similarly, we represent the stationary, idiosyncratic component, Dj,t −
Dt, in the following invertible moving-average error form:

Dj,t −Dt = γ(L)uj,t =

T2X
i=0

γiuj,t−i

where γ(L) is a polynomial in the lag operator with γ0 = 1; uj,t is a Gaussian
white-noise error process with zero mean and variance σ2u. We assume that
uj,t is uncorrelated with εt at all leads and lags, and is uncorrelated with
uj−v,t−k for all values of v and k other than zero.11 In what follows we
assume that at least some of the αs are different from the equivalent γs. We
also assume that T1 = T2 = T .12

It follows that Djt can be represented as the sum of two moving-average
error processes:

Dj,t = d+ α(L)εt + γ(L)uj,t (12)

To fix our timing convention, we assume that, for all v ≥ 0, εt+v and uj,t+v
cannot be known at t, whereas all other values of εt+v and uj,t+v are feasible
elements of any agent’s information set at period t.13

The full-information assumption of RE would imply that the histories
of both the aggregate variable, {Dt} and of {Dj,t} are known to the agent.

9This is not strictly necessary. It would be possible to think of many agents forming
expectations about the same exogenous variable, say the price of a particular good, which
is influenced by both aggregate and, in this case, market-specific factors.
10By the Wold representation theorem covariance stationary variables have moving-

average error representations. We have assumed a finite-order moving-average process
but this is not essential.
11Equation (10) implies that

PN
j=1 uj,t−i = 0. Our assumption about the lack of corre-

lation between uj,t and uj−v,t for all v requires that N is ‘large’.
12 If T1 6= T2, then whichever is the lower-order process can always be redefined to

include the required extra number of terms attached to zero coefficients.
13This means that no expenditure of resources would allow the agent to know the value of

εt or uj,t in period t, whereas, with some finite expenditure, agents can acquire knowledge
of past values of εt or uj,t.
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From the history of {Dt} the agent could infer the history of {εt}, and,
from this and the history of {Dj,t}, she could to infer the history of {uj,t}.
Conditioning her expectations on these separate histories of {εt} and {uj,t},
which constitute all the available information about the behaviour of Dj,t,
she would form the rational expectation of the current and future values of
Dj,t as:

If 0 ≤ k < T :

EFj,tDj,t+k = d+
TX

i=k+1

αiεt+k−i +
TX

i=k+1

γiuj,t+k−i

Otherwise : EFj,tDj,t+k = d

where EFj,tDj,t+k is the expectation of Dj,t+k formed by agent j conditional
on this full information set in period t. Note that our timing convention
implies that the information set at time t does not include the current value
Dj,t, but does include its history and, in this full information case, the
separate histories of the aggregate and idiosyncratic shocks.

In contrast to the full-information case we shall assume that the aggre-
gate variable, Dt, and hence the history of {εt} cannot be directly observed
and, as a consequence, observation of the history of {Dj,t} does not allow
observation of the history of {uj,t}. Instead we shall assume that the agent
can only acquire more information about the separate contributions of εt
and uj,t by observing a larger number of the available N series of which Dj
is one.

Whilst this is, to some extent, merely a device for modelling the acqui-
sition of richer information sets in an analytically tractable way, there are
more practical justifications for it. First, most published macroeconomic se-
ries, the most obvious source of a direct observation on Dt, are best seen as
indicators of the true corresponding economic variable. For example, most
countries publish several different money supply measures, all of which are
almost certainly imperfect empirical counterparts to the theoretical con-
struct, the quantity of money. From this perspective the published variable,
DPt , can be seen as equal to the true variable, Dt, plus measurement error.
So we could write DPt = Dt + φ(L)ζt where ζt is a Gaussian white-noise
error term and φ(L) is a polynomial in the lag operator with φ0 = 1. In this
case, to forecast Dj,t, the agent needs to forecast Dj,t−DPt and the agent’s
problem has exactly the same form as equation (12). Rather than introduce
this complication explicitly, we assume that the aggregate variable, Dt, can-
not be directly observed. Even, if the published series provided in principle
a perfect empirical counterpart to Dt, there would be the inevitable data re-
visions and publication delays which would, in practice, make Dt (especially
its most recent values) difficult or even impossible to observe.

