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Objective

Strength Prediction capability for composites
Prediction of residual strength after damage  
Optimise damage cutout
Design of conformal antenna slots
Design and certification of repairs

Wire dipole

Slot in infinite 
x-z ground 
plane Callus (DSTO)
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Some Examples of Recent Developments

Abaqus damage model (2006)
Milestone: research→engineering

Lapczyk and Hurtado (2007): 
Camanho et al (2007): 38.5% accuracy for 
tension of bolted joint

Inherent-flaw fracture mechanics
IBOLT: method of choice at LM Aero 
(Eisenmann and Rousseau 2004)
Empirical correction for countersunk holes

Continuum damage mechanics 
Camanho et al (2007): 10.5% accuracy for OHT
Bogert et al (2006): 21.4% accuracy for slits

Camanho et al (2007)

Fracture 
energy
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Experiments

Three types of specimens subjected to tension
Straight through-hole (diameter=6.35mm)
Straight through-hole (diameter=50mm)
Scarfed hole (diameter=50→200mm)
Stiff and soft laminates:

[40/40/20]%
[20/40/40]%

Stacking sequences
Panel: [45/90/-45/02]3S

OHT coupons: 
[45/02/-45/90]3S

[-45/902/45/0]3S
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Experiments

Scarfed hole
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Tensile strength of stiff laminates
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Failure modes
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Strains in straight-hole panel
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Strain in scarfed-hole panel
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Fracture Mechanics Model

Critical flaw determined from fracture energy and ply percentage

Predicted strength is identical to cohesive zone model prediction
Independent of actual bridging law or the softening behaviour

Reported to be hole-size dependent
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Identification of Fracture Parameters
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Predictions

Open hole tension strength of quasi-isotropic laminate
Data by Mollenhauer et al (CompTest 2006)
Model does not predict layup effects
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Predictions

Large straight-hole and tapered hole
Significant under-prediction of strength
Need greater critical flaw size
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Abaqus Damage Model

Strain-softening model:
Bazant’s crack band model
Best for square elements

Shell elements: all plies have 
identical strains at any time. 
Scarfed region is modelled as 
multi-stepped (one step per ply). 
No bending.

Issues:
Mesh refinement
Identification of fracture energies
Predictions of through-thickness 
geometry variation
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Mesh refinement

0.0

250.0

500.0

750.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Element size (mm)

P
re

di
ct

ed
 O

H
T 

st
re

ng
th

 (M
Pa

)

Abaqus/Explicit
Experimental value

Straight-hole of 6.35mm diameter
Relative insensitivity to mesh refinement

Stiff laminate



17

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0 50 100 150 200 250 300
Ply fracture energy G0T   (kJ/mm2)

P
re

di
ct

ed
 s

tr
en

gt
h 

(M
Pa

)

Experimental data of stiff laminate
Experimental data of soft laminate
Explicit
Explicit
Implicit
Implicit

Hole diameter=6.35mm (0.25")
Smallest element=0.6mm

Stiff laminate

Soft laminate

Identification of Fracture Energies

0 00.8C TG G= 90 90 00.003T C TG G G= =

. 

Ply fracture energies depend on solver
Consistency between two stacking sequences



18

Explicit versus Implicit

Implicit code suffered convergence problems and required damping
Explicit code more robust, damping not required, but requires large time 
increments to avoid inertia effect

0 2T L
E
ρ

=Fundamental resonant (in-plane) period

0 2T LN N
T h
≈

∆

T h
E
ρ

∆ = L

• Independent of density 
• Element size h needs to be small fraction of critical flaw size (e.g., h = 0.1 a)
• N=?

Time increment: 

Total time: many times of the fundamental period

Number of increments:



19

Ratio of run time to fundamental period  T/T0
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Failure path

Straight hole

0 degree ply

Crack inclined at 26 degreesCrack inclined at 11 degrees
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Failure path

Scarfed hole

90 degree ply45 degree ply

0 degree ply

Crack inclined at 11° Crack inclined at 22°
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Hole diameter  (mm)
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Quasi-isotropic laminates

Over-prediction of strength for large holes
Using fracture energies “backed-out” from stiff laminate data

Stacking sequence effect not predicted
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Damage Initiation Model

Difference in fracture path due to incorrect damage initiation model?
Need alternative failure criterion to model off-axis plies

45 deg ply 0 deg ply

Hole=12.7mm (G0t=160 kJ/m2)

(element=0.2mm) (element=0.2mm)
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Alternative Failure Criteria

Modified strain-invariant (Wang, C.H., Chapter 8, Multi-scale Modelling of 

Composite Material Systems, 2005)

Fibre tensile fracture (shear failure)

Fibre compression failure (micro-buckling)

Matrix shear failure

Matrix dilatation fracture

( ) ( )f f
vM cε ε≥

( ) ( )
1

f f
cσ σ≤
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Stress-invariant theory

Comparison with published data
(Wang 2005)
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Gross strain
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Conclusions

Fracture mechanics (inherent-flaw) showed promises at dealing 
with stacking sequence, but failed to predict effects of hole size 
and through-thickness tapering.
Abaqus damage model under-predicted strength of cutouts larger 
than those in calibration coupons.
Comparison of prediction with experimental data suggests 
alternative damage initiation model and damage progression 
model.
Optimisation techniques may be required to back-out material 
properties.
Improved solution method needs to be developed to improve 
computational efficiency.


