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Abstract

A number of recent studies have concluded that the most com-
monly used efficient two-step generalized method of moments (GMM)
estimator may have large bias in applications. This problem has moti-
vated the search for alternative efficient estimators with smaller bias.
Estimators which have received some attention in the literature are
the continuous updating estimator (CUE), the empirical likelihood
estimator, and the exponential tilting estimator. We show that the
continuous updating estimator is a member of a generalized empiri-
cal likelihood (GEL) class that also includes exponential tilting and
empirical likelihood. Also, we derive stochastic expansions for each of
the estimators along with asymptotic bias expressions. We find that
an important part of the bias of GEL estimators will tend to be less
than that of GMM with many moment conditions, and that the bias
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of empirical likelihood is the same as a GMM estimator where the
optimal linear combination coefficients are known.
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1 Introduction

A number of recent studies have concluded that the most commonly used

efficient two-step generalized method of moments (GMM; Hansen, 1982) es-

timator may have large biases for the sample sizes typically encountered in

applications. See, for example, the Special Section, July 1996, of the Jour-

nal of Business and Economic Statistics. This problem has motivated the

search for alternative efficient estimators with smaller bias. Hansen, Heaton,

and Yaron (1996) suggested the continuous updating estimator (CUE) and

showed that it had smaller bias than multi-step GMM estimators in some

Monte Carlo examples. Stock and Wright (2000) show that the CUE has

better properties than the two-step GMM estimator under weak instrument

asymptotic theory. Donald and Newey (2000) give a jackknife interpretation

of the CUE that explains its small bias. Other estimators include the empir-

ical likelihood (EL) estimator of Imbens (1997) and Qin and Lawless (1994),

and the exponential tilting (ET) estimator of Imbens, Spady and Johnson

(1998) and Kitamura and Stutzer (1997). The EL and ET estimators are

included in the class of generalized empirical likelihood (GEL) estimators

considered in Smith (1997, 1999), that use an objective function like that of

Brown, Newey, and May (1997).

All of these estimators are asymptotically normal and mutually asymptot-

ically equivalent. Thus, some alternative to the usual first order asymptotic

theory must be used to compare their properties. We give one exact result

by showing that the CUE is included in the class of GEL estimators. We

also consider stochastic expansions like those of Nagar (1959) and Robinson
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(1988). As a by-product we also give precise consistency and asymptotic

normality results for any GEL estimator.

We show higher-order asymptotic equivalence of the CUE and all GEL

estimators under zero expectation of third powers of the moment indica-

tors. We also derive asymptotic bias expressions for each of the estimators,

obtained as the expectation of leading terms in stochastic expansions. We

show that each GEL estimator removes the bias of GMM that is associ-

ated with estimation of the Jacobian term that appears in the optimal linear

combination of moments. This bias can be especially large when there are

many moment conditions. This result provides an asymptotic justification

for the relatively small bias for the CUE found by Hansen, Heaton, and

Yaron (1996). We also find that the moment vector will tend to be biased

when the estimator is biased. This result predicts that bias of the coefficients

tends to be associated with excessive rejection for the test of over identifying

restrictions.

We also show that empirical likelihood removes the bias due to estima-

tion of the weight matrix in the optimal linear combination of moments,

even when third moments are nonzero. Strikingly, we find that for empirical

likelihood the bias is the same as for an (unfeasible) estimator based on the

optimal linear combination of moment restrictions.

Section 2 describes the GMM, CUE, and GEL estimators and demon-

strates that the CUE is a GEL estimator. Section 3 reports the stochastic

expansions and asymptotic biases. Section 4 gives regularity conditions and

a precise consistency and asymptotic normality result for GEL estimators.

The Appendix contains some intermediate results and proofs.
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2 The Estimators

To describe the estimators, let zi, (i = 1, ..., n), be i.i.d. observations on

a data vector z. Consider the moment indicator g(z, β), an m-vector of

functions of the data observation z and the p-vector β of unknown parameters

which are the object of inferential interest, where m ≥ p. It is assumed that
the true parameter vector β0 satisfies the moment condition

E[g(z, β0)] = 0,

where E[.] denotes expectation taken with respect to the distribution of z.

Let gi(β) ≡ g(zi, β), ĝ(β) ≡ n−1Pn
i=1 gi(β), and Ω̂(β) ≡ n−1

Pn
i=1 gi(β)gi(β)

0.

A two-step GMM estimator is one that satisfies, for some preliminary con-

sistent estimator β̃ for β0,

β̂2S = argmin
β∈B

ĝ(β)0Ω̂(β̃)−1ĝ(β), (2.1)

where B denotes the parameter space. The CUE is obtained by simultane-
ously minimizing over β in Ω̂(β)−1, that is

β̂CUE = argmin
βεB

ĝ(β)0Ω̂(β)−ĝ(β), (2.2)

where A− denotes a generalized inverse of a matrix A, satisfying AA−A =

A. As we show below, the objective function is invariant to the choice of

generalized inverse.

GEL estimators are obtained as the solution to a saddle point problem.

Let ρ(.) be a function that is concave its domain, which is an open interval

containing zero, λ be a m-vector of auxiliary parameters, and

P̂ (β,λ) = n−1
nX
i=1

ρ(λ0gi(β)). (2.3)
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Also, let Γn be a set such that λ
0gi(β) is in the domain of ρ(.) for all λ ∈ Γn,

β ∈ B, and i ≤ n. As specified in Section 4, it will suffice for the theory here
that Γn place bounds on λ that shrink with n slower than n−1/2. A GEL

estimator is obtained as the solution

β̂GEL = argmin
β∈B

sup
λ∈Γn

P̂ (β,λ). (2.4)

The EL estimator is a GEL estimator with ρ(v) = ln(1+v), see Imbens (1997)

and Qin and Lawless (1994), and ET is also GEL with ρ(v) = − exp(v), see
Imbens, Spady, and Johnson (1998) and Kitamura and Stutzer (1997).

Our first result shows that the CUE is also a GEL estimator. Let ρv(v)

and ρvv(v) denote first and second derivatives of ρ(v), respectively.

Theorem 1 If ρ(v) is quadratic, ρv(0) 6= 0 and ρvv(0) < 0, then β̂GEL =

β̂CUE.