As an example of how a rational agent will form expectations when the
separate histories of {εt} and {uj,t} are not part of her information set,
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consider first an agent whose information set consists solely of the history
of {Dj,t} itself. In many settings this is a natural assumption or at least a
natural starting point. If Dj,t refers to a variable specific to the agent, her
own labour income for example, then the history of {Dj,t} will necessarily be
observed by her from her participation in the appropriate economic activity,
and is therefore certain to be part of her information set.14 Knowledge of
the separate components of Dj,t is not, in the same sense, freely available;
it requires knowledge of aggregate labour income which, in the absence of a
direct observation, can only be observed from observation of all N similar
series. Of course, the agent may choose to acquire such information but for
the moment we assume that she does not.

An information set consisting solely of the history of {Dj,t} could equally
well be seen as consisting of the history of a white-noise error term

©
ηj,t
ª
,

where ηj,t is defined by the re-parameterisation of equation (12) as:

Dj,t = d+ θ(L)ηj,t = d+
TX
i=0

θiηj,t−i

and where θi is a function of the αis, the γis, and the two variances, σ
2
ε, and

σ2u.
15

If the agent were fully to exploit this information set, i.e. were to con-
dition her forecast on the history of

©
ηj,t
ª
, the agent’s expectations would

be:

If 0 ≤ k < T :

E1j,tDj,t+k = d+
TX

i=k+1

θiηj,t+k−i

Otherwise : E1j,tDj,t+k = d

where the notation E1j,t denotes agents j’s expectations based on the infor-
mation set that assumes knowledge of the history of only one series, Dj.

Assume now a more general case where the typical agent’s information
set, whilst still incomplete in the sense of not containing the separate histo-
ries of {εt} and {uj,t}, contains the separate histories of {Dj,t} and, at some
cost, one other series, for example {Dj+1,t}. The two observed histories, each
taken on its own, amount to observations on {d+ α(L)εt + γ(L)uj,t} from
14Even though the acquisition costs of the history of {Dj,t}might be costless, the storage

and processing costs might not be. So even in this case it may be inaccurate to regard the
information as costless. However, the history of {Dj,t} will, for agent j, be sunstantially
less costly to acquire than the costs of acquiring the history of any other series.
15See Hamilton (1994, pp. 102-107). In the simple MA(1) case, θ1 is the invertible

solution to the quadratic equation Aθ21 + Bθ1 + C where A = C = α1 + γ1σ
2
u/σ

2
ε ; and

B = − £¡1 + α21
¢
+
¡
1 + γ21

¢
σ2u/σ

2
ε

¤
. As σ2u/σ

2
ε ⇒ ∞ θ1 ⇒ γ1; and as σ2u/σ

2
ε ⇒ 0

θ1 ⇒ α1.
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{Dj,t}, and {d+ α(L)εt + γ(L)uj+1,t} from {Dj+1,t}.16 However, taken to-
gether, they also amount to an observation on the history of the mean of
two series,

©
D2,j,t

ª
, where D2,j,t ≡ Dj,t+Dj+1,t

2 , and:

D2,j,t = d+ α(L)εt + γ(L)u2,j,t = d+
TX
i=0

αiεt−i +
TX
i=0

γiu2,j,t−i

u2,j,t
³
≡ uj,t+uj+1,t

2

´
is a white noise error with variance σ2u2

¡
= 1

2σ
2
u

¢
. From

the re-parameterising of this expression it is clear that, from the joint ob-
servation of the histories of {Dj,t} and {Dj+1,t}, agents obtain the history
of the white noise error term, η2,j,t, defined by:

D2,j,t = d+ θ2(L)η2,j,t = d+
TX
i=0

θ2,iη2,j,t−i

where θ2(L) is a polynomial in the lag operator with θ2,0 = 1, and where
σ2η2 , the variance of η2,t, and the elements of θ2(L)s are functions of the αs,
the γs, and the two variances σ2ε, and σ2u2 .

It is straightforward to generalize this result to the case where an agent’s
information set contains the history of {Dj,t} and the histories of (Y − 1)
other such series {Dj+1,t...Dj+Y−1,t}, each of which is costly to acquire. In
our framework, the information provided by any one other series is, for agent
j, as good as the information provided by any other. We assume then that
each series (other than Dj,t itself) has an equal probability of being part
of agent j’s information set.17 The use of the j subscript when referring
to averages emphasises that no two agents share the same information set
other than by chance, though we do assume in what follows that the optimal
value of Y is common to all. In this case an agent observes the history of
the white-noise error, ηY,j.t, where:

DY,j,t = d+ α(L)εt + γ(L)uY,j,t

= d+ θY (L)ηY,j,t = d+
TX
i=0

θY,iηY,j,t−i (13)

