

Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites CompTest Conference - Oct. 21 2008 Dayton Ohio Justin Littell University of Akron Akron, Ohio Justin.D.Littell@nasa.gov

Wieslaw K. Binienda, William A. Arnold – University of Akron, Akron Ohio Gary D. Roberts, Robert K. Goldberg – NASA Glenn Research Center, Cleveland Ohio

Motivation and Introduction

- Triaxial braided carbon fiber composite materials are being used in engines and airframes
 - Static and Dynamic loads
- Computer modeling can complement testing when necessary
 - LS-DYNA Transient non-linear explicit finite element code
 - impact simulations
- Due to the size of the engine cases, models have to be macromechanical in nature but incorporate micromechanical properties of the materials
 - Incorporate braid architecture/stiffness properties/failure properties
 - Short run times

Model Development

- Testing and modeling were done in parallel
 - Test data used optical measurement techniques to obtain full field strain data
 - Quasi-static Testing
 - By examining the test data and using classical composite theory, a new approach was developed to model composites using a novel "Subcell" approach
- Modeling data needs
 - Composite section properties braid geometry
 - Composite material properties test data
- Models developed in LS-DYNA
 - Transient, nonlinear, explicit finite element code
 - Primarily impact loading that composites will be subjected

Triaxial Braided Composite Materials

- Two dimensional triaxial braid
- 24k wide axial and 12k wide bias fiber tows
- Layers of +60° and -60° bias fibers braided over a 0° axial fiber
- Quasi-isotropic architecture
- Layup of 6 Layers of braid, total composite thickness 0.125"
- Resin Transfer Molding process (RTM)
- Volume fraction of 56% nominal

Materials

- High Strength, Standard Modulus Fiber Toray T700
- Two resins
 - Toughened Cytec Cycom ® PR520 high strength
 - Untoughened Hexcel 3502 low strength

• Presented as examples to cover range of material response

Photogrammetry used for Data Collection

- Global stress vs. strain curves found by creating a "digital strain gage"
- Measures material response in specific areas on specimen
 - Seen by noting lines of high localized strain
- Local failure mechanisms and deformations must be accounted for when developing an analytical method

Triaxial Braided Model Methodology

- Develop a macromechanical finite element model capable of capturing the braid architecture and material properties of triaxially braided composites
 - Layers of unidirectional lamina stacked in a "Subcell" configuration
 - Needs local lamina level modulus and failure properties

A New Methodology Developed for Implementation of Material Properties

Classical Laminated Plate Theory (CLPT) Use in Reverse for Top-Down Approach

• Stresses/Surface Tractions are related to strains by the following

$$\begin{bmatrix} [N] \\ [M] \end{bmatrix} = \begin{bmatrix} [A] & [B] \\ [B] & [D] \end{bmatrix} \begin{bmatrix} [\mathcal{E}] \\ [\gamma] \end{bmatrix}$$

• Balanced and Symmetric (B and D matrices, also A16, A26 = 0)

 $\begin{bmatrix} Nx \\ Ny \\ 0 \end{bmatrix} = \begin{bmatrix} A11 & A12 & 0 \\ A12 & A22 & 0 \\ 0 & 0 & A66 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ 0 \end{bmatrix}$ Known from optical measurements

• Where $A11 = \sum \overline{Q}11 = \overline{Q}11^{0deg} * t^{0deg} + \overline{Q}11^{60deg} * t^{60deg} + \overline{Q}11^{-60deg} * t^{-60deg}$ $\overline{Q}11 = m^4 Q 11 + n^4 Q 22 + 2m^2 n^2 Q 12 + 4m^2 n^2 Q 66$

$$Q11 = \frac{E11}{1 - v12 * v21}, Q22 = \frac{E22}{1 - v12 * v21}, Q12 = \frac{v21 * E11}{1 - v12 * v21}, Q66 = G12$$

• E11, E22, v12, v21, G12 are parameters needed in LS-DYNA

Equation Development

Micromechanics of Composite Materials for Surface Tractions

Transverse ASTM 3039 specimen

• Axial ASTM 3039 specimen

Developed Equations (using Subcell Strains)

Transverse Tensile Test Global Axial Strain

Local Subcell Strains

- Strains are found using the optical measurement system
- In the end, there are 6 variables (Q11,Q12,Q22,Q66,Ny^a,Ny^b) and 6 equations
 - 2 from TT Subcells A and C (CLPT)
 - 2 from TT Subcells B and D (CLPT)
 - 1 from volume fraction averages (Micromechanics)
 - 1 from AT Subcells A and C (CLPT)
- Solve simultaneously

Material Card

MAT_RATE_SENSITIVE_COMPOSITE_FABRIC

\$\$\$\$ USING AS				Properties	and mat 1	.58			
	RO 5680E-04	EA 7.45E+6	EB 3.63E+6	(EC)	PRBA .071		¥U1	GAMMA1	Controls elastic/plastic behavior of failure
\$ GAB 2.75E6	GAC	GCA	SLIMTI	SLIMCI	SLIMTZ 1	STTW	102	STIMS	
\$ AOPT 2.0 S	TSIZE	ERODS 1	A1	F3 -1 A2	АЗ		Ма	aterial Re	sponse Properties
່ Material Co ະ	oordinate	Definition	0.0 D1	1.0 D2	0.0 D3		Pro	operty	Value
\$ EIIC	EILT	EZZC	1.0 E22T	0.0 GMS	0.0	-4	EA	X	Axial Modulus
0.018 \$ XC 5.469E+4 1	0.0216 XT L.515E+5	0.011 YC 5.00E+4	0.0168 YT 5.25E+4	0.012 SC 4.457E+4			EB	}	Trans. Modulus
\$ K 6.762E+6		0.002.1	0.10101	1. 10 12 1			PF	RBA	In Plane Poisson
							GA	AB	In Plane Shear Mod.

