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1. Introduction

Power transformations, and more generally Box-Cox (BC) transformations, have long been

recognised as an effective way of achieving well specified models with symmetric errors and stable

error variance; see Tukey (1957) and Box and Cox (1964). More recently, attention has focused

on assessing the out-of-sample performance of time-series models applied to BC transformed data.

For instance, B̊ardsena and Lütkepohl (2011), Lütkepohl and Xu (2012), Proietti and Lütkepohl

(2013) and Mayr and Ulbricht (2015) demonstrate that out-of-sample forecasts based on models

applied to BC transformed macroeconomic series can be more accurate than those based on using

the raw series (cf. Nelson and Granger, 1979). Inspired by these results we consider whether BC

transformations are useful within the context of forecasting future realised variances.

The use of transformations in the context of realised variance is not new. Indeed, applications

of models to log transformed realised variance is common practise; see, e.g., Andersen et al. (2003),

Andersen et al. (2007), Corsi (2009), Hansen et al. (2012) and Koopman and Scharth (2013).1

More recently, BC transformations have been considered in this context; see, e.g., Gonçalves and

Meddahi (2011), Weigand (2014), and Nugroho and Morimoto (2016).2 We add to this literature

by examining the out-of-sample performance of a variety of contemporary models applied to BC

transformed realised variance in comparison to those applied to raw realised variance. In contrast

to previous studies we focus is on whether the BC transformation itself is beneficial to volatility

forecasters.

The question of whether to transform the raw realised variance series will depend on the loss

function used to assess forecasting performance. We follow the extant literature and consider the

mean square (MS) and quasi-likelihood (QLIK) error loss functions applied to the raw realised

variance series. These belong to the Bregman loss function family, and are thus consistent in the

sense that the conditional mean is the optimal forecast (Banerjee et al., 2005, Gneiting, 2011, and

Patton, 2015).3 Under these loss functions the optimal forecast is obtained by minimising any

1The use of log transformed realised variance is based on previous findings that show that these data are Gaussian
distributed; see, e.g., Andersen et al. (2001a, 2001b).

2Transformations are not always applied. For instance, Bollerslev et al. (2016) augment the popular long-memory
heterogenous autoregressive (HAR) model of Corsi (2009), but decide not to apply the log transformation as in the
original HAR model.

3The Bregman loss function family also possess the quality that for correctly specified models with nested in-
formation sets, the ‘ranking of these forecasts by MSE is sufficient for their ranking by any Bregman loss function’
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Bregman loss function. If we consider a model with parameters estimated by minimising the MS

loss function, then it follows that this forecast is optimal. However, the models themselves may

not be ‘suited’ to the raw (possibly highly non-Gaussian) data. It is possible that models applied

to transformed data may be superior because they more closely match the true data generating

process. Consequently, although the parameters are not optimised with respect to the loss function,

their forecasts may be superior because of the suitability of the model to the data. It is this trade-

off (parameter optimisation versus model suitability) that we are examining in the current paper

by considering whether or not to transform realised variance data.

Using a comprehensive set of ten S&P 500 index realised variance measures, we examine whether

the use of BC transformations has value to forecasters. The results indicate that such transforma-

tions can improve forecasts of future realised variance across a range of models and under both the

MS and QLIK loss functions. Moreover, quality differences between forecasts based on modeling

raw and transformed data can be significant even when one controls for data mining by using the

reality check statistical tests proposed by White (2000). Of the BC transformations that we con-

sider it is the quartic root (and not the log) transformation that delivers the best results. Finally,

we demonstrate that the benefits of BC transformation are not evenly spread over the realised

variance measures. Indeed, for some measures no benefits are found – a result that we demonstrate

is driven by the degree of skewness in the raw realised variance series.

The rest of the paper is organised as follows. The next section contains a description of the

methodologies employed and is followed by the empirical results. The final section concludes.

2. Methodologies

This section contains the models and methods used to constructed forecasts, and the means by

which the relative quality of the forecasts is assessed.

2.1. Forecast construction: The problem

Let xt be the raw data that we wish to forecast, in our case realised variance, xt > 0 and

t = 1, 2, . . . , T . As xt is likely to be highly non-Gaussian we model the BC transformed data given

(Patton, 2015).
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by

yt = f(xt;λ) =


xλ
t −1
λ , λ ̸= 0,

lnxt, λ = 0.

(1)

It follows that xt = g(yt;λ) = f−1(yt;λ).
4 Suppose the forecaster models yt and obtains h-

step ahead forecasts given by the conditional mean of yt+h, that is, E[yt+h|Ft], where Ft is the

forecaster’s information set. Moreover, suppose that we require the conditional mean of xt+h, that

is, E[xt+h|Ft], or equivalently E[g(yt+h;λ)|Ft].

2.2. Forecast construction: The solution(s)

One obvious solution would be to take g(E[yt+h|Ft];λ), henceforth referred to as the naive

adjustment forecast. However, Jensen’s inequality tells us that for convex functions (like g)

g(E[yt+h|Ft];λ) ≤ E[g(yt+h;λ)|Ft]. Therefore an expression for E[g(yt+h;λ)|Ft] is required. To

this end, taking a Taylor series expansion about the conditional mean of yt+h (denoted µt+h|t) and

taking conditional expectations we have

E[g(yt+h;λ)|Ft] = g(µt+h|t;λ)

(
1 +

∞∑
k=1

gk(µt+h|t;λ)µk,t+h|t

)
, (2)

where µk,t+h|t is the kth conditional moment of yt+h about its conditional mean, and

gk(µt+h|t;λ) =
1− λ(k − 1)

k(1 + λµt+h|t)
gk−1(µt+h|t;λ),

with g0 = 1. This is henceforth referred to as the full adjustment forecast. Simplifications of the

expression in (2) are possible. One could assume that yt+h has a Gaussian distribution, or one

could ignore all moments except the mean and variance. Adjustments based on these assumptions

are provided in Table 1, and deliver forecasts henceforth referred to as the Gaussian adjustment

and second-order adjustment forecasts.5

Insert Table 1 here

4Note that yt represents raw realised variance when λ = 1.
5Subsets of the results in Table 1 have been derived previously. Granger and Newbold (1976) derive the solution

associated with the log transformation under the Gaussian distribution assumption via Hermite polynomial expan-
sions, Pankratz and Dudley (1987) obtain the solution when λ = 1/N , where N is a positive integer, and Proietti and
Riani (2009) derive a more general result associated with all λ values under the Gaussian distribution assumption.
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The implementation of the above formulae require further augmentation in order for them to

become practical to implement. First, in the subsequent empirical application the full adjustment

method employs (2) with a truncation such that only the first ten conditional moments are con-

sidered. Extending beyond this point has no effect on the accuracy of forecasts. Second, higher

conditional moments (that is, the second conditional moment and higher) are estimated using their

unconditional sample counterparts.