16Note that we assume that σ2u and the parameters d, αi and γi are common to all
agents.
17 In reality, it is more likely that agents will ‘network’ and that the probability any

other series has of being included in agent j’s information set will depend upon (say) its
geographical or occupational proximity to agent j. In this ‘networking’ case, groups of
agents will share the same information set, each being informed of the others’ Ds and
their histories. Such informal channels are likely to be important sources of low-cost
information and often integral to the agent’s participation in economic activity. As long
as these clusters of information pooling are small relative to the economy at large, our
conclusions are unaffected. In the interests of simplicity we assume that each agent j
obtains information from a random draw of Y − 1 realisations of D. This means that no
two agents will share the same information set other than by chance.
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DY,j,t =
1
Y

PY−1
i=0 Dj+i,t; uY,j,t ≡ 1

Y

PY−1
i=0 uj+i,t; θY (L) is a polynomial in

the lag operator with θY,0 = 1; and the variance of ηY,j,t, σ
2
ηY
, and the

elements of θY (L)s are functions of the αs, the γs, and the two variances
σ2ε, and σ2uY

¡
= 1

Y σ
2
u

¢
.

From equations (13) and (12) it follows that, for this agent, Dj,t can be
represented as the sum of two white-noise error processes whose histories
are separately observed,

©
ηY,j,t

ª
and {uj,t − uY,j,t}:

Dj,t = d+ θY (L)ηY,j,t + γ(L)(uj,t − uY,j,t)

= d+
TX
i=0

θY,iηY,j,t−i +
TX
i=0

γi(uj,t−i − uY,j,t−i) (14)

To repeat, the history of
©
ηY,j,t

ª
is observed from the joint observation of

Y series; and the history of {uj,t − uY,j,t} is the extra information obtained
from observing the separate history of the jth series.

It follows from equation (14) that an agent who observes {Dj,t...Dj+Y−1,t},
the separate Y histories, and fully exploits that information, will form ex-
pectations of the current and future values of Dj,t as follows:

If 0 ≤ k < T :

EYj,tDj,t+k = d+
TX

i=k+1

θY,iηY,j,t+k−i +
TX

i=k+1

γi(uj,t+k−i − uY,j,t+k−i)

Otherwise : EYj,tDj,t+k = d (15)

where the notation EYj,t defines agent j’s expectations conditioned on an
information set consisting of Y histories. Once again, ‘fully exploits’ means
that no element in the histories of, in this case,

©
ηY,j,t

ª
and {uj,t − uY,j,t}

can be used to reduce the agent’s forecast error.18

Equation (15) begins to make operational the ideas developed in the pre-
vious section. Agents have a choice about how to form their expectations of
Dj,t+k. Specifically, they can choose the information set on which to condi-
tion those expectations: they can choose to condition them on a single series
{Dj,t} or on an information set that includes up to N such series. Hence
the trade off established between accuracy and cost in the previous section
translates into a trade-off between the extra cost and greater accuracy that
result from an agent having a larger number of series her information set.
Note that from this perspective RE can seen as a special case of ORE where
the number of series included in the information set equals the number of
observable series: as Y ⇒ N , (uj,t − uY,j,t) ⇒ uj,t for all t, the history of
{uj,t} is revealed, and θY (L)ηY,j,t ⇒ α(L)εt. Hence the agent observes the
separate histories of {εt} and {uj,t} and is able to condition her expectations
on the ‘available’ information set.
18We demonstrate in Appendix A that the forecast error from equation (15) is white

noise.
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4 Characteristics of ORE forecast errors

To establish the main characteristics of ORE and compare them with the
characteristics of RE, we define the one-period ahead forecast error of Dj,t as
Dj,t−Ej,tDj,t. Under RE, expectations are conditioned on the full informa-
tion set, i.e. the separate histories of {εt} and {uj,t}. The one-period-ahead
forecast error, RFj,t, will equal:

RFj,t = εt + uj,t

Since this is the sum of two uncorrelated white-noise errors, it too is white-
noise. So, in this case, the typical agent’s one-period-ahead forecast errors
will, on average, be zero and they will show no pattern. Since the separate
histories of {εt} and {uj,t} represent the total available information, the
forecast errors will be unpredictable from any available information. The
variance of the forecast errors,

¡
σ2ε + σ2u

¢
, is simply the inherently unpre-

dictable component of the variable and hence no other forecasting technique
could produce a lower variance.