GEL estimators are also related to estimators considered by Corcoran

(1998). To describe these estimators, let h(π) be a convex function of a scalar

π that measures the discrepancy between π and the empirical probability 1/n

of a single observation, that can depend on n. Consider the optimization

problem

min
π1,...,πn,β

nX
i=1

h(πi), s.t.
nX
i=1

πigi(β) = 0,
nX
i=1

πi = 1. (2.5)

When the solutions π̂1, ..., π̂n of this problem are nonnegative, these can be

interpreted as probabilities that minimize the discrepancy with the empirical

measure subject to the moment conditions. We refer to the solution β̂MD to

this minimization problem as a minimum discrepancy (MD) estimator.
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We can relate MD and GEL estimators by comparing their first-order

conditions. For an m-vector of Lagrange multipliers α̂MD associated with the

first constraint and a scalar µ̂MD for the second in (2.5), the MD first order

conditions for π̂i are hπ(π̂i) = −α̂0MDgi(β̂MD)+µ̂MD. Let Gi(β) ≡ ∂gi(β)/∂β
0.

Assuming hπ(.) is one-to-one, solving for π̂i and substituting into the first-

order conditions for β̂MD, α̂MD and µ̂MD gives, for MD,

nX
i=1

h−1π (−α̂0MDgi(β̂MD) + µ̂MD)Gi(β̂MD)0α̂MD = 0, (2.6)

nX
i=1

h−1π (−α̂0MDgi(β̂MD) + µ̂MD)gi(β̂MD) = 0,

and
Pn
i=1 h

−1
π (−α̂0MDgi(β̂MD) + µ̂MD) = 1. For comparison, the GEL first-

order conditions are

nX
i=1

ρv(λ̂
0
GELgi(β̂GEL))Gi(β̂GEL)

0λ̂GEL = 0, (2.7)

nX
i=1

ρv(λ̂
0
GELgi(β̂GEL))gi(β̂GEL) = 0.

In general, the first order conditions for GEL and MD are different, and

hence so are the estimators of β.

There is a relationship between ML and GEL when h(π) is a member of

the Cressie-Read (1984) power family, where h(π) = πγ+1/[γ(γ + 1)]. In this

case h−1π (.) is homogenous, so that µ̂MD can be factored out of (2.6). Then

the first-order conditions eq. (2.6) and eq. (2.7) coincide for

ρ(v) = −γ2(1 + v)(γ+1)/γ/(γ + 1), λ̂GEL = α̂MD/µ̂MD. (2.8)

In this case the GEL saddle point problem is a dual of the MD one, in

the sense that λ̂GEL is a ratio of Lagrange multipliers from MD. When
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h(π) is not a member of the Cressie-Read family, h−1π (.) is not homoge-

nous. It then appears to be impossible to factor out µ̂MD, and that the

MD and GEL estimators are different. We focus on the GEL class be-

cause for large n they are obtained from a much smaller dimensional op-

timization problem that MD. Also, the ability to estimate the distribu-

tion of the data using π̂i, (1, ..., n), is not lost for a GEL estimator. As

shown in Brown, Newey, and May (1997), the discrete distribution with

Pr(z = zi) = ρv(λ̂
0
GELgi(β̂GEL))/

Pn
j=1 ρv(λ̂

0
GELgj(β̂GEL)) is an efficient esti-

mator of the distribution of a single observation.

3 Higher Order Asymptotic Properties

We obtain stochastic expansions for the parameter vector θ = (β 0,λ0)0 that

includes the auxiliary parameters λ as well as β. Including λ seems to simplify

calculations and leads to interesting results for λ̂. For the CUE we will find

Tn such that

θ̂CUE = θ0 + Tn +Op(n
−3/2), (3.1)

where Tn is quadratic in sample averages. As discussed in Rothenberg (1984),

E[Tn] will then be an approximate bias, even though moments of the CUE

may not exist. Under certain regularity conditions E[Tn] will coincide with

the expectation of an Edgeworth approximation to the distribution of the

estimator.

For another estimator θ̃, either GEL or GMM, we will find Rn that is
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quadratic in sample moments such that

θ̃ = θ̂CUE +Rn +Op(n
−3/2), Rn = Op(n−1). (3.2)

Thus, these two estimators are asymptotically equivalent, meaning
√
n(θ̃ −

θ̂CUE)
p→ 0, and Rn is the dominant remainder in the difference between

them. We will be particularly interested in the case Rn = 0, where the esti-

mator will be higher-order asymptotically equivalent to the CUE (meaning

n(θ̃− θ̂CUE)
p→ 0). Also, when they are not higher-order equivalent, by sum-

ming equations (3.1) and (3.2) we find that θ̃ also satisfies equation (3.1) with

Tn + Rn replacing Tn. Thus, the approximate bias of θ̃ will be E[Tn + Rn],

which can be compared with the CUE bias E[Tn]. Throughout the rest of the

paper, we will refer to these expectations as ”bias,” with the understanding

that they are only approximate.

In this Section we report the form of Tn and Rn and their expectations,

and compare them. In the next Section we give the regularity conditions for

these expansions. To describe the results, let gi ≡ gi(β0), Gi ≡ Gi(β0), and

Ω ≡ E[gig
0
i], G ≡ E[Gi], V ≡ (G0Ω−1G)−1,

H ≡ V G0Ω−1, P ≡ Ω−1 − Ω−1GVG0Ω−1.

Also, let a be an m-vector such that

aj ≡ tr(V E[∂2gij(β0)/∂β∂β 0])/2, (j = 1, ...,m), (3.3)

where gij denotes the jth element of gi, (j = 1, ...,m).

Theorem 2 If Assumptions 4.1-4.4 are satisfied then θ̂CUE = θ0 + Tn +

Op(n
−3/2) where

E[Tn] = −[H 0, P ]0(a− E[GiHgi]−E[gig0iPgi])/n. (3.4)
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The bias for β̂CUE is the first p elements of E[Tn],

Bias(β̂CUE) = −Ha/n+ E[HGiHgi]/n+HE[gig0iPgi]/n

Each of the terms in the bias has an interpretation. The sum of the first two

terms, −Ha/n + E[HGiHgi]/n, is precisely the bias for a GMM estimator

with moment vector G0Ω−1g(z, β) (see Lemma A.3). As shown by Hansen

(1982), this moment vector is the optimal (asymptotic variance minimiz-

ing) linear combination of g(z,β). Thus, this expression is the bias for the

(infeasible) optimal GMM estimator where the optimal linear combination

coefficients G0Ω−1 did not have to be estimated. The first term Ha arises

from nonlinearity of the moments, and will be zero when they are linear in

parameters. The second term is generally not zero whenever there is en-

dogeneity, but it will tend not to be very big. For instrumental variables,

where g(z, β) is a product of instruments and residuals, the combined expres-

sion is essentially the bias with exact identification, where the instruments

are the optimal linear combination (with true coefficients). It is well known

that this bias will tend to be small, with the main problem being caused by

over-identification. In particular, this term will generally not grow with the

number of moments m.

