Accelerated Moisture Infusion in Composites

Siva Pilli

Kevin Simmons, James Holbery, V Shutthanandan Pacific Northwest National Laboratory Richland, WA

Patrick Stickler
The Boeing Company
Seattle, WA

4th International Conference on Composites Testing and Model Identification
20 - 22 October 2008
Dayton, Ohio, USA

Corresponding author 2: (509) 375-6962. ⊠: siva.pilli@pnl.gov

Office of Fossil Energy lab

Office of Science lab

Office of Nuclear Energy, Science and Technology lab

DEPARTMENT OF ENERGY NATIONAL LABORATORIES

Background

From Shen & Springer, Journal of Composite Materials, 1976. 10: p. 2-20

Diffusion Coefficient

$$D = \pi \left(\frac{h}{4M_{m}}\right)^{2} \left(\frac{M_{2} - M_{1}}{\sqrt{t_{2}} - \sqrt{t_{1}}}\right)^{2}$$

- Test the material to saturation i.e. up to t = t_m
- $t = t_m = Order of several$ years
- Current Acceleration methods
 - Two-step accelerated conditioning cycles
 - Increase the conditioning/test temperature
- Not very effective

A Novel Accelerated Humidity Test

- High pressure is used to accelerate the moisture ingression.
- In-house built accelerated humidity chamber

Test Parameters

Accelerated

- In-house built accelerated humidity chamber
- ▶ 85% RH and 60° C Similar to standard conditions
- Higher pressures of ~ 65 psi is used to accelerate the moisture ingression.
- ► Two Materials
 - Quasi-Isotropic Laminate
 - Random Fiber Composite
- Specimen Size
 - \blacksquare 50 x 50 x 4 mm

Standard

- Tenney Bench top hygrothermal humidity chamber
- ▶ 85% RH and 60° C

- Atmospheric pressure
- ► Two Materials
 - Quasi-Isotropic Laminate
 - Random Fiber Composite
- Specimen Size
 - \blacksquare 50 x 50 x 4 mm

Accelerated Gravimetric Results

- Estimated diffusivities
 - $\blacksquare D_{Random Fiber} = 1.4097E-07 \text{ mm}^2/\text{s}$
 - $D_{Laminate} = 8.6415E-08 \text{ mm}^2/\text{s}$

Standard Gravimetric Results

- Estimated diffusivities
 - $\blacksquare D_{Random Fiber} = 8.0009E-08 \text{ mm}^2/\text{s}$
 - $D_{Laminate} = 4.8687E-08 \text{ mm}^2/\text{s}$

Accelerated vs. Standard - Comparison

Diffusivity mm ² /s	Standard	Accelerated
Quasi-Isotropic Laminate	4.87E-08	8.64E-08
Random Fiber Composite	8.00E-08	1.41E-07

- ▶ Diffusivities increased by a factor of ~ 80%
- Successfully demonstrated that the moisture diffusion can be accelerated using pressure.
 Pacific Northwest

Nuclear Reaction Analysis - Composites

- Nuclear Reaction Analysis Basic Principle
 - Charged particles (an ion beam) with energy produced in an accelerator and bombards the sample.
 - Nuclear reactions with low-Z nuclei in the sample are induced by this ion beam.
 - Products of these reactions (typically p, d, t, 3 He, α particles, and γ rays) are detected using a spectrum of particle yield versus energy.
- Nuclear Reaction Analysis Applied to Composites
 - Need to use D_2O instead of H_2O other wise unable to distinguish the moisture content (H_2O) from the hydrogen and oxygen within the specimen.
 - Uses either D $(d, p)^{1}$ T or D $(^{3}He,p)^{4}$ He nuclear reaction
 - Proton yield is directly proportional to the deuterium concentration within the reaction volume

Animated View of the Accelerator System

NRA Results – Random Fiber Composite

Moisture absorption is increasing as a function of time – compares very well with gravimetric analysis

NRA Results – Comparison to Fickian

Fickian solution $C(x,t) := C0 \left[1 - \frac{4}{\pi} \cdot \sum_{j=0}^{nu} \left[\frac{1}{2 \cdot j + 1} \cdot \sin \left[(2 \cdot j + 1) \cdot \frac{\pi \cdot x}{h} \right] \cdot \exp \left[- \frac{(2 \cdot j + 1)^2 \cdot \pi^2 \cdot D \cdot t}{h^2} \right] \right] \right]$

Compare accelerated NRA curves with Fickian curves

NRA Results – Comparison to Fickian

- ► The trend of NRA measurements shows similar trends when compared to Fickian absorption curves
- The scatter observed within the NRA measurements is inherent to the composite material system (resin rich vs. fiber rich area)

Conclusions

- Successfully demonstrated that moisture ingression can be accelerated using pressure
 - Diffusivities increased by a factor of ~80%
- Successfully demonstrated that NRA can be used to measure deuterium (moisture) concentration

Time to Saturation, Years	Static	Accelerated
Quasi-Isotropic Laminate	7.0	3.9
Random Fiber Composite	4.2	2.4

- The above values are based on the diffusivities calculated from the 160 days for static and 103 days for accelerated tests
- Accelerated testing at higher pressures might further decrease the time to saturation

Acknowledgements

- ► Thank You ALL
- ▶ I acknowledge Dr. James Holbery of PNNL and Dr. Patrick Stickler of Boeing Company for their support and review.
- ▶ Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under DE-AC06-76RLO 1830.
- ► Questions? Comments!!