If, on the other hand, expectations were conditioned on an information
set consisting of the histories of a sub-set of Y histories, {D1t...DY t}, and not
the separate histories of {εt} and {uj,t}, then the one-period-ahead forecast
error, RY,j,t, would, from equation (15), equal:

RY,j,t = ηY,j,t + uj,t − uY,j,t (16)

As we show in Appendix A, this error too is white noise. So, conditioning
on this incomplete information set, an agent’s one-period-ahead forecast
errors will also on average be zero and they too will appear to the agent
to be patternless and unpredictable from any information contained in the
agent’s information set.19 The agent, in this case too, is fully exploiting her
chosen information set: the forecast-error variance will in this case be σ2ηY+£
Y−1
Y

¤
σ2u and no other forecasting technique that uses the same information

set will produce a forecast error-variance lower than this.
The actual forecast error variance will depend upon the number of series

the agent includes in her information set. The addition of another series
to an existing information set implies in increase in information and hence
an improvement in the accuracy of the resulting forecasts until the variance
of the forecast error is driven to its minimum value,

¡
σ2ε + σ2u

¢
, the value

when all N series are observed and the agent can perfectly distinguish the
histories of the common and idiosyncratic components.20

19However, to an outside observer, with information on the separate histories of {εt}
and {uj,t}, the agent’s forecast error would not be patternless and entirely unpredictable;
the value of ηY,j,t is to some extent predictable from knowledge of lagged values of εt and
uj,t, knowledge which the agent is assumed not to have. This may be why many direct
tests of RE fail.
20Appendix B elaborates on this point.
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The precise way in which the forecast-error variance drops as more series
are included in the information set depends upon the parameters of the
α(L) and γ(L) processes and on σ2u/σ

2
ε. In Figures 1 and 2 and Table

1 we illustrate this relationship for two sets of MA(1) processes with σ2ε
normalised to one. In the first set, α1 and γ1 are very different; in the second

they are quite similar. The figures show how
³
σ2ηY +

£
Y−1
Y

¤
σ2u

´
varies as Y ,

the number of series observed, increases from 1 to 100. The table shows the
precise values of

³
σ2ηY +

£
Y−1
Y

¤
σ2u

´
for selected values of Y .

The figures and table illustrate a number of points. First, whilst an
additional series always leads to an increase in accuracy, the marginal in-
crease in accuracy falls sharply as the number of series increases. Secondly,
given Y , σ2u and σ2ε, it is more difficult to forecast accurately when α1 and
γ1 are very different. The reason is that, if the two processes are similar,
there is less to be gained from distinguishing the two shocks; in the limit,
if the two processes are identical there is nothing to be gained from distin-
guishing between them, the two shocks can be treated as a single shock.
Thirdly, increases in σ2u (or σ

2
ε) will increase the inaccuracy of forecasts,

though this will be offset to some extent by changes in θ1. For example,
a larger value for, say, σ2u, makes Dj,t inherently more difficult to predict
and so raises the value of the forecast error variance; but it also implies
a higher value for σ2u/σ

2
ε. This in turn will imply a value for θ1 closer to

γ1.
21 The reparameterised equation will therefore predict the movements in

Dj,t due to movements in uj,t more closely than it would if θ1 had remained
constant. By the same argument, a larger value of σ2ε, whilst making Dj,t
inherently more difficult to predict, will lower σ2u/σ

2
ε and push the value

of θ1 towards α1. The reparameterised equation will therefore predict the
movements in Dj,t due to movements in εt more closely than it would if
θ1 remained constant. This effect suggests that the increase in inaccuracy
caused by increases in either σ2u or σ

2
ε may well be quite modest.

More generally, the figures and table suggest that the optimal value of Y
will depend upon the particular characteristics of the process determining
Dj,t.22 They suggest that it is quite possible that the marginal benefits of
more information fall quickly to very low levels. If, as the information set
increases in size, the marginal costs of processing, storing and updating an-
other series rise, then even a small number of series might deliver the optimal
degree of forecast accuracy and the agent might never feel it necessary to
observe the behaviour of the aggregate variable.23 It is even possible for the
21As footnote (14) explains, in this case as σ2u/σ

2
ε ⇒ ∞ θ1 ⇒ γ1; and as σ

2
u/σ

2
ε ⇒ 0

θ1 ⇒ α1.
22The same general pattern was observed in cases where we assumed MA processes of

a higher order.
23 In their application of ORE to a New Keynesian model of inflation, Demery and Duck

(2001) find that the loss of profit to the firm from not observing the two shocks separately
is likely to be very low even for the case where Y = 1. In a study of the Permanent Income
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optimal value of Y to be less than the number actually observed through the
agent’s participation in economic activity. The opposite - that the optimal
degree of accuracy requires the inclusion of the complete set of series so that
agents form RE - cannot, of course, be ruled out but within the framework
developed here it appears as a special case.

