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Design strain and damage initiation theshold

stress

AE

strain, %
No stiffness reduction up to failure

Design strain: 0.3 ... 0.4%

Ultimate strain / Design strain = 4...5

Corresponds to the damage initiation threshold



CompTest 2008 Dayton 6

Progressive damage: Patterns
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Progressive damage: Evolution of crack length distribution

Carbon/ epoxy 
3-axial braid

samples loaded in the MD
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Transversal cracks and bundle-boundary cracks

Carbon/ epoxy 
3-axial braid

Glass-epoxy 
3D woven

3D woven composite materials used in this study were provided by 3Tex Inc
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Strain history at a damage site

Glass-epoxy 
3D woven
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Quasi-static damage initiation threshold and tension-tension fatigue
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Tensile damage features in textile composites

• Damage induced by processing: Thermal and cure stresses

• Damage initiation (“first ply failure”, but localised)

Transversal damage inside fibre bundles

Boundaries of the bundles

• Damage propagation and associated reduction of the material stiffness

Grow and stoppage of the cracks

Multiplication of the cracks

Correlations with the reinforcement structure

Fibre fracture

• Correlations quasi-static – fatigue 
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“I have six honest serving men (they taught me all I knew).
Their names are…” 

…What is happening to the material stiffness as damage is progressing?

Non-linear tensile diagram

…Why has damage been initiated?

The cause of the first crack(s)

…When has damage been initiated?

Damage initiation threshold

…How does damage progress?

Propagation and multiplication of cracks and local debondings

…Where are the damage locations inside the reinforcement unit cell?

Inside the impregnated yarns? On their boundaries? In matrix pockets?

…Who (which damage modes) are in evidence?

Transversal? Shear? Debondings? Delaminations? Splitting?..
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Tensile test with strain-mapping and AE

Tension 
diagram

Strain 
maps

AE: Damage initiation 
threshold



CompTest 2008 Dayton 15

Damage initiation thresholds and characteristic strains for “post-mortem”

Fibre direction
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C-scan and X-ray of damaged samples

C-scan Dynamics of extent 
of damage

X-ray

Damage 
periodicity

Cracks placement and 
orientation
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Optical microscopy

Fine structure of 
damage

Identification of 
damage modes
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[together with A.Salehi]

SEM

Micro-characterisation of 
damage modes

ε1 - damage initiation: transverse cracks
(inter-fibre failure)

ε2 - damage propagation: boundary crack
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Experimental road map

Textile preparation (shear...), measurements

Impregnation(RTM...)

X-Ray of the unloaded samples

Tension test with AE, strain-mapping

Identification of ε1, ε2, ε3

Tensile tests till ε1, ε2, ε3

C-scan

X-Ray

Cutting according to the crack pattern

Analysis of the cracks on micrographs

Tension diagrams

AE diagrams

Strain maps

Dynamics of damage extent

Damage periodicity

Cracks placement and orientation

Crack length distribution

Damage initiation threshold

Cutting the samples in characteristic directions

Thermal/cure damage characterisation

Architecture of the textile

Fine structure of damage

SEM at the selected positions
Micro-characterisation 
of damage modes

Study of the reinforcement geometry
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1. Introduction: What and Why and When and How and Where and Who?

2. Experimental: Road map for characterisation of damage in textile composites

3. Example: 2D and 3D woven glass/epoxy composites

4. Finite element analysis of damage: Predictions and numerical artifacts 

5. Conclusion: Overview of damage studies with different textile architectures

collaborative research with 3Tex: A.E. Bogdanovich, D. Mungalov
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Internal structure of 3D and plain weave composites

Plain weave laminate

Note:     1. Slight crimp of the fill caused by compaction in VARTM

2. Almost rectangular shape of the cross-sections 

Crimped warp/weft, nested plies
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Parameters of 3D and plain woven fabric

Fabric and composite plate 1 ply

Areal density,  g/m2 3255
Thickness, mm 2.6

Ends (straight) per cm per layer 2.76

Picks per cm 2.64

Z-yarns per cm 2.76

VF, % 48.9
Yarns tex
Warp

layer 1,3 2275

layer 2 1100

Z-yarns 276

Fill (double yarns)

layer 1,4 1470

layer 2,3 1470

3D – GE044 Plain weave

Fabric and composite plate 4 ply

Areal density,  g/m2 3260
Thickness, mm 2.45

Ends per cm 5.08

Picks per cm 6.19

VF, % 52.4
Yarns tex
Warp and weft 2275

4 plies: 0°/90°/90°/0°

Warp : Fill : Z = 49% : 48% : 2% 

3WEAVE ®
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Elastic constants and tension diagrams

- No difference in Young moduli

- Decreased Poisson for the 3D fabric (inside the scatter?)

Tension in warp/fill direction, normalised @VF=50% 
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Strength

Strength @50%
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Acoustic emission
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Damage thresholds

Damage strain thresholds
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3D composite: 

- increase of damage 
initiation thresholds by 0.2% 
strain for loading in fibre 
direction

- advantage in fatigue life 
stress limit can be expected

- lower damage thresholds 
for loading in bias direction
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Strain maps before damage initiation: Loading in WARP direction
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Strain maps after damage initiation: Loading in WARP direction

GE044 plain weave
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Damage development: Loading in WARP direction

GE044 – Progressive damageComparison PW – GE044

plain weave GE044

0.30%

0.50%

1.0%

onset of 
transverse 
cracks in fill

onset of 
bundle-
boundary 
cracks on Z-
yarns

intensive 
transverse 
cracks in fill 
and intra-
yarn cracks 
parallel to 
the yarn 
surface

onset of 
transverse 
cracks in fill

transverse 
cracks and 
bundle-
boundary 
cracks in fill 
and Z-yarns
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Typical damage, loading in WARP direction

plain 
weave

GE044

bundle-boundary crack, Z-yarn 

transverse crack in filltransverse crack in fill

intra-yarn crack parallel to yarn surface
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1. Introduction: What and Why and When and How and Where and Who?