The third term in the bias is due to estimation of Ω. In some cases this

may be a significant source of bias. For example, Altonji and Segal (1996)

show that when gi involves variance and covariance indicators, this kind of

bias can be important. This source of bias would not be present if a fixed

weighting matrix W were used rather than the estimate Ω̂(β̂CUE). Also, it

will be zero if the third moments of gi are zero. For example, this will occur
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if gi consists of products of instruments with a residual that is conditionally

symmetric (e.g. Gaussian) given the instruments. Also, as we see below, for

EL this term will disappear, even without symmetry.

In summary, for the CUE, the bias is the sum of the bias for an estimator

using the optimal linear combination of instruments and a term arising from

estimation of Ω. Thus, the bias does not include a term for estimation of G.

As we now show, such a term does show up for GMM, and is an important

source of bias for that estimator.

The bias terms for λ̂CUE are similar to those for β̂CUE. These terms

impact the properties of tests of over-identification. For instance, from the

first-order conditions for CUE (obtained from eq. (2.7) with ρv(v) = 1 + v),

we see that over-identification test statistic is

nĝ(β̂GEL)
0Ω̂(β̂GEL)−1ĝ(β̂GEL) = nλ̂0GELΩ̂(β̂GEL)λ̂GEL.

Thus, when the biases are large, so that the distribution of λ̂GEL is not

centered near zero, the overidentification test will tend to be large, leading

to over-rejection.

To describe the higher-order relationship between GMM and CUE and

derive the bias for GMM, it is useful to introduce for GMM an auxiliary

parameter estimator λ̂2S analogous to that for GEL. Consider the equations

Ĝ(β̂2S)
0λ̂2S = 0, (3.5)

ĝ(β̂2S) + Ω̂(β̃)λ̂2S = 0.

The first-order conditions for GMM are obtained by solving the second equa-

tion for λ̂2S and substituting it into the first. Formulating GMM in this way
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makes comparison with GEL easier. For instance, for the iterated GMM es-

timator of Hanson, Heaton, and Yaron (1996) where β̃ = β̂2S, we see by com-

paring this equation with eq. (2.7), for ρv(v) = −(1+v), that the GMM and

CUE first order conditions are identical except that the CUE first-order con-

dition includes the additional term
Pm
j=1 λ̂

0
CUE,j[

Pn
i=1 gij(β̂CUE)Gi(β̂CUE)

0/n]λ̂CUE.

As shown in Donald and Newey (2000) and as we discuss below, it is exactly

this term that helps to reduce the bias for CUE relative to GMM.

Let λ̃ = −P ĝ(β0) and Gi,j• denote the jth row of Gi, (j = 1, ...,m). We
have the following result:

Theorem 3 If Assumptions 4.1-4.4 are satisfied and β̃ = argminβ ĝ(β)
0Ŵ ĝ(β)

for Ŵ = W+Op(n
−1/2) andW positive-definite, then for HW = (G0WG)−1G0W ,

θ̂2S = θ̂CUE +Rn +Op(n
−3/2) where

Rn = −[V,−H]0
mX
j=1

λ̃jE[gijG
0
i]λ̃ (3.6)

+[H 0, P ]0
mX
j=1

λ̃j{E[gijGi] + E[giGi,j•]}(H −HW )ĝ(β0),

E[Rn] = [−V,H]0E[G0iPgi]/n.

The second term in Rn is due to the use of a non-optimal weighting matrix

Ŵ in constructing the initial estimator β̃. It will be zero ifW = Ω, as for the

iterated GMM estimator considered by Hansen, Heaton, and Yaron (1996).

More generally, only one iteration is required for its disappearance. Also,

even if it is nonzero, it contributes nothing towards the bias, because λ̃ and

(H −HW )ĝ(β0) are uncorrelated.
The first term in Rn is due to the estimation ofG in the linear combination

coefficients G0Ω−1 for the optimal GMM estimator. Its presence means that
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the bias of GMM estimator β̂2S will be

Bias(β̂2S) = Bias(β̂CUE)− V E[G0iPgi]/n.

The last term can be quite large, especially when there are many moment

restrictions. In particular, note that E[G0iPgi] will tend to grow with the

number of moment restrictions.

We can obtain precise expressions in the important example of a ho-

moskedastic linear simultaneous equation. For simplicity we will consider

the case with one right-hand side variable and a symmetric disturbance.

Example. Let x denote a m-vector of instrumental variables and y and

w be endogenous variables satisfying

y = β0w + ε, E[ε|x] = 0, E[ε3|x] = 0,
σ2ε = var(ε|x),σεw = cov(ε, w|x).

Then for g(z, β) = x(y − βw) and Q = E[xix
0
i], it follows that Ω = σ2εQ,

G = −E[xiwi], and E[giG0i] = −E[xiεiwix0i] = −σεwQ. Here the estimators
are asymptotically equivalent to two-stage least squares. Note that

E[G0iPgi] = −E[εiwix0iPxi] = −σεwE[x0iPxi] = −σεwtr(QP )
= −(σεw/σ2ε)(m− 1).

Also,

HE[Gig
0
i]H

0 = −σεwHQH 0 = −(σεw/σ2ε)V.

Then we have the bias expressions for β corresponding to the CUE and GMM

respectively,
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Bias(β̂CUE) = −(σεw/σ2ε)V/n,Bias(β̂2S) = (m− 2)(σεw/σ2ε)V/n.

It is interesting to note that these are exactly the limited information max-

imum likelihood and two-stage least squares approximate biases found by

Rothenberg (1983) and Nagar (1959) respectively. In this example the bias

of the two step GMM estimator increases linearly with m while the bias of

the CUE estimator does not depend on m.