5 Macroeconomic implications of ORE

Once one allows for the differences in information sets, RE and ORE have
apparently similar characteristics but there are in fact important differences
between them, especially in their implications for aggregate variables. These
differences arise from the fact that whilst RFt , the RE economy-wide or
average forecast error, is white noise, the ORE equivalent, RY,t, is not.

To see this note that, given full information, RFt is the sum of RFj,t over
j, divided by N . Since by definition, the terms in uj,t sum to zero across j,
this will be εt, and since εt is defined to be a white-noise error, the average
forecast error is also a white-noise error. The ORE average forecast error
is the sum of equation (16) over j divided by N . Our assumption about
the agents’ choice of which other series to include in their information sets
(i.e. that each series, other than their own, has an equal probability of being
included), and the assumption that the terms in uj,t sum to zero across j,
together imply that the second and third terms in equation (16) sum to zero.
From equation (11) and an aggregation of (14) the following expression for
the average value of ηY,t can derived:

ηY,t =
α(L)

θY (L)
εt (17)

It is clear from this that unless Y = N (in which case α(L) = θY (L), and
ηY,t = εt)24 the aggregate equivalent of ηY,j,t, ηY,t, is not a white noise error
- it will be predictable from its own history. Of course this is of no use to
any individual agent since, unless Y = N , they do not observe ηY,t, it is not
part of their information set, but this does have significant macroeconomic
implications.

To illustrate these implications, assume the following simple linear form
for equation (5):

xAj,t = λ0 + λ1E
Y
j,tDj,t (18)

Hypothesis Pischke (1995) showed that even in the case where Y = 1 the loss of utility
suffered by an agent from not observing aggregate labour income was very small. In such
cases, even a small cost might prevent the agent from observing any published series on
the history of {Dt} .
24This condition will also be true for Y 6= N if the α(L) = γ(L) so that the distinction

between the common and idiosyncratic shocks is unimportant.
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Assume also that agent j chooses to condition her expectations on an infor-
mation set containing the histories of {Dj,t} and Y −1 other such series. So
she forms expectations using equation (15) which we repeat here for k = 0:

EYj,tDj,t = d+
TX
i=1

θY,iηY,j,t−i +
TX
i=1

γi(uj,t−i − uY,j,t−i) (19)

The aggregate or average value of xAj,t, x
A
t , can be written:

xAt = λ0 + λ1

Ã
d+

TX
i=1

θY,iηY,t−i

!
(20)

From equation (17) it follows that we can write:

xAt = λ0 + λ1

Ã
d+

TX
i=1

θY,i
α(L)εt−i
θY (L)

!
(21)

or:

xAt = θY (L)λ0 + λ1

Ã
θY (L)d+

TX
i=1

θY,iα(L)εt−i

!
−θY,1xAt−1 − θY,2x

A
t−2 − ...− θY,Tx

A
t−T (22)

Two features of equation (22) are important. First, ORE implies quite dif-
ferent dynamics for xAt than does RE. RE implies that α(L)εt = θN(L)ηN,t
so that equation (22) simplifies to:

xAt = λ0 + λ1

Ã
d+

TX
i=1

αiεt−i

!
(23)

Equation (23) is anMA(T ) process whereas equation (22) is anARMA(T, 2T ).
So a key effect of agents using an incomplete information set is that the
dynamic behaviour of xAt is changed: specifically the response of x

A
t to a

common shock is more drawn out.
The second notable, but less obvious, feature of equation (22) is that the

response of the aggregate, xAt , to εt may give a quite misleading impression
of the response of xAj,t, to a change in Ej,tDj,t. Assume, for illustrative
purposes, that each agent’s information set consists solely of the history of
her own Dj,t, so Y = 1. Assume also that T = 1, α1 = 0.9, γ1 = −0.8 and
σ2u/σ

2
ε is sufficiently high for θY,1 to be closer to γ1 than to α1, say −0.2.