2.3. Models

A number of realised variance (and transformations thereof) models are available. In additional

to a simple first-order autoregressive (AR) model, we consider the following models.

2.3.1. The HAR model

The first model considered is the popular (and successful) heterogeneous AR (HAR) model

proposed by Corsi (2009). This model provides a parsimonious representation of realised variance

that attempts to capture the long memory observed in previous studies; see, e.g., Anderson et al.

(2001a, 2001b, 2003). Conditional expectations of demeaned transformed (daily frequency) realised

variance based on the HAR model take the following form:

E[yt|Ft−1] = γ1yt−1 + γ2

5∑
i=1

yt−i + γ3

22∑
j=1

yt−j . (3)

This can be written as a restricted infinite-order autoregressive (AR(∞)) model such that

E[yt|Ft−1] =

∞∑
i=1

Π∗
i yt−i, (4)

where

Π∗
i =


γ1 + γ2 + γ3, for i = 1,

γ2 + γ3, for i = 2, . . . , 5,

γ3 for i = 6, . . . , 22,

and zero otherwise. It follows from the chain-rule of forecasting that h-step forecasts are given by

E[yt+h|Ft] =
∞∑
i=1

Π∗
iE[yt+h−i|Ft], (5)
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where E[yt+j |Ft] = yt+j for j ≤ 0.6

2.3.2. The HEAVY model

A number of competitors to the HAR model exist. To incorporate improved measures of realised

variance into a conditional GARCH-type specification, a first-order version of the high frequency

based volatility (HEAVY) model proposed by Shephard and Sheppard (2010) takes the form

E[yt|Ft−1] = α1yt−1 + β1E[yt−1|Ft−2], (6a)

E[zt|Ft−1] = α2yt−1 + β2E[zt−1|Ft−2]. (6b)

Here zt represents an alternative BC transformed measure of realised variance (given by the BC

transformed squared daily return). The specification can be written more compactly as

E[yt|Ft−1] = Ayt−1 +BE[yt−1|Ft−2], (7)

where

yt =

yt
zt

 , A =

α1 0

α2 0

 , B =

β1 0

0 β2

 .

This equation can also be written in VARMA(1,1) form,

E[yt|Ft−1] = (A+B)yt−1 −Bϵt−1, (8)

where ϵt = yt − E[yt|Ft−1], or as a restricted VAR(∞) process such that

E[yt|Ft−1] =
∞∑
i=1

Π∗
iyt−i, (9)

where Π∗
i = AiBi−1. It also follows that h-step forecasts are given by

E[yt+h|Ft] =

∞∑
i=1

Π∗
iE[yt+h−i|Ft], (10)

6Audrino and Knaus (2016) demonstrate that the restrictive specification of the HAR model is not inferior to an
unrestricted AR model in which the specification is determined via the lasso selection criterion.
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where E[yt+j |Ft] = yt+j for j ≤ 0. Our interest is in the first element of this vector-valued

conditional expectation (that is, E[yt+h|Ft]). An integrated version of this model is possible by

imposing the restriction that β1 = 1 − α1. This version is henceforth referred to as the IHEAVY

model.

2.3.3. The RealGARCH model

As an alternative to the above model, a simplified version of the first-order RealGARCH model

(ignoring leverage effects) proposed by Hansen et al. (2012) can written as

E[yt|Ft−1] = δE[zt|Ft−1], (11a)

E[zt|Ft−1] = α2yt−1 + β2E[zt−1|Ft−2]. (11b)

Substituting (11b) into (11a) and rearranging we obtain

E[yt|Ft−1] = δα2yt−1 + β2E[yt−1|Ft−2], (12a)

E[zt|Ft−1] = α2yt−1 + β2E[zt−1|Ft−2]. (12b)

This can also be written in the matrix form given by (7), but now

yt =

yt
zt

 , A =

δα2 0

α2 0

 , B =

β2 0

0 β2

 .

It necessarily follows that this can be expressed as the VARMA(1,1) process in (8) or the restricted

VAR(∞) process as in (9). Comparing these versions of the HEAVY and RealGARCH models we

see that the latter is actually a restricted version of the former (with the restrictions involving β1 and

β2). An integrated version of this model is possible by imposing the restriction that β2 = 1− δα2.

This version is henceforth referred to as the IRealGARCH model.
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2.4. Estimation details

The parameters associated with the above models are estimated such that the sum of squared

errors is minimised.7 An increasing window (IW) and a rolling window (RW) of past data are

used to generate h-step ahead out-of-sample forecasts (that is, conditional means denoted x̂t+h|t).

The realised variance forecasts based on models of raw data are compared to the realised variance

forecasts based on transformed data (with the formulae in Table 1 used to convert the transformed

forecasts to realised variance forecasts).

2.5. Performance assessment: The loss function

The performance of the various forecasting methods is assessed using the following homogenous

Bregman loss function family proposed in the context of realised variance forecasting by Patton

(2011):

L(xt+h, x̂t+h|t; b) =



1
(b+1)(b+2)(x

b+2
t+h − x̂b+2

t+h|t)−
1

b+1 x̂
b+1
t+h|t(xt+h − x̂t+h|t), for b /∈ {−1,−2},

x̂t+h|t − xt+h + xt+h ln
(

xt+h

x̂t+h|t

)
, for b = −1,

xt+h

x̂t+h|t
− ln

(
xt+h

x̂t+h|t

)
− 1, for b = −2.