To derive the relationship between the CUE and GEL estimators it is

convenient to renormalize by replacing ρ(v) with ρ([ρv(0)/ρvv(0)]v). This

replacement has no effect on β̂GEL but makes the scale of λ̂GEL comparable

for different ρ(v). Then we have the following result:

Theorem 4 If Assumptions 4.1-4.4 are satisfied then θ̂GEL = θ̂CUE +Rn +

Op(n
−3/2) for

Rn = −[H 0, P ]0{ρv(0)ρvvv(0)/2ρvv(0)2}
mX
j=1

λ̃jE[gijgig
0
i]λ̃,

E[Rn] = −[H 0, P ]0{ρv(0)ρvvv(0)/2ρvv(0)2}E[gig0iPgi]/n.

The remainder term is a linear combination of quadratic forms in λ̃. It

will be zero, when for each j, E[gijgig
0
i] = 0. As previously noted, this

condition may not be satisfied, but will in the important case of instrumental

variables estimation with a symmetric disturbance. In that case CUE and

GEL estimators are higher-order asymptotically equivalent. Also, both will

have bias that is the same as the GMM estimator with moment functions

G0Ω−1g(z, β).
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In general,

Bias(β̂GEL) = −Ha/n+ E[HGiHgi]/n (3.7)

+[1− ρv(0)ρvvv(0)/2ρvv(0)
2]HE[gig

0
iPgi]/n

The last term disappears when ρv(0)ρvvv(0) = 2ρvv(0)
2. Since for EL, where

ρ(v) = ln(1 + v), this equality is satisfied, we find that

Bias(β̂EL) = −Ha/n+ E[HGiHgi]/n.

Thus, the EL estimator of β has a higher-order bias that is exactly the

same as for an estimator with moment functions G0Ω−1g(z, β). For the

EL estimator, there is no bias from estimation of either G or Ω. This

same property would be shared by any GEL estimator with same value

for ρv(0)ρvvv(0) = 2ρvv(0)
2, although by Theorem 3.3 it follows that any

such estimator would be higher-order equivalent to EL. For instance, in the

Cressie-Read family ρv(0)ρvvv(0)/2ρvv(0)
2 = (1 − γ)/2, so the EL estimator

(obtained as γ → −1) is the only member of this family that has this zero
bias property.

The reduction in bias from GEL estimators does not come for free. Monte

Carlo evidence of Hansen, Heaton, and Yaron (1996) shows that it is ac-

companied by substantial increases in variance. This generally leads to more

accurate coverage probabilities for confidence intervals, but can substantially

lengthen those intervals. It would be useful to compare the higher-order vari-

ances also, in order to understand this trade-off. This comparison is beyond

the scope of this paper, but is the subject of ongoing research.
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4 Asymptotic Theory for GEL

To obtain precise results it is necessary to specify several regularity condi-

tions.

Assumption 4.1 (a) β0 ∈ B is the unique solution to E[g(z,β)] = 0; (b)
B is compact; (c) g(z, β) is continuous at each β ∈ B with probability one;
(d) E

h
supβ∈B kg(z,β)kα

i
<∞ for some α > 2; (e) Ω is nonsingular.

Most of these regularity conditions are standard for GMM (e.g. Newey

and McFadden, 1994). Existence of higher than second moments, however,

is important for GEL estimators.

Assumption 4.2 (a) ρ(v) is twice continuously differentiable and concave

on its domain, an open interval V containing 0, ρv(0) 6= 0, and ρvv(0) < 0;

(b) either (i) Γn = {λ : kλk ≤ Dn−γ} with 1
2
> γ > 1

α
, or (ii) V = <,

Γn = <m; (c) for some neighborhood N of β0, ε > 0, and for all λ,

E[supβ∈N |ρ(λ0g(z, β))|] < ∞, E[supβ∈N ,kλk≤ε kg(z, β)k2|ρvv(λ0g(z,β))|] <
∞.

This assumption specifies that either the domain of ρ(v) is the real line or

bounds are placed on λ. When combined with the existence of higher than

second moments in the previous assumption, this condition leads to λ0gi(β)

being in the domain V of ρ(v) for all β and i ≤ n.
These conditions lead to a consistency result, and more.

Theorem 5 If Assumptions 4.1 and 4.2 are satisfied then β̂GEL
p→ β0. Also,

kλ̂GELk = Op(n−1/2), and kĝ(β̂GEL)k = Op(n−1/2).
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This result also gives a convergence rate for λ̂GEL and ĝ(β̂GEL) as a by-

product of consistency. A similar result holds for the two-step GMM estima-

tor under these regularity conditions.

For asymptotic normality we need additional regularity conditions.

Assumption 4.3 (a) β0 ∈ int(B); (b) g(z,β) is differentiable in a neigh-
borhood N of β0 and E[supβ∈N k∂g(z,β)/∂β 0k] <∞; (c) rank(G) = p.

This is a standard smoothness condition for the asymptotic normality of

GMM that could be relaxed. Under this condition it follows that the GEL

estimator is asymptotically normal:

Theorem 6 If Assumptions 4.1 - 4.3 are satisfied then

√
n(β̂GEL − β0)

d→ N(0, V ),
√
nλ̂GEL

d→ N(0, P ),

n[2ρvv(0)/ρv(0)
2][ρ(0)− P̂ (β̂GEL, λ̂GEL)] d→ χ2(m− p).

This result shows asymptotic normality of the GEL estimators β̂GEL and

λ̂GEL, and that, properly normalized, the saddle-point objective function has

a limiting chi-squared distribution. This statistic is a version of the GMM

test statistic of overidentifying restrictions. Indeed, as noted above, for the

CUE where ρ(v) is quadratic, it is identical to the GMM statistic. Moreover,

the proof of Theorem 4.2 reveals that the GEL estimators β̂GEL and λ̂GEL

are asymptotically uncorrelated.