Then, from equation (22) the aggregate variable, xAt , will follow the process:

xAt = 0.8λ0 + 0.8λ1d− 0.2λ1εt−1 − 0.18λ1εt−2 + 0.2xAt−1
If, on the other hand, each agent were to observe the composite and idio-
syncratic shocks separately, xAt would follow the process:

xAt = λ0 + λ1d+ λ1α1εt−1
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With an incomplete information set, not only would the behaviour of xAt
be more drawn out, but the response of xAt to α1εt−1, i.e. to what would
conventionally be measured as the change in the typical agent’s expectation
of Dj,t, would appear to have the wrong sign. Thus, aggregate data would
give a highly misleading picture of the behaviour of the agent.

The reason for both these features is the same. If the idiosyncratic and
common shocks were separately observed, agents would react to the shocks
separately, correctly and immediately. On aggregation, the effects of the
idiosyncratic shocks would be averaged out to zero and the aggregate vari-
able would show the true effect of the common shock on individual behav-
iour. But if the shocks were not separately observed by the agent, the effects
of the two shocks on individual behaviour would be conflated, and, if the
MA processes for the two shocks were different, this conflation would induce
individuals to react quite incorrectly to a common shock in the belief that
it was idiosyncratic. On aggregation, this incorrect response will appear as
the aggregate response to the common shock so it would appear from the
behaviour of the aggregate variable as if individuals were responding to the
common shock perversely.

For example, given theMA processes assumed above, a positive idiosyn-
cratic shock in period t−1 would imply a lower value for Ej,tDj,t and hence
induce a fall in xAj,t. So the typical agent, mistaking a positive value for εt−1
for a positive idiosyncratic shock, would reduce xAj,t. Given the high value
of σ2u/σ

2
ε, the typical agent would generally mistake a positive value for the

common shock as a positive value for an idiosyncratic shock, and so would
react to positive movements in the common shock by reducing xAj,t. The
relationship between xAt and εt−1 would therefore appear perverse. In the
end, when the effects of the shock on the observed series {Dj,t} have been
lost, and in the absence of any other shocks, the agent will have responded
‘correctly’ and be in the same position as an agent who observed the initial
shock separately; but when agents do not observe the shocks separately, this
‘correct’ response is achieved more gradually. Although we have illustrated
these properties on the assumption that the agent’s information set con-
sists solely of the history of her own Dj,t, they also apply to cases where
1 < Y < N .

There will always be a tendency for these two features to occur when
agents choose to condition their expectations on an incomplete information
set, but they will be more severe the greater the differences between the
processes driving the common and idiosyncratic components of Dj,t, and
the greater the variance of the idiosyncratic component. The first prob-
lem suggests that at least some of the inertia we observe in macroeconomic
data can be viewed not as the result of (say) irrational behaviour, or the
presence of adjustment costs or the stickiness of prices, but as the result
of the perfectly rational behaviour of agents faced with costs of acquiring
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information. Imperfections in their chosen information set introduce a de-
gree of cloudiness into agents’ perceptions of the shocks affecting them, and
this slows down their response. The framework we have developed is similar
in spirit to that of Akerlof and Yellen (1985) and others who argued that
departures from rationality (‘near-rationality’) involve second-order losses
but have first-order macroeconomic consequences. In our case there are no
departures from rationality - the small second-order losses with first-order
macroeconomic consequences arise from the rational use of incomplete in-
formation sets.

6 Testing models incorporating ORE

An attractive feature of RE models is that they impose testable restrictions
on the data. So too will models which incorporate ORE, though, since RE is
always a special case of ORE, these restrictions are inevitably less severe. We
illustrate this point using the same simple framework used above.25 Consider
the model consisting of equations (19) to (23) and the aggregate version of
equation (12) with all constant terms set at zero for simplicity. After some
straightforward manipulation we can write the model in the form:

Dt = α(L)εt (24)

xAt = λ1θ
∗(L)Dt−1 − θ∗(L)xAt−1 (25)

xAt = λ1θ
∗(L)α(L)εt−1 − θ∗(L)xAt−1 (26)

where θ∗i = θi+1.
One way to test the model would be to estimate equation (25) and test

the within-equation restrictions, that the coefficients on each lag ofDt should
equal the coefficients on the equivalent lag of xAt times −λ1. There will be
T − 1 such restrictions where T is the order of θ(L). However, whilst this is
a joint test of equation (18) and ORE against some other model, it does not
allow us to discriminate between the RE version of the model and the ORE
version. The RE restrictions are simply: θ∗(L) = α∗(L), where α∗i = αi+1.
They imply an additional T cross-equation restrictions on the data. Under
these restrictions equation (26) can be written more simply as:

xAt = λ1α
∗(L)εt−1 (27)

The RE special case can be tested by estimating restricted and unrestricted
versions of equations (24) and (27). So one strategy for investigating the
nature of expectations in this simple model would involve these steps:
25 It would be straightforward to extend his analysis to more complex cases such as the

case where xj,t =
P∞

i=0 λiEj,tDj,t+i.
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(i) estimate equations (24) and (27) and test the model’s cross-
equation restrictions;
(ii) if (i) leads to a rejection, estimate equation (25) and test its
within equation restrictions.

