

Bent F. Sørensen\* Stergios Goutianos\* Torben K. Jacobsen\*\*

\*Materials Research Division, Risø DTU 4000 Roskilde, Denmark

\*\*LM Glasfiber A/S, R & D Department, Rolles Møllevej 1 6640 Lunderskov, Denmark

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f$ 

Risø DTU National Laboratory for Sustainable Energy

## Motivation

#### - test accuracy of predictions from CZM

Strategic aim:

Use cohesive zone modelling (CZM) in modelling of wind turbine blades



## Motivation

#### - test accuracy of predictions from CZM

Strategic aim:

Use cohesive zone modelling (CZM) in modelling of wind turbine blades

#### Short term aim:

Demonstrate the capability of CZM - test accuracy of strength predictions, in particular

• investigate sensitivity to **cohesive law parameters** 

# Outline



- problem in focus: adhesive joint specimens

- 1) Determine mode I and mode II cohesive lows (DCB-UBM)
   ↓
- 2) Predict joint strength - finite element simulations
- 3) Compare with experimental results



# Outline



- problem in focus: adhesive joint specimens

- 1) Determine mode I and mode II cohesive lows (DCB-UBM)
- 2) Predict joint strength - finite element simulations
- 3) Compare with experimental results





# Test of medium size adhesive joints

- polymer matrix composite
- polymer adhesive
- 3 different h<sub>1</sub>/h<sub>2</sub> (thickness) ratios



### Crack growth - openings





h<sub>1</sub>/h<sub>2</sub> =0.17: Mode II dominated opening



### **Typical results**

#### - measured moment-opening relationship



# DTU

# Effect of thickness ratio h<sub>1</sub>/h<sub>2</sub>

- moment as a function of crack extension





- measurements

- Part 1: Measurements of cohesive laws
- Part 2: FE Modelling
- Part 3: Comparison with experiments (medium size specimens)



b)



## **Determination of cohesive laws**

- a J integral approach



Under pure tangential opening ("mode II")  $\frac{dJ_R}{d\delta_t^*} = \sigma_t \left( \delta_t^* \right)$ where  $\delta_t^*$  is the end-sliding

## **Determination of cohesive laws**

- a J integral approach



Under pure tangential opening ("mode II")  $\frac{dJ_R}{d\delta_t^*} = \sigma_t(\delta_t^*)$ where  $\delta_t^*$  is the end-sliding

#### dea:

a) measure fracture resistance,  $J_R$ , end-opening,  $\delta_n^*$  and end-sliding  $\delta_t^*$ , during experiments - DCB specimens loaded with uneven bening moments (DCB-UBM)

b) determine pure mode cohesive laws by differentiation

### Measured cohesive laws

- pure modes



DTU

### Measured fracture resistance

- steady-state value higher than initiation value





### Part 2: Modelling

#### • Part 1: Measurements of cohesive laws

### • Part 2: FE Modelling

• Part 3: Comparison with experiments (medium size specimens)

### Finite Element (FE) formulation - 2D plane problem

# 1.5 m **, F**2 V F<sub>1</sub>

Abaqus Explicit commercial code used to solve the problem under quasi-static conditions (prescribed displacements)

### Finite Element (FE) formulation - 2D plane problem



Abaqus Explicit commercial code used to solve the problem under quasi-static conditions (prescribed displacements)

### Pure mode cohesive laws

- build in cohesive laws in Abaqus





### Mixed mode cohesive stresses

- ensuring correct mixed mode fracture energy

Assume  $\varphi = \psi$  (phase angle of openings  $\varphi$  equal to nominal mode mixity  $\psi$ )

Decreasing peak stresses  $\hat{\sigma}_n(\varphi)$  and  $\hat{\sigma}_t(\varphi)$  to ensure correct mixed mode fracture energy,  $J_c = J_c(\psi)$ 

$$\left(\frac{\hat{\sigma}_n(\varphi)}{\hat{\sigma}_n(\varphi=0^\circ)}\right)^2 + \left(\frac{\hat{\sigma}_t(\varphi)}{\hat{\sigma}_t(\varphi=90^\circ)}\right)^2 = 1$$





### Mixed mode cohesive stresses

- as a function of normal and tangential openings

#### Normal stress

#### Shear stress



### **Cohesive law parameters**

- average, upper and lower bounds of fracture energy

#### Normal stress

#### Shear stress





### **Example of prediction**

- moment as a function of end opening



### Part 3: Comparison with experiments

- Part 1: Measurements of cohesive laws
- Part 2: FE Modelling
- Part 3: Comparison with experiments (medium size specimens)



### Effect of beam thickness ratio

- phase angle of end-opening,  $\phi^*$ 

Phase angle of end-opening,  $\phi^*$ , increases with decreasing  $h_1/h_2$  (thickness ratio) ... i.e. more Mode II



### Effect of beam thickness ratio

- phase angle of end-opening,  $\phi^*$ 



# - same Mode I and Mode II fracture energy

• explore the effect of peak stress and critical separation



# Effect of cohesive law parameters

- same Mode I and Mode II fracture energy



#### Cohesive law parameters:

high peak stress low critical opening

medium peak stress, medium critical opening

# Effect of cohesive law parameters

- same Mode I and Mode II fracture energy



# Effect of cohesive law parameters

TU

- same Mode I and Mode II fracture energy



#### Cohesive law parameters:

high peak stress low critical opening

medium peak stress, medium critical opening

# DTU

# Effect of cohesive law parameters

- same Mode I and Mode II fracture energy



#### Cohesive law parameters:

high peak stress low critical opening

medium peak stress, medium critical opening

# DTU

# Effect of cohesive law parameters

- same Mode I and Mode II fracture energy



Cohesive law parameters:

high peak stress low critical opening

medium peak stress, medium critical opening



# Conclusions - cohesive zone modelling

- Even quite approximate cohesive laws give results that are in fair agreement with experiments
- Mixed mode results are sensitive to pure mode parameters through changes in phase angle of opening  $\varphi$

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f$ 



# Conclusions - cohesive zone modelling

- Even quite approximate cohesive laws give results that are in fair agreement with experiments
- Mixed mode results are sensitive to pure mode parameters through changes in phase angle of opening  $\varphi$

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$ 

Research partially supported by the Danish Energy Agency (EFP grant no. 33033-0267).



# Conclusions - cohesive zone modelling

- Even quite approximate cohesive laws give results that are in fair agreement with experiments
- Mixed mode results are sensitive to pure mode parameters through changes in phase angle of opening  $\varphi$

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x_i)}{i!}$ 

Thanks for your attention!

Any questions?

Research partially supported by the Danish Energy Agency (EFP grant no. 33033-0267).