More smoothness is needed for validity of the asymptotic expansions re-

ported in Section 3. Assumption 4.4 below strengthens aspects of Assump-

tions 4.1-4.3 which together are then sufficient for the validity of the expan-

sions of the previous section.
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Assumption 4.4 (a) ρ(.) is four times continuously differentiable in a neigh-

borhood of 0; (b) E[supβ∈N k∂g(z, β)/∂β0kα/(α−2)] < ∞; (c) α ≥ 4; (d)

E[kg(z, β)k6] < ∞; (e) g(z,β) is four times continuously differentiable on
N and for any element of g(z, β) and any partial derivative ∆(z, β) up to

order four, E[supβ∈N |∆(z, β)|2] <∞.

With this assumption in hand the validity of the expansions given in

Theorems 3.1-3.3 can be shown, as is done in the following Appendix.

[16]



Appendix: Proofs

Proof of Theorem 2.1: Let A = [g1(β), ..., gn(β)]
0/
√
n and ι = (1, ..., 1)0 be

an n-vector of units. Thus, ĝ(β) = A0ι/
√
n and Ω̂(β) = A0A. By Rao (1973,

1b.5(vi),(viii)), A(A0A)−A0 is invariant to the choice of generalized inverse

and A0A(A0A)−A0 = A for any generalized inverse. Since the CUE objective

function is ι0A(A0A)−A0ι/n, it is invariant to the generalized inverse. By ρ(v)

quadratic, a second-order Taylor expansion is exact, giving

P̂ (β,λ) = ρ(0) + ρv(0)ĝ(β)
0λ+

1

2
ρvv(0)λ

0Ω̂(β)λ. (A.1)

By concavity of P̂ (β,λ) in λ, any solution λ̂(β) to the first-order conditions

0 = ρv(0)ĝ(β) + ρvv(0)Ω̂(β)λ

will maximize P̂ (β,λ) with respect to λ holding β fixed. Then, Ω̂(β)Ω̂(β)−ĝ(β) =

A0A(A0A)−A0ι/
√
n = ĝ(β), so that λ̂(β) = −[ρv(0)/ρvv(0)]Ω̂(β)−ĝ(β) solves

the first-order conditions. Substituting λ̂(β) back in (A.1) gives

P̂ (β, λ̂(β)) = ρ(0)− [ρv(0)2/2ρvv(0)]ĝ(β)0Ω̂(β)−ĝ(β). (A.2)

Since ρvv(0) < 0 by concavity of ρ(v), P̂ (β, λ̂(β)) is a monotonic increasing

transformation of the CUE objective function. Therefore, CUE minimizes

P̂ (β, λ̂(β)). Furthermore, from the saddle point form of eq. (2.4), the GEL

estimator also minimizes this function. Therefore, the set of GEL estimators

coincides with the set of CUE. Q.E.D.

[A.1]



Throughout the Appendix, C will denote a generic positive constant that

may be different in different uses. Also, with probability approaching one

will be abbreviated as w.p.a.1, positive semi-definite as p.s.d., UWL will

denote a uniform weak law of large numbers such as Lemma 2.4 of Newey

and McFadden (1994), and CLT will refer to the Lindbergh-Levy central

limit theorem. Before proving Theorem 4.1 we give two preliminary lemmas.

Lemma 7 If Assumptions 4.1 and 4.2 are satisfied then there is C such that

w.p.a.1,

sup
λ∈Γn

P̂ (β0,λ) ≤ ρ(0) + Ckĝ(β0)k2.

Proof. Firstly, consider Assumption 4.2(b)(ii) in which the domain of ρ(v)

is the real line. For gi ≡ gi(β0), we have P0(λ) ≡ E[ρ(λ0gi)] existing for each
λ by Assumption 4.2(c). By global concavity of ρ(v) and strict concavity on

a neighborhood of zero (by ρvv(0) < 0),

ρ(λ0gi) ≤ ρ(0) + ρv(0)λ
0gi, (A.3)

with strict inequality for λ0gi 6= 0. Also, by Ω nonsingular, for any λ 6=
0, Pr(λ0gi 6= 0) > 0, so that P0(λ) < P0(0) = ρ(0). Then it follows by

standard consistency results for concave objective functions (e.g. Newey and

McFadden, 1994, Theorem 2.7) that λ̄ = argmaxλ∈<m P̂ (β0,λ) exists w.p.a.1

and λ̄
p→ 0. Then, by Assumption 4.2(b)(ii) and UWL, for any λ̇ = τ λ̄,

0 ≤ τ ≤ 1, Pi ρvv(λ̇
0gi)gig0i/n

p→ ρvv(0)Ω.

Next, under Assumption 4.2(b)(i), let bi = supβ∈B kgi(β)k. Then by

Assumption 4.1 and the Markov inequality, n−1
Pn
i=1 b

α
i = Op(1), so that

max
1≤i≤n

bi =
µ
max
1≤i≤n

bαi

¶1/α
≤ n1/α

Ã
n−1

nX
i=1

bαi

!1/α
= Op(n

1/α). (A.4)

[A.2]



It follows from (A.4) and Assumption 4.2(b)(i) that

sup
β∈B

sup
λ∈Γn

max
1≤i≤n |λ

0gi(β)| ≤ Dn−γ max
1≤i≤n bi

p→ 0.

Therefore, w.p.a.1, λ0gi(β) ∈ V for all i ≤ n, λ ∈ Γn and β ∈ B. For
this case, let λ̄ = argmaxλ∈Γn P̂ (β0,λ) and λ̇ = τλ̄, 0 ≤ τ ≤ 1. Then

maxi≤n |ρvv(λ̇0gi)− ρvv(0)| p→ 0, so that
P
i ρvv(λ̇

0gi)gig0i/n
p→ ρvv(0)Ω.

Next, note that in either case, it follows by ρvv(0)Ω negative definite, that

there exists C > 0 such that w.p.a.1,
P
i ρvv(λ̇

0gi)gig0i/n ≤ −CI in the p.s.d.
sense. Then by a second-order Taylor expansion with Lagrange remainder,

we have w.p.a.1,

sup
λ∈Γn

P̂ (β0,λ) = P̂ (β0, λ̄) = ρ(0) + ρv(0)λ̄
0ĝ(β0) + λ̄0

"
nX
i=1

ρvv(λ̇
0gi)gig0i/n

#
λ̄/2

≤ ρ(0) + ρv(0)λ̄
0ĝ(β0)− Cλ̄0λ̄/2

≤ ρ(0) + sup
λ
[ρv(0)λ

0ĝ(β0)− Cλ0λ/2] = ρ(0) + [ρv(0)
2/2C]kĝ(β0)k2.