These procedures only apply to the simple model being considered. If
equation (18) were to involve lags of xAj,t the restrictions would be very
different. Our aim here was to show that despite being a more general
model of expectations-formation, ORE can impose testable restrictions on
observable data.26

7 Conclusions

Many macroeconomic models consist of three components: (i) a represen-
tative agent who is assumed to choose the level of an activity to maximise
an objective function subject to a set of constraints; (ii) a mechanism by
which agents form any expectations required as part of that maximization
process; (iii) the aggregation of each individual’s selected level of activity
to the equivalent macroeconomic variable. For some considerable time it
has become almost automatic to use RE as the second component. In this
paper we have suggested that, in general, RE will be inconsistent with the
principles governing the first component of this process, and we have put
forward an alternative which has important implications for the third.

Our alternative model includes RE as a special case but predicts that, in
general, agents will accept a greater degree of inaccuracy in their forecasts
than RE implies. In a specific version of this model we relate the degree
of forecast accuracy to the comprehensiveness of the information set. The
resulting expectations have some characteristics similar to those of RE: they
produce errors that are appear patternless to the agent making them; given
the selected information set, the variance of their forecast errors are as low
as the variance of any other method applied to the same information set;
they are quite consistent with general equilibrium in that no agent has an
incentive to improve upon them; and they are capable of generating testable
restrictions on the behaviour of observable data. But they also differ from
RE in their implications for macroeconomic variables: they suggest that the
method of expectations formation itself can induce inertia in macroeconomic
behaviour; and they imply that under certain circumstances the behaviour
of macroeconomic variables will be a misleading guide to the behaviour of
individual behaviour.

In principle then, ORE is capable of accounting for those empirical fail-
ures of models incorporating RE which were the main spur to our develop-
ment of an alternative theory of expectations formation. A small number
26Demery and Duck (2001) show how the application of ORE to a New Keynesian model

of inflation leads to testable restrictions which they fail to reject using US and UK data.
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of studies using a form of ORE have suggested that they might account
for such failures in practice. Whether models incorporating ORE are more
widely successful is a matter for future research.
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8 Appendices

8.1 Appendix A: Proof that RY,j,t is white noise

From equation (13), we have:

ηY,j,t =
α(L)εt + γ(L)uY,j,t

θY (L)

which can be rewritten as:

ηY,j,t = α(L)εt + γ(L)uY,j,t − θY,1ηY,j,t−1 − θY,2ηY,j,t−2
−....− θY,qηY,j,t−q

By definition:

uY,j,t ≡ 1

Y

Y−1X
i=0

uj+i,t

The θY,is are defined so that the covariance terms σηY,tηY,t−s = 0 for all
s 6= 0.

Define the two variables:

yt = ηY,j,t + ujt − uY,j,t
yt−s = ηY,j,t−s + uj,t−s − uY,j,t−s

Then, since both uj,t and uY,j,t are white noise, it follows that the covariance
between yt and yt−s is:

σyy−s = σuj,t−sηY,t − σuY,t−sηY,t

Given our assumptions, the two covariances on the right-hand side of this
expression can be written as:

σujt−sηY,t = γsσuuY − θY,1σujt−sηY,t−1 − θY,2σujt−sηY,t−2 − ....
−θY,sσujt−sηY,t−s

and:

σuY,t−sηY,t = γsσ
2
uY
− θY,1σuY,t−sηY,t−1 − θY,2σuY,t−sηY,t−2 − ....

−θY,sσuY,t−sηY,t−s
since the covariances σujt−sηY,t−(s+k) = σuY,t−sηY,t−(s+k) = 0 for k > 0.