Failure Properties					
Property	Name	Property	Value		
E11C	Comp. strain (Ax.)	XC	Comp. strength (Ax.)		
E11T	Tens. Strain (Ax.)	ХТ	Tens. Strength (Ax.)		
E22C	Comp. strain (Trans.)	YC	Comp. Strength (Trans.)		
E22T	Tens. strain (Trans.)	ΥT	Tens. Strength (Trans.)		
GMS	Shear strain	SC	Shear Strength		

Axial Tensile (AT) Strength

- Assume that in AT tests, the AT fiber carries most of the load
- E11T comes from ultimate strain at AT failure

Transverse Tensile (TT) Strength

- Look at fiber splitting on TT specimen
- Load at first split will be YT
- SLIMT will be set to 1
- E22T will be set to failure strain of test

Compressive Strain/Strength

- Material behaves as a homogenous
 - Use strength at failure for both Axial and Transverse tests
 - Use strain at strength for both Axial and Transverse tests

Shear Strength

- Using Modified Shear Specimen Design based on Kohlman
 - **ASTM 5379**
- P_{xy} , N_{xy} is for each of the integration layers
 - Can be directly implemented for shear strength
- LS-DYNA needs ε_{xy} for GMS

Finite Element Models

- Both Axial and Transverse Specimens were developed using ASTM D3039 specimen geometries
- Fixed end boundary conditions were used to simulate the fixed grip
- Loading was applied at the opposite end using enforced displacement

Static Results

T700 / PR520

•

Determination of T700 fiber / PR520 Resin Impact Characteristics

- Showed penetration threshold at 630 ft / sec
- Used as a starting point for impact tests
- Impact tests conducted Summer 2008
 - Penetration threshold was between 609 and 637 ft / sec

Limitations: Delaminations for T700 fiber / 3502 resin

90%

75%

50%

25%

1.5

National Aeronautics and Space Administration

Limitations: FEM cannot simulate fiber bundle splitting

Transverse Tension (axial strain)

Conclusion

- Standardized test methods in conjunction with an optical measurement system have been used to collect material property data for triaxial braided composite materials
 - Global material response curves
 - Local transverse fiber bundle splitting
 - Local subsurface delaminations
- A hybrid micro-macromechanical computer model has been developed
 - Incorporates braid architecture
 - Incorporates tested material property data
- Comparisons between test and simulation show good agreement
 - 10% in static simulations
 - Penetration threshold in impact simulations
- Factors seen in the test data cannot be simulated as of now
 - Ongoing work

Backup

Defining the Braid Geometry (Section)

- Each part has unique section properties
 - Each section contains information about number of layers
 (15) and braid angle (Θ) at each layer
- Braid was modeled as layers of unidirectional lamina
 - Shifted (Idealized)

	/	/	/ /
-60°	+60°	+60°	+60°
0°		0°	
+60°	-60°	-60°	-60°
+60°	+60°	+60°	-60°
	. O°		0°
-60°	-60°	-60°	+60°
+60°	+60°	-60°	+60°
0°		0°	
-60°	-60°	+60°	-60°
+60°	-60°	+60°	+60°
	- O°		0°
-60°	+60°	-60°	-60°

$$N_x^a = N_x^b = N_x^c = N_x^d$$

$$V_f^a * N_y^a = V_f^b * N_y^b$$

Rewriting the equations for each Subcell (Transverse Tensile Testing)

- Subcell A
 - N_x is applied load and all strains are found from optical measurement system

$$N_x^a = A11^a * \varepsilon_x^a + A12^a * \varepsilon_y^a$$
$$N_y^a = A12^a * \varepsilon_x^a + A22^a * \varepsilon_y^a$$

- Subcell B
 - N_x is applied load and all strains are found from optical measurement system

$$N_x^b = A11^b * \varepsilon_x^b + A12^b * \varepsilon_y^b$$
$$N_y^b = A12^b * \varepsilon_x^b + A22^b * \varepsilon_y^b$$

Four Equations

С

В

i-609

Α

+60°

-60°

D

-60°

+60⁰

+60°

$$N_y^a = N_y^b = N_y^c = N_y^d = 0$$
$$N_y^a = 0 = A12^a * \varepsilon_x^a + A22^a * \varepsilon_y^a$$

• P_x, N_x

Advanced Data Analysis Toughened Fiber Bundle Splitting – Transverse Testing

- Identify local failure strain
- Local failure initiation correlations to global nonlinearities

T700 Fiber / PR520 Resin Static Results

	Axial Tension Modulus (psi)	Axial Tension Strength (psi)
Test	6.8E6±1.6E5	1.52E5±4.9E3
LS-DYNA	7.4E6	1.31E5
% Error	7%	12%

	Transverse Tension Modulus (psi)	Transverse Tension Strength (psi)
Test	6.2E6±2.3E5	8.69E4±4.3E2
LS-DYNA	5.6E6	9.38E4
% Error	9%	8%