(13)

Here b = 0 corresponds to MS loss, and b = −2 corresponds to QLIK loss. Under this Bregman loss

function family, Patton (2015) demonstrates that the performance rank of a forecasting method

can vary over b in the presence of misspecified models, parameter estimation error, or non-nested

information sets. Thus we consider performance under both the MS and QLIK loss functions.

2.6. Performance assessment: Hypothesis tests

The null hypothesis is that models based on transformed data have no superior predictive ability

over those based on non-transformed data. The alternative hypothesis is that the former do have

superior ability. We use differences in the means of the above loss function values to test this null.

7For the HAR model ordinary least squares (OLS) is used. For the HEAVY, IHEAVY, RealGARCH and IReal-
GARCH models the parameters are estimated using the Constrained Optimisation (CO) package in GAUSS v.11.
CO solutions are obtained using the Newton-Raphson and cubic/quadratic step length methods.
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Formally, we use the reality check approach to the null given by

H0 : max
k=1,...,K

E[L0,t+h − Lk,t+h] ≤ 0, (14a)

against the alternative

H1 : max
k=1,...,K

E[L0,t+h − Lk,t+h] > 0, (14b)

where L0,t+h is the forecast loss associated with the benchmark model, and Lk,t+h is the forecast

loss associated with the kth competitor model.

In our case we examine the predictive performance of the set of models based on BC trans-

formed data against a benchmark model based on raw data. The null hypothesis is that no model

based on transformed data outperforms the benchmark model based on raw data (for a given loss

function), against the alternative that at least one model based on transformed data outperforms

the benchmark model. To avoid data snooping bias we use the block bootstrap procedure proposed

by White (2000) to test the above hypothesis.

3. Results

This section contains the empirical results associated with the relative performance of models

based on raw and transformed realised variance data.

3.1. Data

We consider ten realised variance measures associated with the S&P 500 index. The first four

measures (denoted RV1, RV2, RV3 and RV4) are based on the following estimators: two standard

realised variance estimators based on 5 and 10-minute frequency returns (Andersen et al., 2001a,

and Barndorff-Nielsen and Shephard, 2002); the jump-robust bipower variation estimator based

on 5-minute frequency returns (Barndorff-Nielsen and Shephard, 2004); and the downside risk

semivariance estimator based on 5-minute frequency returns (Barndorff-Nielsen et al., 2010). In

addition four multiscale versions of these four estimators are considered (denoted RV5, RV6, RV7

and RV8) in which a 1-minute subsample is used (Zhang et al., 2005). Finally, we consider the

microstructure noise-robust realised kernel estimator (Barndorff-Nielsen et al. 2008), and the jump-

robust median truncated realised variance estimator (Andersen et al., 2012). These are denoted
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RV9 and RV10. All series were collected from the Oxford-Man Institute of Quantitative Finance

Realized Library (http://realized.oxford-man.ox.ac.uk/data). The data span the period from

January 1, 2000, to December 31, 2015.

3.2. Preliminary analysis

The estimated coefficients and standard errors associated with the HAR model are provided

in Table 2. All results in this table are based on the full sample of data. Panel A provides these

results when realised variance is used. The other panels contain results when transformed realised

variance is used. In particular, we consider square root transformed data (panel B), quartic root

transformed data (panel C), and log transformed data (panel D). In addition, the R2 statistics are

provided. Two sets of these statistics are provided. The first correspond to those observed in the

regression. The second set are calculated by first transforming the fitted values into raw data form

and then calculating the R2 values based on these raw fitted values. In doing this we are able to

compare measures of fit over the different data used.

Insert Table 2 here

The results indicate that the three coefficients in the HAR model applied to realised variance

are significant – a result that highlights the persistent nature of these data. Moreover, the model

provides a good fit to the data. For instance, using the realised variance measure based on 5-

minute frequency returns (RV1), the R2 statistic equals 53.816%. When BC transformed data

are used the fit increases dramatically indicating improved suitability to these data. For instance,

the corresponding R2 statistic equals 69.030% when log transformed data are used. Transforming

the fitted log transformed data back to fitted realised variance values using the naive adjustment

method delivers a R2 statistic of 51.565%. This value rises to 54.904% when the full adjustment

method is used. Importantly this value exceeds that observed when realised variance is modeled.

Thus use of the HAR model with BC transformed data delivers a superior representation of the data

(both in raw and transformed form). Similar results hold for the other realised variance measures

and BC transformations.
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3.3. Out-of-sample performance

The previous analysis demonstrates that BC transformations have virtue in an in-sample esti-

mation setting. However, the true test of the approach is within an out-of-sample context. To this

end, the AR, HAR, HEAVY, IHEAVY, RealGARCH and IRealGARCH models are estimated using

non-transformed and BC transformed realised variance data. The initial estimation window is from

January 1, 2000 to December 31, 2005. The estimation window is increased by one observation

until the December 31, 2015 observation is used. Increasing and rolling windows of data are used

(that is, IW and RW estimation), with out-of-sample 1 to 5-step ahead forecasts generated at each

point.8 The MS loss associated with each model relative to (divided by) that associated with the

HAR model (using IW estimation) applied to non-transformed data are provided in Table 3. In

addition to daily horizon forecasts, we also consider weekly horizon forecasts based on integrated 1

to 5-step ahead forecasts. Extant results are provided in Table 4.

Insert Tables 3 and 4 here

The results in Table 3 indicate that there is variation in the performance of models applied

to the raw data, with the AR model delivering the least accurate forecasts (entries above unity)

and the IHEAVY and IRealGARCH models delivering the most accurate forecasts (entries below

unity). For instance, applying these models to the realised variance measure based on 5-minute

frequency returns (RV1) and using IW estimation delivers relative MS losses of 1.197, 0.962 and

0.952, respectively. Comparing the results associated with the IW and RW estimation methods

we see that the former is universally superior. This relative ranking of the models does not vary

considerably over the realised variance measures and loss functions; however, absolute performance

does appear to vary over this space.