The equivalent terms on the right-hand side of these two expressions are
the same and hence σuj,t−sηY,jt = σuY,t−sηY,t for all s and so σyy−s = 0. To

prove this, first note that since σuuY ≡ σ2u
Y and σ2uY ≡ Y σ2u

Y 2
:

σuuY = σ2uY
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From this it follows that:

σujt−sηY,t−s = σuY,t−sηY,t−s

σuj,t−sηY,t−(s−1) = γ1σ
2
uY
− θY,1σuj,t−sηY,t−s

σuY,t−sηY,t−(s−1) = γ1σ
2
uY − θY,1σuY,t−sηY,t−s

Both terms on the right-hand side of the second of these three expressions
equal their equivalents on the right-hand side of the third. So:

σuj,t−sηY,t−(s−1) = σuY,t−sηY,t−(s−1)

A similar argument applies to all the other relevant covariances in the ex-
pressions for σuj,t−sηY,t and σuY,t−sηY,t . Hence both expressions will equal
zero.

8.2 Appendix B: Proof that a richer information set lowers
the forecast-error variance.

Each information set has associated with it (a) a forecast error which, in
the main text, we have denoted by RY,j,t = ηY,j,t + uj,t − uY,j,t; and (b) an
informational history which can be expressed as the separate histories of the
two series,

©
ηY,j,t

ª
and {uj,t − uY,j,t}.

Compare now the cases where Y = q and Y = q + 1. In the former
case the forecast error is ηq,j,t + uj,t − uq,j,t, and the available histories are
those of

©
ηq,j,t

ª
and {uj,t − uq,j,t} where θq(L)ηq,j,t = α(L)εt+γ(L)uq,j,t. In

the latter case the forecast error is ηq+1,j,t + uj,t − uq+1,j,t and the available
histories are those of

©
ηq+1,j,t

ª
and {uj,t − uq+1,j,t} where θq+1(L)ηq+1,j,t =

α(L)εt + γ(L)uq+1,j,t.
It is clear that the history of {uj,t − uq+1,j,t} contains information that

would lower the variance of ηq,j,t + uj,t − uq,j,t since there are non-zero co-
variances between ηq,j,t and uj,t−i − uq+1,j,t. The first of these covariances,
for example, will be (γ1 − θq,1)

σ2u
q(q+1) which will generally be non-zero.

In contrast, the history of uj,t−uq,j,t contains no information that would
lower the variance of ηq,j,t+uj,t−uq,j,t since the covariances between ηq+1,j,t
and uj,t−i − uq,j,t−i are all zero. To see this note that the first of these
covariances will be:

covar((γ1 − θq+1,1)uq+1,j,t−1, (
q − 1
q
uj,t−1)

−covar((γ1 − θq+1,1)uq+1,j,t−1, (
uj+1,t−1 + ...+ uj+q−1,t−1

q
)

This equals (γ1− θq+1,1)
q−1
(q+1)qσ

2
u − (γ1− θq+1,1)

q−1
(q+1)qσ

2
u = 0. It follows

from this that the other covariances are also zero. Hence the information
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contained in the history of {uj,t − uq+1,j,t} would allow the agent to reduce
the error variance of a forecast made from information set q, but the infor-
mation contained in the history of {uj,t − uq,j,t} would not allow the agent
to reduce the error variance of a forecast made from information set q + 1.
Since the agent with information set q+1 can always obtain the series ηq,j,t
from the histories of {Dj,t....Dj+j+q,t} it follows that the agent with infor-
mation set q + 1 has a superior information set which can always be used
to produce a forecast with a lower error-variance than the forecast made by
an agent with information set q.
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Table 1

Forecast Error Variance and the Size of the Information Set, Y

Panel A σ2ε = 1

Model : Dj,t = εt + 0.9εt−1 + uj,t − 0.8uj,t−1

Y | σ2u 0.5 1 2 10

1 2.5312 3.4471 4.9918 14.8051
2 2.2215 3.0312 4.4471 13.9344
5 1.9363 2.6405 3.9211 12.9918
10 1.7901 2.4363 3.6405 12.4471
100 1.5579 2.0988 3.1612 11.4363
∞ 1.5000 2.0000 3.0000 11.0000

Panel B σ2ε = 1

Model : Dj,t = εt + 0.9εt−1 + uj,t + 0.5uj,t−1

Y | σ2u 0.5 1 2 10

1 1.6173 2.1472 3.1719 11.2027
2 1.5863 2.1173 3.1472 11.1935
5 1.5507 2.0768 3.1072 11.1719
10 1.5310 2.0507 3.0768 11.1472
100 1.5041 2.0078 3.0146 11.0507
∞ 1.5000 2.0000 3.0000 11.0000
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