Q.E.D.

Lemma 8 If Assumptions 4.1 and 4.2 are satisfied, then kĝ(β̂GEL)k = Op(n−1/2).

Proof. Let β̂ = β̂GEL, ĝi = gi(β̂) and δn = Dn−γ for γ and D as in

Assumption 4.2(b)(i) and λ̄ = ĝ(β̂)δnsgn(ρv(0))/kĝ(β̂)k. It follows similarly
to the proof of Lemma A.1 that maxi≤n |λ̄0ĝi| p→ 0, and hence for any λ̇ as

above,
P
i ρvv(λ̇

0ĝi)ĝiĝ0i/n− ρvv(0)Ω̂(β̂)
p→ 0. Also, Ω̂(β̂) = Op(1). Therefore,

w.p.a.1
P
i ρvv(λ̇

0ĝi)ĝiĝ0i/n ≥ −CI in the p.s.d. sense, so by a second-order
Taylor expansion

P̂ (β̂, λ̄) ≥ ρ(0) + ρv(0)λ̄
0ĝ(β̂)− Cλ̄0λ̄ (A.5)

= ρ(0) + |ρv(0)|kĝ(β̂)kδn − Cδ2n.

[A.3]



w.p.a.1. Noting that P̂ (β̂, λ̄) ≤ supλ∈Γn P̂ (β̂,λ) ≤ supλ∈Γn P̂ (β0,λ), it fol-
lows by Lemma A.1 and eq. (A.5) that w.p.a.1, |ρv(0)|kĝ(β̂)kδn − Cδ2n ≤
Ckĝ(β0)k2. Solving for kĝ(β̂)k then gives

kĝ(β̂)k ≤ Ckĝ(β0)k2/δn + Cδn = Op(δn), (A.6)

as kĝ(β0)k2 = Op(n−1) by CLT. Now, for any εn → 0, redefine λ̄ = εnĝ(β̂)sgn(ρv(0)).

Note that λ̄ = op(δn) by eq. (A.6), so that λ̄ ∈ Γn w.p.a.1. Then, by a similar

argument to that above,

εnkĝ(β̂)k2(|ρv(0)|− εnC) ≤ Ckĝ(β0)k2 = Op(n−1).

Since, for all n large enough, |ρv(0)| − εnC is bounded away from zero, it

follows that εnkĝ(β̂)k2 = Op(n−1). The conclusion then follows by a standard
result from probability theory, that if εnYn = Op(n

−1) for all εn → 0, then

Yn = Op(n
−1). Q.E.D.

Proof of Theorem 4.1: Let β̂ = β̂GEL, λ̂ = λ̂GEL and g(β) = E[g(z, β)].

By Lemma A.2, ĝ(β̂)
p→ 0, and by UWL, supβ∈B kĝ(β)−g(β)k p→ 0 and g(β)

is continuous. The triangle inequality then gives g(β̂)
p→ 0. Since g(β) = 0

has a unique zero β0, kg(β)k must be bounded away from zero outside any

neighborhood of β0. Therefore, β̂ must be inside any neighborhood of β0

w.p.a.1, i.e. β̂
p→ β0.

Next, by eq. (A.3) and UWL, P (β,λ) = E[ρ(λ0g(z, β))] is continuous in

β for given λ and supβ∈B |P̂ (β,λ)−P (β,λ)| p→ 0. Then by the consistency of

β̂, P̂ (β̂,λ)
p→ P0(λ) for all λ. Let ĝi = gi(β̂). It then follows as in the proof

of Lemma A.1 that λ̂
p→ 0 and by UWL under Assumption 4.2(b)(ii) that

[A.4]



for any λ̇ = τλ̂, 0 ≤ τ ≤ 1, Pi ρvv(λ̇
0ĝi)ĝiĝ0i/n

p→ ρvv(0)Ω. Also, it follows

similarly to the proof of Lemma A.1 that this same condition holds under

Assumption 4.2(b)(i). Then by a second-order Taylor expansion,

ρ(0) = P̂ (β̂, 0) ≤ P̂ (β̂, λ̂)
= ρ(0) + ρv(0)λ̂

0ĝ(β̂) + λ̂0[
X
i

ρvv(λ̇
0ĝi)ĝiĝ0i/n]λ̂

≤ ρ(0) + |ρv(0)|kλ̂kkĝ(β̂)k− Ckλ̂k2.

Dividing through by kλ̂k and solving gives kλ̂k ≤ Ckĝ(β̂)k = Op(n
−1/2),

giving the second conclusion. Q.E.D.

Proof of Theorem 4.2: By Theorem 4.1, w.p.a.1 the constraint on

λ, if present, is not binding, and by β0 in the interior of B neither is the
constraint β ∈ B. Therefore, the first order conditions of eq. (2.7) are

satisfied w.p.a.1 with ρ(kv) replacing ρ(v) for k = ρv(0)/ρvv(0). Then by a

mean-value expansion of the second part of these first order conditions we

have, for θ̂[= (β̂0, λ̂0)0] = (β̂ 0GEL, λ̂
0
GEL)

0, θ0 = (β00, 0
0)0, ĝi = gi(β̂),

0 =

 0

ρv(0)ĝ(β0)

+ M̄(θ̂ − θ0), (A.7)

M̄ =

 0
Pn
i=1 ρv(kλ̂

0ĝi)Gi(β̂)0/nPn
i=1 ρv(kλ̄

0ĝi)Gi(β̄)/n
Pn
i=1 kρvv(kλ̄

0ĝi)gi(β̄)ĝ0i/n

 ,
where β̄ and λ̄ are mean-values that actually differ from row to row of the

matrix M̄. By λ̄ = Op(n
−1/2), it follows by an arguments like those of the

proof of Theorem 4.1 that for λ̃ equal to λ̂ or λ̄,

max
i≤n |λ̃

0ĝi| ≤ kλ̃kmax
i≤n kĝik = Op(n

−1/2n1/α)
p→ 0.

[A.5]



Therefore,

max
i≤n |ρv(kλ̃

0ĝi)− ρv(0)| p→ 0,max
i≤n |ρvv(kλ̄

0ĝi)− ρvv(0)| p→ 0.