The underlying question is whether it is better to model raw or transformed data in order

to deliver improved forecasts of the raw data. Applying the models to the BC transformed data

delivers more accurate forecasts than those based on raw data, with the quartic and log trans-

formations appearing best.9 For instance, the log transformation version of the HAR, HEAVY

and RealGARCH models (using IW estimation) delivers relative MS losses associated with RV1

8We follow Corsi (2009) and adopt a 1000-day rolling window.
9Given the superiority of the full adjustment method we now focus exclusively on this method.
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of 0.882, 0.877 and 0.890. It is also noticeable that the relative performance of the models is now

more uniform. By contrast, there is still considerable variation in the degree of benefit over the

realised variance measures.

Similar results are observed in Table 4: models based on BC transformed data perform better

than those based on raw data. However, relative performance (with respect to the HAR model

using IW estimation applied to raw data) is even more acute. For instance, the HAR, HEAVY and

RealGARCH models based on log transformed data (using IW estimation) now deliver relative MS

losses associated with RV1 of 0.781, 0.788 and 0.794. Thus modeling log transformed data delivers

a meaningful improvement in forecasting performance. While the extent of this improvement does

depend of the realised variance measure used, it is never detrimental to model BC transformed

data.

3.4. Hypothesis testing

The effects noted in Tables 3 and 4 are large in magnitude and hence appear economically

significant. However, we can go further and subject these to a statistical test. The results in

Tables 5 and 6 contain the p-values associated with the bootstrap reality check tests described in

subsection 2.3. The results are based on a comparison of all models applied to BC transformed data

(for instance, all models based on log transformed data with IW and RW estimated parameters)

with the best model applied to raw data. Daily and weekly horizon results under the MS and QLIK

loss function assumptions are provided in Tables 5 and 6, respectively.

Insert Tables 5 and 6 here

A number of findings are apparent in Table 5 (daily horizon). The null that at least one model

based on BC transformed data has superior predictive ability to the best model based on raw data

can be rejected at the 10% level in a large number of instances. However, there is variation in

the rejection rates over the realised variance measures, over the loss functions, and over the BC

transformation parameters. It is also noteworthy that the quartic root transformation (λ = 1/4)

performs extremely well.10 Indeed, it delivers the best forecasts under the MS loss function, and is

10This result is not at odds with other studies. For instance, Nugroho and Morimoto (2016) find that a λ value
around 0.1 is optimal in their in-sample analysis of a stochastic volatility model applied to BC transformed realised
variance.
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no worse than the commonly-used log transformation under the QLIK loss function. For instance,

under the former loss function the average p-value is 0.083, compared to 0.156 achieved by the log

transformation, while under QLIK loss the respective values are 0.000 and 0.001.11

The results in Table 6 (weekly horizon) show that the quartic root transformation is still useful,

with more rejections of the null (at the 10% level) than those associated with the log transforma-

tion under both loss functions. Moreover, the log transformation delivers forecasts that are least

attractive. In particular, the average p-values under this transformation equal 0.176 (MS loss) and

0.394 (QLIK loss). This compares to respective average p-values of 0.103 and 0.045 for the quartic

root transformation. Thus over daily and weekly horizons the quartic transformation performs

relatively well.

3.5. Performance determinants

The above results show that the BC transformation does not work well for all realised variance

measures. The motivation for use of the BC transformation was that the underlying data are

likely to be non-Gaussian (with high positive skewness). It follows that the benefits from such a

transformation are likely to increase (decrease) as skewness increases (decreases). To investigate

this prediction we consider the relationship between the mean losses associated with each model

applied to each transformed realised variance measure (relative to the mean losses associated with

each model applied to each raw realised variance measure), and the unconditional sample skewness

associated with each raw realised variance measure. The scatter plots in Figures 1 depict this

relationship when the squared, quartic and log transformed versions of the HAR model (using IW

estimation) are used, under the MS and QLIK loss functions and for daily and weekly horizons. In

addition, the OLS fitted values associated with these scatter plots are also presented.

Insert Figure 1 here

The plots depict a clear negative relationship - that is, more (less) skewness is associated with

lower (higher) losses when using transformed data. Moreover, the unreported p-values associated

with the OLS slope coefficients from regressions of relative mean loss on skewness are uniformly close

11The higher rejection rates noted under QLIK loss may reflect the higher test power observed under this loss
function (Patton and Sheppard, 2009).
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to zero. This negative relationship holds true under the MS and QLIK loss function assumptions,

though the slope is less steep under the latter assumption. Moreover, it persists when weekly

horizons are considered.

It is also interesting to consider whether the benefits of using BC transformed data are constant

over time. Figure 2 provides plots of relative mean losses against time when the HAR model (using

IW estimation) is applied to quartic root transformed realised variance under the MS and QLIK

loss functions and for daily and weekly horizons. Time-variation in the mean forecast losses is

achieved by smoothing forecast losses using a Gaussian kernel smoothing estimator with window

size equal to 66 observations.

Insert Figure 2 here

Under the MS loss function assumption the plots indicate that major benefits are available

around the high volatility episode observed during the financial crisis. By contrast, under the

QLIK loss function assumption the benefits appear more evenly distributed over time with no

noticeable benefit observed around the financial crisis. The QLIK loss function penalises under-

prediction more than over-prediction, while the MS loss function is symmetric. It follows that in

comparison to the forecasts associated with models applied to raw data, the forecasts associated

with models applied to transformed data are generally more accurate but tend to under-predict

future realised variance.

4. Conclusions

The costs/benefits of using forecasts based on models applied to BC transformed realised vari-

ance are examined. The findings are summarized as follows. First, forecasts based on various

models applied to BC transformations of realised variance tend to be more accurate than those

based on various models applied to raw realised variance. Second, the benefits can be significant in

an economic and statistical sense. Third, the commonly-used log transformation does not appear

to deliver the best results in terms of statistical significance. Rather it is the quartic transforma-

tion that exhibits the best quality in this regard. Finally, relative forecast accuracy varies over

the realised variance measures, with data skewness driving this cross-sectional variation. Moreover,

14



performance varies over time and appears to be a function of market conditions (primarily volatility

levels).

