

Determination of the Stiffness Reduction Map in an Impacted Composite Panel

Mr Jin-Hwan KIM, Professor Fabrice PIERRON

LMPF Research Group ENSAM, Châlons en Champagne, France http://www.lmpf.net/

Professor Michael R. WISNOM

ACCIS, Department of Aerospace Eng. University of Bristol, UK http://www.aero.bris.ac.uk/

www.bris.ac.uk/composites

Damage in composite panels

Relatively easy to detect (C-Scan, IR thermography etc)
 Difficult to quantify the effect on mechanical performance

Objective of the study

Quantify the local loss of stiffness
 Barely visible impact (small damage)
 Full-field measurements
 Virtual Fields Method
 2D map of stiffness reduction

Experimental Set-up

Specimen preparation (gel coat)

Kim J.-H., Pierron F., Grédiac M., Wisnom M.R. A procedure for producing reflective coatings on plates to be used for full-field slope measurements by a deflectometry technique *Strain: an International Journal for Experimental Mechanics*, vol. 43, pp. 138-144, 2007.

Test setup

Camera position in deflectometry

Central

Offset

Reconstruction by spatial smoothing

 (loss of spatial resolution)

 No calibration

No reconstruction (no smoothing)
 Calibration

Virtual Fields Method

Continuous parameterization
 Reduction in bending stiffness matrix:

 $D=D^{0}(1-f(x,y))$

with D⁰: undamaged bending stiffness and f: function driving the stiffness reduction (f is a polynomial of x and y)

7/17

KCoefficients of the polynomial to be identified

H Basic assumption: "isotropic" damage, D⁰ is known

Virtual Fields Method

Resolution

Linear system if D⁰ is known in continuous parameterization

#Use of optimized special virtual fields*

Extremely fast computation time

#Procedure detailed in **

*Avril S., Grédiac M., Pierron F. Sensitivity of the virtual fields method to noisy data, *Computational Mechanics*, vol. 34, n° 6, pp. 439-452, 2004.

** Kim J.-H., Pierron F., Wisnom M., Syed-Muhamad K. Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method, *Composites Part A: Applied Science and Manufacturing, vol. 38, n*[•] *9, pp. 2065-2075, 2007*

Artificial damage

_		
		_
├	 	
	 	$ \rightarrow $
	 	_
		_

internal

Geometry and test configuration of the damaged plate

10/17

Near-the-surface delamination

- Cross-ply carbon/epoxy plate, 2.5 mm thick (16 plies)
- **FEP** film between 1 & 2 and 2 & 3 surface plies
- ► Target is 30% reduction in D

(a) central position (14th order polynomial), (b) offset position, 15N

Results: near-the-surface delamination

- Polynomial parameterization
- **└ f**(x,y): 8th order polynomial
- ┗ Load: 15 N

central position spatial smoothing

In black: exact damage location

offset position no spatial smoothing

Offset position is preferable

12/17

Results: mid-plane delamination

- Polynomial parameterization
- **f**(x,y): 8^{th} order polynomial
- ➡ Load: 15 N

Unexpected results both in location and stiffness reduction

13/17

Results: mid-plane delamination

► Through-the-thickness strain distributions (FEA)

Kirchhoff plate kinematic assumption of linear through-the-thickness displacement distributions is no longer valid

14/17

Real impact damage

10 kg impactor dropped on clamped plate (~20 J)
Barely visible damage

adjusted scale

Polynomial parameterization f(x,y): 8th order polynomial Load: 15 N

15/17

Very small and localized stiffness reduction Is it really a stiffness reduction or just noise?

original scale

Detection threshold

Apply procedure on an undamaged plate

BVID

Undamaged 1

16/17

Undamaged 2

Undamaged 3

Summary

- Methodology for evaluating stiffness reduction maps in thin composite plates
- Full-field slope measurements by deflectometry
- Virtual fields method
 - **H** Discrete or continuous
 - Linear equations: very fast resolution times!
- **•** Target: small stiffness reduction over a very localized area
 - **#** Barely visible damage
- Continuous approach more adapted
- Possible to couple both approaches

Future work

- Anisotropic damage
 - **K** Combine several load cases
- Real impacted plates and curved surfaces (new PhD)