It then follows from UWL that M̄
p→ ρv(0)M , where

M =

 0 G0

G Ω

 .
Inverting and solving in eq. (A.7) then gives

√
n(θ̂ − θ0) = −M̄−1(0, ρv(0)

√
nĝ(β0)

0)0 = −M−1(0,
√
nĝ(β0)

0)0 + op(1)(A.8)

= −(H 0, P )0
√
nĝ(β0) + op(1).

The first conclusion follows from this equation and the CLT. The second

conclusion follows similarly. For the third conclusion, note that an expansion

and eq. (A.8) give

ĝ(β̂) = ĝ(β0)−GHĝ(β0) + op(n−1/2) = −Ωλ̂+ op(n−1/2).

Expanding,

P̂ (β̂, λ̂) = ρ(0) + kρv(0)λ̂
0ĝ(β̂) + k2λ̂0[

nX
i=1

ρvv(kλ̄
0ĝi)ĝiĝ0i/n]λ̂/2 (A.9)

= ρ(0) + kρv(0)λ̂
0ĝ(β̂) + k2ρvv(0)λ̂0Ωλ̂/2 + op(n−1)

= ρ(0)− [ρv(0)2/2ρvv(0)]ĝ(β̂)0Ω−1ĝ(β̂) + op(n−1).

It follows as in Hansen (1982) that nĝ(β̂)0Ω−1ĝ(β̂) d→ χ2(m − p), so the
conclusion follows from eq. (A.9). Q.E.D.

The next result is used to obtain the higher-order expansion for the CUE.

Let q = p+m.

[A.6]



Lemma 9 Consider an estimator θ̂ such that θ̂
p→ θ0 and (a) m̂(θ̂) = 0

and m̂(θ0) = Op(n
−1/2); (b) M = M(θ0) is nonsingular and for any θ̄

p→ θ0,

M̂(θ̄)
p→ M , where M̂(θ) = ∂m̂(θ)/∂θ0; (c) m̂(θ) is three times continu-

ously differentiable; (d) M̂(θ0) = M + Op(n
−1/2) and ∂M̂(θ0)/∂θj = Mθj +

Op(n
−1/2), (j = 1, ..., q); (e) in a neighborhoodN of θ0, supθ∈N k∂2M̂(θ)/∂θj∂θkk =

Op(1). Then for Û = −M−1m̂(θ0) and M̂ = M̂(θ0),

θ̂ = θ0 + Û −M−1{[M̂ −M ]Û +
qX
j=1

ÛjMθjÛ/2}+Op(n−3/2). (A.10)

Proof. A mean-value expansion then gives θ̂−θ0 = −M̂(θ̄)−1m̂(θ0) w.p.a.1,
so that θ̂ = θ0 +Op(n

−1/2), and hence θ̂ − θ0 = Û +Op(n
−1). Expanding,

0 = m̂(θ0) + M̂(θ̂ − θ0) +
qX
j=1

(θ̂j − θj0)[∂M̂(θ̄)/∂θj ](θ̂ − θ0)/2.

Note that replacing ∂M̂(θ̄)/∂θj by Mθj in the last term leads to an error

that is Op(n
−3/2) by hypotheses (d) and (e). Then adding and subtracting

M(θ̂ − θ0) and solving gives

θ̂ = θ0 −M−1[m̂(θ0) + (M̂ −M)(θ̂ − θ0) +
qX
j=1

(θ̂j − θj0)Mθj(θ̂ − θ0)/2] +Op(n
−3/2)

= θ0 + Û −M−1[(M̂ −M)Û +
qX
j=1

ÛjMθjÛ/2] +Op(n
−3/2).

Q.E.D.

Proof of Theorem 3.1: Let

m̂(θ) =
nX
i=1

(1 + λ0gi(β))(λ0Gi(β), gi(β)0)0/n,

M̂(θ) = ∂m̂(θ)/∂θ0 =
nX
i=1

 Gi(β)
0λ

gi(β)

 (λ0Gi(β), gi(β)0)/n
[A.7]



+
nX
i=1

(1 + λ0gi(β))

 ∂[Gi(β)
0λ]/∂β 0 Gi(β)0

Gi(β) 0

 /n.
It follows as in the proof of Theorem 4.2 that hypotheses (a) and (b) of

Lemma A.3 are satisfied with

M =

 0 G0

G Ω

 ,M−1 =

 −V H

H 0 P

 .
Also, condition (c) holds by Assumption 4.4. Let Gi,•j be the jth column of

Gi, and Gi,j• be the jth row of Gi. Then Assumption 4.4 and the CLT give

hypothesis (d) of Lemma A.3 with

Mθj =

 0 E[∂Gi(β0)
0/∂βj ]

E[∂Gi(β0)/∂βj ] E[Gi,•jg0i] + E[giG
0
i,•j ]

 , (j ≤ p),

Mθ,j+p =

 E[∂Gi,•j(β0)0/∂β] E[gijG0i +G
0
i,j•g

0
i]

E[gijGi + giGi,j•] 0

 , (j ≥ 1).
Condition (e) of Lemma A.3 follows from Assumption 4.4 and UWL. Note

that from the definition in Lemma A.3, m̂(θ0) = (0, ĝ(β0)
0)0 and Û [= (Û 0β, Û

0
λ)
0] =

−[H 0, P ]0ĝ(β0), so that E[Û Û 0] = diag[V, P ]/n. Hence,

E[
qX
j=1

ÛjMθjÛ/2] = E[
pX
j=1

Ûβj

 0

E[∂Gi(β0)/∂βj ]

 Ûβ]/2

+E[
mX
j=1

Ûλj

 E[gijG
0
i +G

0
i,j•g

0
i]

0

 Ûλ]/2.

Now, denoting the jth column of P by Pj, (j = 1, ...,m),

mX
j=1

E[Ûλj{E[gijG0i] + E[G0i,j•g0i]}Ûλ]/2 =
mX
j=1

tr(E[gijG
0
i]E[ÛλÛλj ])

[A.8]



=
mX
j=1

tr(E[gijG
0
i]Pj)/n =

mX
j=1

E[G0iPjgij ]/n

= E[G0iPgi]/n.

Therefore, noting E[Û 0βE[∂
2gij(β0)/∂β∂β

0]Ûβ]/2 = aj/n, it then follows that

E[
qX
j=1

ÛjMθjÛ/2] = (0, a
0/n)0 + (E[G0iPgi]

0/n, 0)0.