The results have implications for researchers and market practitioners. Care is required when

examining the performance of proposed models in that BC transformations can have a large impact

on results. We advise that forecasts of future realised variance require some form of BC transfor-

mation, with the quartic transformation our recommendation. Moreover, the nature of the data

should be considered as not all realised variance measures are suited to data transformation. In

particular, only measures with high skewness appear ripe for transformation; see Lütkepohl and

Xu (2012) for similar conditional findings in the context of macroeconomic forecasting.
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Table 1 – Conditional expectations under BC transformations

Adjustment Conditional expectation

Panel A. General form

Naive g(µt+h|t;λ)

Second-order approximation g(µt+h|t;λ)

(
1 +

σ2
t+h|t(1−λ)

2(1+λµt+h|t)2

)
Normal approximation g(µt+h|t;λ)

(
1 +

∑∞
k=1 g2k(µt+h|t;λ)(2k − 1)!!σ2k

t+h|t

)
Full g(µt+h|t;λ)

(
1 +

∑∞
k=1 gk(µt+h|t;λ)µk,t+h|t

)
Panel B. Specific form: Nth root (λ = 1/N), where N is a positive integer

Naive (1 + µt+h|t/N)N

Second-order approximation (1 + µt+h|t/N)N
(
1 +

(N−1)σ2
t+h|t

2N(1+µt+h|t/N)2

)
Normal approximation (1 + µt+h|t/N)N

(
1 +

∑⌊N/2⌋
k=1

(N−1)!(2k−1)!!σ2k
t+h|t

(2k)!(N−2k)!N2k−1(1+µt+h|t/N)2k

)
Full (1 + µt+h|t/N)N

(
1 +

∑N
k=1

(N−1)!µk,t+h|t
k!(N−k)!Nk−1(1+µt+h|t/N)k

)
Panel C. Specific form: Log (λ = 0)

Naive exp(µt+h|t)

Second-order approximation exp(µt+h|t)

(
1 +

σ2
t+h|t
2

)
Normal approximation exp(µt+h|t) exp

(
σ2
t+h|t
2

)
Full exp(µt+h|t)

(
1 +

∑∞
k=1

1
k!
µk,t+h|t

)
Notation:

g(µt+h|t;λ) = (1 + λµt+h|t)
1/λ

gk(µt+h|t;λ) =
1−λ(k−1)

k(1+λµt+h|t)
gk−1(µt+h|t;λ) and g0 = 1

µt+h|t is the h-step ahead conditional mean
µk,t+h|t is the h-step ahead kth conditional moment about the conditional mean
σt+h|t (=

√
µ2,t+h|t) is the h-step ahead conditional standard deviation

The notation ⌊.⌋ and !! represent the floor and double factorial functions, respectively

Notes: This table contains expressions for the h-step ahead conditional expectations of the raw data (xt) as a function of
the h-step ahead conditional moments of the BC transformed data (yt).
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Table 2 – In-sample HAR model parameter estimates and fit

Realised Variance Measure

Determinants 1 2 3 4 5 6 7 8 9 10

Panel A: Raw data

Daily RV 0.270 0.289 0.256 0.156 0.197 0.219 0.184 0.164 0.219 0.170
(0.102) (0.069) (0.138) (0.074) (0.149) (0.140) (0.159) (0.125) (0.133) (0.169)

Weekly RV 0.350 0.329 0.426 0.343 0.407 0.419 0.428 0.423 0.385 0.438
(0.117) (0.085) (0.166) (0.116) (0.136) (0.147) (0.155) (0.131) (0.125) (0.166)

Monthly RV 0.165 0.167 0.120 0.207 0.150 0.135 0.136 0.153 0.155 0.146
(0.042) (0.043) (0.053) (0.055) (0.043) (0.046) (0.046) (0.043) (0.044) (0.051)

R2 53.816 53.524 57.410 42.987 49.933 52.891 49.447 48.288 50.340 50.576

Panel B: BC transformed data (λ = 1/2)

Daily RV 0.361 0.300 0.453 0.220 0.446 0.414 0.446 0.318 0.405 0.480
(0.043) (0.038) (0.056) (0.038) (0.072) (0.059) (0.080) (0.061) (0.057) (0.096)

Weekly RV 0.364 0.406 0.332 0.369 0.326 0.349 0.332 0.384 0.348 0.305
(0.062) (0.057) (0.071) (0.056) (0.081) (0.072) (0.088) (0.071) (0.071) (0.100)

Monthly RV 0.149 0.151 0.115 0.215 0.127 0.128 0.121 0.158 0.136 0.123
(0.039) (0.040) (0.038) (0.043) (0.037) (0.038) (0.039) (0.040) (0.038) (0.039)

R2 69.897 66.926 75.218 57.646 74.917 73.558 74.766 67.491 72.872 77.062

R2 (naive adj.) 54.291 53.595 57.393 43.171 50.100 53.167 49.416 48.784 51.009 49.604
R2 (full adj.) 54.480 53.837 57.512 43.582 50.209 53.300 49.524 48.989 51.144 49.686

Panel C: BC transformed data (λ = 1/4)

Daily RV 0.337 0.273 0.459 0.215 0.465 0.425 0.477 0.315 0.397 0.523
(0.032) (0.030) (0.031) (0.025) (0.032) (0.032) (0.035) (0.030) (0.031) (0.037)

Weekly RV 0.397 0.436 0.332 0.377 0.324 0.350 0.319 0.379 0.369 0.289
(0.040) (0.039) (0.040) (0.036) (0.041) (0.041) (0.044) (0.039) (0.040) (0.043)

Monthly RV 0.144 0.150 0.116 0.218 0.122 0.127 0.116 0.169 0.131 0.110
(0.028) (0.029) (0.026) (0.031) (0.026) (0.026) (0.026) (0.028) (0.027) (0.025)