2. Experimental: Road map for characterisation of damage in textile composites

3. Example: 2D and 3D woven glass/epoxy composites

4. Finite element analysis of damage: Predictions and numerical artifacts

• Example: 3D woven glass/epoxy composite, loading in WARP direction

5. Conclusion: Overview of damage studies with different textile architectures

collaborations:

• 3Tex: A.E. Bogdanovich, D. Mungalov

• Osaka University: K. Hamada, T. Kurashiki, M. Zako
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Software tools, FE model and strength data

Geometric modeller WiseTex
Geometry corrector of 
yarn interpenetration

MeshTexMeshing
Material properties
Boundary conditions
FE solver, post-
processor

SACOMHomogenisation
Damage

UD MPa Matrix MPa
L, tensile 1725 Tension 76
L, compr. 620 Compr. 112
T, tensile 40 Shear 86
T, compr. 140
LT 70
TZ 70
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Damage model (built-in in SACOM) – 1 

Damage initiation: Hoffmann

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−=−=−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

2

9

2

8

2

7

654

3

2

1

1,1,1

11,11,11

111
2
1

111
2
1

111
2
1

s
LT

s
ZL

s
TZ

c
Z

t
Z

c
T

t
T

c
L

t
L

c
Z

t
Z

c
T

t
T

c
L

t
L

c
T

t
T

c
L

t
L

c
Z

t
Z

c
L

t
L

c
Z

t
Z

c
T

t
T

F
C

F
C

F
C

FF
C

FF
C

FF
C

FFFFFF
C

FFFFFF
C

FFFFFF
C

Definition of the damage mode

L T

Z



CompTest 2008 Dayton 34

Damage model (built-in in SACOM) – 2



Strength input data

UD [1], VF=60% [6], VF=55% Hybon' data

Corrected (L) 
for 75% and 
accepted for 
calculations

L, tensile 1020 1080 1380 1725

L, compression 620 620 620

T, tensile 40 39 40

T, compr 140 128 140

LT 70 89 70

TZ 70

Matrix tensile 76 Compression 112

shear 88

[1] "Composites Engineering Handbook" (P.K. Mallick, Ed.), Marcel Dekker, Inc., New 
York, 1997 (Table 1) 

[2] "Engineering Mechanics of Composite Materials" by I.M. Daniel and O. Ishai, 
Oxford University Press, New York - Oxford, 1994 (Table 2.6),
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Tensile diagram
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Tensile diagram: Initial stage (step 0.01%)
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Predictions of the damage onset

bundle-boundary 
cracks in Z-yarns

transverse cracks in fill

Experiment FE, strain 0.22%

Damage starts at Z-yarn locations:

• T-mode at the edges of fill

• Z-mode in Z-yarns

FE, strain 0.30%

T-mode in fill
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Developed damage

Experiment: strain 0.5%

fill

Z

warp

warp

FE
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Prediction and artifacts in FE modelling

1. Correct prediction of change of stiffness (tensile diagram)

2. Strength prediction directly depends on the assumed UD strength value

3. Estimation of the damage onset: within interval (eps1min, eps1)

4. Correct prediction of general character of the damage onset (location near Z-
yarn)

5. No bundle-boundary damage mode; interpreted as Z-mode or T-mode near 
the surface of the yarns

6. Estimation of the onset of transversal damage: calculated too early (0.3% 
instead of 0.43±0.04%). Depends on the assumed strength value.

7. Correct prediction of the extent of fill damage

8. In reality all the unit cells are not damaged simultaneously

NB: better results for the plain weave laminate, as the prevailing damage mode 
for it is transversal cracking
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Damage studies of textile composites in K.U. Leuven

Fibres/matrix Reinforcement Publication
Experimental methodology in general Comp Sci Tech 68: 2340 (2008)
carbon/epoxy NCF 0/90, ±45, 0/-45/90/45 Comp A 36: 1207 (2005)

NCF ±45, sheared Comp A 39: 1380 (2008)
NCF 0/90, ±45, toughened resin SAMPE-Europe (2007)

NCF tufted with carbon yarn* Master thesis K.U. Leuven (2008)
3-axial braid Comp Sci Tech, in print
Uniaxial braid* Comp Sci Tech 68: 2340 (2008)
Uniaxial weave tufted with carbon* ECCM-13 (2008)
Woven twill 2/2 to be submitted to ICCM-17

glass/epoxy Plain weave** SAMPE-Europe (2008)
to be submitted to Comp A3D woven (patented weaving process 3Tex)**

collaborations:
* ITOOL consortium (EADS Innovation Works, Dassault Aviation, IFB – Stuttgart University)
** 3Tex – A.E. Bogdanovich, D. Mungalov

Some of the experimental data will be made available in Textile Composite Archive: 
www.textilecomposite.tamu.edu

http://www.textilecomposite.tamu.edu/


Textile Composite Archive

https://textilecomposite.tamu.edu/

Laboratoire de Mécanique des Contact et des 
Structures, LaMCoS, INSA Lyon

School M3, University of Nottingham

Department MTM, Katholieke Universiteit 
Leuven

Texas A&M University

Department of Management of Industry and 
Technology, Osaka University

https://textilecomposite.tamu.edu/
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