Also,

E[(M̂ −M)Û ] = E[M̂Û ] = −
 E[G0iPgi]/n

E[GiHgi]/n+ E[gig
0
iPgi]/n

 .
The conclusion then immediately follows from (A.10) of Lemma A.3. Q.E.D.

The next result is used to obtain the asymptotic expansions given in

Section 3.

Lemma 10 Consider two estimators θ̂j such that (a) θ̂j = θ0 + Op(n
−1/2)

and m̂j(θ̂j) = 0, (j = 1, 2); (b) there is a nonsingular M such that for any

θ̄ = θ0 + Op(n
−1/2), ∂m̂1(θ̄)/∂θ = M + Op(n

−1/2); (c) m̂2(θ̂2) = m̂1(θ̂2) +

Rn +Op(n
−3/2), Rn = Op(n−1). Then

θ̂2 = θ̂1 −M−1Rn +Op(n−3/2).

Proof. A mean-value expansion gives 0 = m̂2(θ̂2) = m̂1(θ̂1) = m̂1(θ̂2) +

[∂m̂1(θ̄)/∂θ
0](θ̂1 − θ̂2), where θ̄ is the mean-value that actually differs from

row to row. Note that by smoothness of a matrix inverse at any nonsingular

point, [∂m̂1(θ̄)/∂θ
0]−1 =M−1 +Op(n−1/2). Then solving gives

θ̂2 − θ̂1 = −[∂m̂1(θ̄)/∂θ
0]−1[m̂2(θ̂2)− m̂1(θ̂2)]

= −M−1[Rn +Op(n−3/2)] +Op(n−1/2)[Rn + Op(n−3/2)].

[A.9]



Q.E.D.

Proof of Theorem 3.2: Let θ̂1 = θ̂CUE and θ̂2 = θ̂2S. Thus, m̂1(θ) =

m̂(θ) is as specified in the proof of Theorem 3.1 and, from (3.5),

m̂2(θ) = (λ
0Ĝ(β), ĝ(β)0 + λ0Ω̂(β̃))0. (A.11)

Let ĝi = gi(β̂2S), Ĝi = Gi(β̂2S) and note that

m̂2(θ̂2) = m̂1(θ̂2) +

 −Pn
i=1 λ̂

0
2S ĝiĜ

0
iλ̂2S/n

[Ω̂(β̃)− Ω̂(β̂2S)]λ̂2S

 .
It follows similarly to previous results that

Pn
i=1 ĝijĜ

0
i/n = E[gijGi]+Op(n

−1/2)

and that λ̂2S = λ̃+Op(n
−1), so that

Pn
i=1 λ̂

0
2S ĝiĜ

0
iλ̂2S/n =

Pm
j=1 λ̃jE[gijG

0
i]λ̃+

Op(n
−3/2). Similarly, it follows that [Ω̂(β̃)− Ω̂(β̂)]λ̂2S =

Pm
j=1 λ̃j{E[gijGi] +

E[giGi,j•]}(β̃ − β̂) + Op(n
−3/2). Therefore, hypothesis (c) of Lemma A.4 is

satisfied for Rn as given in the statement of Theorem 3.2. It was shown in

the proof of Theorem 3.1 that hypothesis (b) is satisfied, so the conclusion

follows from Lemma A.3. Q.E.D.

Proof of Theorem 3.3: Let θ̂1 be the CUE, θ̂2 the GEL estimator, and

k = [ρv(0)/ρvv(0)]. Note that they satisfy the first-order conditions m̂j(θ̂j) =

0 for m̂1(θ) from the proof of Theorem 3.2, and

m̂2(θ) =
nX
i=1

ρv(kλ
0gi(β))[λ0Gi(β), gi(β)0]0/[ρv(0)n]. (A.12)

Let ĝi = gi(β̂GEL) and Ĝi = Gi(β̂GEL). Expand m̂2(θ̂2) in λ̂ = λ̂GEL to obtain

m̂2(θ̂2) = m̂1(θ̂2) (A.13)

+[k2/2ρv(0)]
nX
i=1

ρvvv(kλ̄
0ĝi)(λ̂0ĝi)2(λ̂0Ĝi, ĝi0)0/n.

[A.10]



Note that
Pn
i=1 kĝik2kĜik/n = Op(1) using Hölder’s inequality and Assump-

tions 4.1(d) and 4.4(b)(c). Also, by arguments similar to those of Lemma

A.1, maxi≤n |ρvvv(kλ̄0ĝi)| = Op(1). Therefore, as λ̂ = Op(n
−1/2), it follows

that
Pn
i=1 ρvvv(kλ̄

0ĝi)(λ̂0ĝi)2Ĝ0iλ̂/n = Op(n
−3/2). Similarly, by an additional

expansion in λ̄ and Assumption 4.4 (a) and (c),

k
nX
i=1

[ρvvv(kλ̄
0ĝi)− ρvvv(0)](λ̂

0ĝi)2ĝi/nk

≤ Op(1)kλ̂k3
nX
i=1

kĝik4/n = Op(n−3/2).

Also, by an expansion in β̂GEL, Assumptions 4.1(d) and 4.4(b)(c)(d), and

the CLT, for each j, we have
Pn
i=1 ĝiĝ

0
iĝij/n = E[gig

0
igij ] +Op(n

−1/2). Noting

that the first-order conditions for λ̂ can be expanded and solved to obtain

λ̂ = [
Pn
i=1 ρvv(kλ̄

0ĝi)ĝiĝ0i/nρvv(0)]
−1ĝ(β̂GEL), analogous arguments give λ̂ =

λ̃+Op(n
−1). Hence,

[k2/2ρv(0)]
nX
i=1

ρvvv(kλ̄
0ĝi)(λ̂0ĝi)2ĝi/n

= [ρv(0)ρvvv(0)/2ρvv(0)
2]

mX
j=1

λ̃jE[gijgig
0
i]λ̃+Op(n

−3/2),

with the first term Op(n
−1). Thus hypothesis (c) of Lemma A.4 is satisfied

for Rn as given in Theorem 3.3. Condition (b) of Lemma A.4 was proved in

Theorem 3.1, so that the result follows by Lemma A.4. Q.E.D.

[A.11]
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