R2 71.090 67.938 76.908 58.925 77.523 75.825 77.837 68.059 74.806 80.159

R2 (naive adj.) 53.689 52.488 57.366 41.708 50.591 53.244 49.805 48.217 51.248 49.899
R2 (second-order adj.) 54.467 53.478 57.867 43.269 51.012 53.771 50.213 49.129 51.800 50.205
R2 (Gaussian adj.) 54.469 53.481 57.869 43.277 51.013 53.772 50.214 49.132 51.801 50.205
R2 (full adj.) 54.503 53.521 57.888 43.359 51.033 53.797 50.233 49.160 51.826 50.220

Panel D: BC transformed data (λ = 0)

Daily RV 0.320 0.266 0.440 0.209 0.448 0.413 0.466 0.292 0.376 0.502
(0.027) (0.026) (0.026) (0.022) (0.026) (0.026) (0.026) (0.023) (0.027) (0.025)

Weekly RV 0.398 0.423 0.332 0.362 0.327 0.346 0.318 0.367 0.376 0.304
(0.033) (0.034) (0.033) (0.031) (0.033) (0.034) (0.033) (0.031) (0.033) (0.031)

Monthly RV 0.150 0.160 0.126 0.225 0.128 0.135 0.122 0.185 0.136 0.109
(0.024) (0.024) (0.022) (0.025) (0.021) (0.022) (0.021) (0.023) (0.022) (0.020)

R2 69.030 65.836 74.859 56.375 75.794 73.982 76.377 64.386 72.871 78.437

R2 (naive adj.) 51.565 49.912 56.136 38.383 50.208 52.171 49.577 45.667 50.075 50.103
R2 (second-order adj.) 54.641 53.665 58.396 43.699 52.003 54.395 51.288 49.590 52.409 51.493
R2 (Gaussian adj.) 54.779 53.854 58.482 44.048 52.066 54.481 51.346 49.813 52.506 51.537
R2 (full adj.) 54.904 53.963 58.570 44.184 52.150 54.586 51.425 49.848 52.611 51.594

Notes: This table contains the parameter estimates and standard errors associated with the HAR model applied to raw and
BC transformed realised variance. Two sets of R2 statistics are provided. The first correspond to those observed when the
models are estimated. The second set are calculated by first transforming the fitted values into raw data form and then
calculating the R2 values based on these fitted values. Four versions of the second set are provided, each one corresponding
to a different way of converting (adjusting) the transformed fitted values to their raw data form equivalents.
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Table 3 – Out-of-sample forecast losses (daily horizon)

Realised Variance Measure

Model Estimation 1 2 3 4 5 6 7 8 9 10

Panel A: Forecast losses using raw data

AR IW 1.197 1.177 1.185 1.205 1.226 1.215 1.216 1.222 1.225 1.180
HAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HEAVY 0.979 0.990 0.968 0.988 0.944 0.975 0.933 0.963 0.955 0.893
IHEAVY 0.962 0.987 0.925 0.977 0.865 0.931 0.848 0.905 0.897 0.740
RealGARCH 0.965 0.960 0.995 0.994 0.931 0.952 0.920 0.878 0.934 0.945
IRealGARCH 0.952 0.972 0.936 0.978 0.853 0.909 0.834 0.796 0.884 0.790

AR RW 1.310 1.327 1.344 1.262 1.499 1.464 1.496 1.458 1.474 1.287
HAR 1.083 1.111 1.149 1.065 1.187 1.200 1.218 1.203 1.160 1.087
HEAVY 1.059 1.086 1.092 1.038 1.096 1.127 1.086 1.105 1.096 0.957
IHEAVY 0.986 1.020 0.966 0.999 0.895 0.965 0.878 0.959 0.930 0.749
RealGARCH 1.161 1.127 1.195 1.092 1.168 1.232 1.144 1.102 1.176 1.080
IRealGARCH 1.041 1.059 1.042 1.053 0.958 1.042 0.935 0.909 1.004 0.853

Panel B: Forecast losses using BC transformed data (λ = 1/2)

AR IW 1.065 1.090 1.041 1.121 0.940 1.024 0.938 0.954 0.961 0.846
HAR 0.895 0.943 0.863 0.924 0.760 0.842 0.757 0.773 0.784 0.689
HEAVY 0.886 0.941 0.850 0.921 0.744 0.838 0.738 0.772 0.772 0.664
IHEAVY 0.884 0.938 0.845 0.913 0.740 0.833 0.732 0.765 0.769 0.652
RealGARCH 0.883 0.946 0.846 0.919 0.732 0.831 0.729 0.758 0.762 0.661
IRealGARCH 0.882 0.923 0.839 0.907 0.726 0.824 0.721 0.746 0.759 0.647

AR RW 1.100 1.131 1.103 1.131 1.040 1.115 1.045 1.044 1.047 0.916
HAR 0.931 0.967 0.914 0.947 0.833 0.906 0.834 0.829 0.846 0.745
HEAVY 0.913 0.957 0.894 0.942 0.808 0.892 0.804 0.822 0.825 0.713
IHEAVY 0.902 0.946 0.872 0.928 0.781 0.867 0.772 0.800 0.804 0.679
RealGARCH 0.908 0.948 0.885 0.938 0.792 0.880 0.785 0.787 0.811 0.726
IRealGARCH 0.900 0.944 0.866 0.921 0.767 0.857 0.756 0.763 0.794 0.692

Panel C: Forecast losses using BC transformed data (λ = 1/4)

AR IW 1.026 1.081 0.991 1.099 0.863 0.966 0.863 0.896 0.891 0.760
HAR 0.884 0.945 0.839 0.922 0.719 0.816 0.716 0.753 0.752 0.633
HEAVY 0.878 0.944 0.829 0.918 0.708 0.813 0.702 0.752 0.745 0.616
IHEAVY 0.873 0.937 0.824 0.906 0.705 0.809 0.698 0.742 0.741 0.612
RealGARCH 0.885 0.957 0.831 0.916 0.705 0.816 0.697 0.749 0.746 0.609
IRealGARCH 0.878 0.948 0.824 0.900 0.700 0.808 0.692 0.736 0.741 0.604

AR RW 1.031 1.085 1.010 1.092 0.900 0.997 0.905 0.921 0.919 0.797
HAR 0.892 0.940 0.859 0.924 0.749 0.838 0.751 0.767 0.771 0.662
HEAVY 0.881 0.937 0.844 0.921 0.732 0.831 0.730 0.764 0.759 0.640
IHEAVY 0.875 0.930 0.836 0.908 0.725 0.822 0.721 0.752 0.752 0.633
RealGARCH 0.883 0.948 0.838 0.919 0.718 0.824 0.711 0.755 0.753 0.632
IRealGARCH 0.878 0.940 0.831 0.904 0.710 0.814 0.701 0.741 0.745 0.624

Panel D: Forecast losses using BC transformed data (λ = 0)

AR IW 1.016 1.100 0.957 1.101 0.807 0.925 0.805 0.878 0.850 0.698
HAR 0.882 0.946 0.826 0.915 0.700 0.802 0.695 0.745 0.740 0.609
HEAVY 0.877 0.944 0.819 0.911 0.693 0.802 0.685 0.745 0.736 0.597
IHEAVY 0.891 0.964 0.835 0.922 0.700 0.813 0.692 0.748 0.743 0.601
RealGARCH 0.890 0.970 0.826 0.905 0.696 0.810 0.683 0.740 0.744 0.595
IRealGARCH 0.898 0.979 0.835 0.920 0.698 0.815 0.688 0.744 0.747 0.596

AR RW 1.033 1.139 0.966 1.123 0.816 0.944 0.815 0.893 0.867 0.707
HAR 0.883 0.941 0.834 0.918 0.709 0.808 0.709 0.746 0.744 0.618
HEAVY 0.876 0.941 0.825 0.914 0.702 0.808 0.697 0.748 0.740 0.604
IHEAVY 0.899 0.968 0.852 0.935 0.715 0.827 0.713 0.760 0.752 0.619
RealGARCH 0.888 0.965 0.834 0.916 0.704 0.816 0.695 0.750 0.746 0.608
IRealGARCH 0.901 0.975 0.845 0.941 0.712 0.824 0.704 0.761 0.751 0.623

Notes: This table contains the mean forecast losses for each model relative to the HAR model (using IW estimation applied
to raw data). The MS loss function is assumed.
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Table 4 – Out-of-sample forecast losses (weekly horizon)

Realised Variance Measure

Model Estimation 1 2 3 4 5 6 7 8 9 10

Panel A: Forecast losses using raw data

AR IW 1.332 1.352 1.264 1.473 1.390 1.360 1.321 1.297 1.391 1.298
HAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HEAVY 1.021 1.002 0.983 0.987 1.021 1.008 0.980 1.001 1.031 0.940
IHEAVY 0.888 0.933 0.790 0.912 0.609 0.789 0.568 0.670 0.690 0.323
RealGARCH 1.013 0.953 1.032 1.058 1.044 0.997 1.003 0.867 1.025 1.136
IRealGARCH 0.965 0.989 0.853 1.043 0.646 0.822 0.596 0.625 0.734 0.380

AR RW 1.805 1.894 2.055 1.608 3.743 2.849 3.831 2.840 3.362 2.047
HAR 1.346 1.412 1.665 1.245 1.976 1.918 2.095 1.994 1.800 1.344
HEAVY 1.497 1.536 1.734 1.239 2.294 2.095 2.254 2.066 2.148 1.389
IHEAVY 0.916 0.984 0.843 0.943 0.645 0.837 0.601 0.742 0.728 0.331
RealGARCH 1.758 1.669 2.034 1.395 2.954 2.616 2.858 2.220 2.719 1.922
IRealGARCH 1.078 1.133 0.960 1.175 0.753 0.989 0.696 0.751 0.868 0.412

Panel B: Forecast losses using BC transformed data (λ = 1/2)

AR IW 1.104 1.250 0.954 1.423 0.662 0.970 0.625 0.825 0.755 0.377
HAR 0.776 0.844 0.694 0.835 0.481 0.677 0.458 0.531 0.545 0.279
HEAVY 0.794 0.854 0.710 0.830 0.500 0.693 0.472 0.537 0.563 0.293
IHEAVY 0.798 0.855 0.720 0.808 0.503 0.698 0.473 0.530 0.567 0.281
RealGARCH 0.787 0.851 0.704 0.833 0.489 0.684 0.465 0.530 0.552 0.292
IRealGARCH 0.802 0.839 0.716 0.819 0.493 0.688 0.468 0.524 0.561 0.283

AR RW 1.099 1.183 0.988 1.344 0.802 1.047 0.775 0.868 0.854 0.459
HAR 0.857 0.934 0.796 0.891 0.592 0.797 0.582 0.625 0.644 0.342
HEAVY 0.887 0.956 0.823 0.899 0.644 0.840 0.621 0.658 0.693 0.368
IHEAVY 0.836 0.908 0.757 0.838 0.548 0.749 0.514 0.575 0.614 0.298
RealGARCH 0.860 0.931 0.796 0.887 0.616 0.811 0.591 0.606 0.664 0.373
IRealGARCH 0.851 0.917 0.763 0.852 0.541 0.741 0.505 0.550 0.613 0.310

Panel C: Forecast losses using BC transformed data (λ = 1/4)

AR IW 1.162 1.328 0.980 1.498 0.632 0.974 0.592 0.859 0.754 0.338
HAR 0.759 0.827 0.671 0.834 0.449 0.654 0.424 0.516 0.518 0.248
HEAVY 0.767 0.830 0.682 0.822 0.459 0.664 0.433 0.515 0.525 0.256
IHEAVY 0.775 0.835 0.698 0.794 0.471 0.674 0.445 0.507 0.534 0.263
RealGARCH 0.763 0.827 0.679 0.827 0.453 0.659 0.429 0.515 0.521 0.253
IRealGARCH 0.768 0.827 0.689 0.797 0.460 0.664 0.437 0.506 0.526 0.257

AR RW 1.130 1.264 0.962 1.431 0.642 0.970 0.603 0.829 0.758 0.342
HAR 0.788 0.863 0.698 0.845 0.476 0.684 0.452 0.531 0.544 0.262
HEAVY 0.802 0.872 0.717 0.851 0.498 0.709 0.472 0.546 0.562 0.276
IHEAVY 0.802 0.869 0.727 0.812 0.502 0.709 0.475 0.531 0.562 0.279
RealGARCH 0.794 0.869 0.707 0.843 0.483 0.693 0.457 0.534 0.549 0.272
IRealGARCH 0.793 0.854 0.707 0.814 0.479 0.684 0.451 0.518 0.545 0.271

Panel D: Forecast losses using BC transformed data (λ = 0)

AR IW 1.290 1.451 1.086 1.591 0.679 1.059 0.628 0.940 0.827 0.369
HAR 0.758 0.820 0.670 0.830 0.444 0.652 0.418 0.519 0.514 0.246
HEAVY 0.758 0.818 0.677 0.812 0.449 0.657 0.424 0.514 0.516 0.251
IHEAVY 0.822 0.895 0.740 0.856 0.482 0.710 0.457 0.536 0.552 0.266
RealGARCH 0.757 0.823 0.673 0.827 0.445 0.654 0.420 0.519 0.514 0.247
IRealGARCH 0.808 0.872 0.726 0.884 0.472 0.696 0.451 0.547 0.543 0.261

AR RW 1.333 1.504 1.135 1.611 0.709 1.123 0.657 0.956 0.869 0.360
HAR 0.781 0.851 0.687 0.849 0.456 0.671 0.429 0.528 0.530 0.248
HEAVY 0.788 0.855 0.712 0.851 0.475 0.697 0.450 0.543 0.542 0.257
IHEAVY 0.870 0.947 0.791 0.915 0.518 0.761 0.495 0.577 0.587 0.287
RealGARCH 0.794 0.863 0.703 0.874 0.471 0.692 0.442 0.547 0.541 0.259
IRealGARCH 0.846 0.906 0.752 0.943 0.502 0.730 0.474 0.581 0.569 0.285

Notes: This table contains the mean forecast losses for each model relative to the HAR model (using IW estimation applied
to raw data). The MS loss function is assumed.
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Table 5 – Reality check results (daily horizon)

Realised Variance Measure

Bregman loss function 1 2 3 4 5 6 7 8 9 10 Av. p-value

Panel A: Test p-values using BC transformed data (λ = 1/2)

MS loss 0.145 0.336 0.099 0.029 0.065 0.168 0.093 0.393 0.039 0.134 0.150
QLIK loss 0.015 0.909 0.086 0.855 0.191 0.320 0.843 0.326 0.319 1.000 0.486

Panel B: Test p-values using BC transformed data (λ = 1/4)

MS loss 0.056 0.421 0.018 0.004 0.067 0.052 0.048 0.070 0.077 0.021 0.083
QLIK loss 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: Test p-values using BC transformed data (λ = 0)

MS loss 0.109 0.872 0.026 0.043 0.077 0.069 0.070 0.148 0.112 0.038 0.156
QLIK loss 0.000 0.004 0.000 0.002 0.000 0.000 0.000 0.005 0.003 0.000 0.001

Notes: This table contains the p-values associated with reality check tests of the null hypothesis that no model based on BC
transformed data outperforms the best model based on raw data (the benchmark model), against the alternative that at least
one model based on BC transformed data outperforms the benchmark model. The final column contains the average (Av.)
p-values across all realised variance measures.
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Table 6 – Reality check results (weekly horizon)

Realised Variance Measure

Bregman loss function 1 2 3 4 5 6 7 8 9 10 Av. p-value

Panel A: Test p-values using BC transformed data (λ = 1/2)

MS loss 0.095 0.244 0.143 0.320 0.039 0.098 0.047 0.081 0.034 0.178 0.128
QLIK loss 0.006 0.003 0.000 0.142 0.000 0.001 0.000 0.025 0.000 0.000 0.017

Panel B: Test p-values using BC transformed data (λ = 1/4)

MS loss 0.087 0.249 0.074 0.326 0.048 0.064 0.043 0.037 0.061 0.035 0.103
QLIK loss 0.036 0.017 0.002 0.272 0.001 0.015 0.002 0.109 0.000 0.000 0.045

Panel C: Test p-values using BC transformed data (λ = 0)

MS loss 0.190 0.332 0.199 0.470 0.069 0.135 0.055 0.149 0.069 0.095 0.176
QLIK loss 0.916 0.274 0.438 1.000 0.066 0.136 0.060 0.967 0.058 0.025 0.394

Notes: This table contains the p-values associated with reality check tests of the null hypothesis that no model based on BC
transformed data outperforms the best model based on raw data (the benchmark model), against the alternative that at least
one model based on BC transformed data outperforms the benchmark model. The final column contains the average (Av.)
p-values across all realised variance measures.
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(a) MS loss (daily horizon) (b) QLIK loss (daily horizon)

(c) MS loss (weekly horizon) (d) QLIK loss (weekly horizon)

Figure 1 – Forecast losses and skewness
This figure contains plots of the mean forecast losses for BC transformed HAR models relative to the HAR model (both
using IW estimation) against unconditional sample skewness for each realised variance measure. The fit is given by the OLS
cross-sectional regression of mean forecast loss on skewness.
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(a) MS loss (daily horizon) (b) QLIK loss (daily horizon)

(c) MS loss (weekly horizon) (d) QLIK loss (weekly horizon)

Figure 2 – Forecast losses over time
This figure contains plots of the time-varying mean forecast losses for quartic root transformed HAR models relative to the HAR
model (both using IW estimation). Solid lines represent the relative mean forecast losses across all realised variance measures,
and the dashed lines are the individual relative mean forecast losses for each realised variance measure.
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