

Influence of microstructure heterogeneities on free edge strain fields of a laminate using digital image correlation

P. Grosbras (ONERA) B. Paluch (ONERA), M. Brieu (LML), L. Sabatier (LML)

retour sur innovation

Summary

- 1. Introduction
- 2. Finite element calculations
- 3. Digital Image Correlation
- 4. Experimental procedure
- 5. Investigated materials
- 6. Experimental results
- 7. Conclusion

1. Introduction

- Extensive use of composite materials in many industrial applications
- Design of composite structures is today globally well mastered

BUT

- Laminate free edge stresses can initiate delamination
- Free edge effect :
 - Understood for perfect laminates (straight interfaces)
 - Usually not taken into account in industrial calculation's code
 - Some combination between geometry and stacking sequence can be more critical

1. Introduction

Laminate free edge stress gradient

- Origin of free edge problems: discontinuity of inter-plies mechanical properties
- 3D stress gradient near free edges and interlaminar interfaces
- Local phenomenon: localized near free edges and interlaminar interfaces
- Depends on : mechanical properties, geometry, stacking sequence

1. Introduction

- Lot of studies have been devoted to free edge effects in order to predict, understand and quantify this phenomenon
 - Numerical (on equivalent homogeneous materials) : finite element modelisations, asymptotic theories, delamination criterions...
 - Experimental : initation tests (acoustic emission), Damage (X rays), fractography, strain field measurements (Moiré,...)
- Most of these studies have been carried out on « idealized » materials (rectilinear interfaces)
- What's happen when the material is no more regular with an heterogeneous microstructure?
 - The objective of this work is to highlight the influence of the microstructure on free edge interlaminar strains

2. Finite element calculation

- Purpose
 - Calculation of displacement field on free edge which could be measured by DIC
 - Select the pertinent configurations for the experimental tests
- Assumption
 - material elastic properties assumed to be elastic until rupture
 - Equivalent homogeneous material
- Methodology
 - Classical finite element calculations with Nastran® code
 - Mesh refinement near free edges and interlaminar interfaces

2. Finite element calculation

- Material
 - Pure UD CFRP (CTS/920)
- Stacking sequence and loading
 - $[(\theta/-\theta)_2]_s$ with $\theta=15^\circ$, 30° , 45° , 60° and 75°
 - Uniaxial strain loading: ϵ_x =0.2%

E ₁ (GPa)	116
E ₂ (GPa)	8
E ₆ (GPa)	6
v ₁₂	0.3
h ₀ (mm)	0.2

2. Finite element calculation

Free edge displacement field (U_x)

The most important displacement gradients are obtained for the [(15°/-15°)₂]_s stacking sequence

- [(15/-15)₂]_s laminate samples have been manufactured for mechanical tests
- FE results show displacements of several micrometers which can probably be measured by DIC

3. Digital Image Correlation

Purpose

- Displacement field measurement at ply scale
- Derivation of strain field from DIC
- Use of commercial software (Aramis®)

- DIC principle
 - Recognition of geometrical changes in the gray scale distribution of a surface pattern before and after straining
 - The digital image is divided into square facets of side length L spaced by step D (L,D in pixels)
 - Each facet is characterized by its gray distribution function

3. Digital Image Correlation

- Advantages
 - Simple to use
 - Small environnemental sensitivity \Rightarrow suitable for *in situ* measurement on testing machine
 - CCD camera coupled to high magnification lens allow measurement at ply scale (several hundred µm side) and even smaller scales
 - Material microstructure gives random gray scale distribution when coarse polished
 - Microstructure is visible during the test \Rightarrow DIC measurement can be correlated to the microstructure

4. Experimental procedure

Sample Geometry

Loading: uniaxial strain ε_x =0.22%

Experimental set up

Correlation parameters (L=35, D=25)

5. Investigated materials

- Two investigated materials
 - Pure UD CFRP (CTS/920)
 - Quasi UD CFRP (G947/M18)
- Two kinds microstructures

Pure UD : CTS/920

before compaction

after compaction

		CTS/920	G947/M18	
E_1	(GPa)	116,0	112,0	
E_2	(GPa)	8,0	9,0	
Е 6	(GPa)	6,0	8,0	
ν_{12}		0,3	0,3	
h^0	(mm)	0,2	0,175	

Quasi UD : G947/M18 (weft yarn in the ply)

ONER

or think of subject to be

COMPTest 2008 - Dayton - 12/18

High U_x displacement gradients have been measured as expected in FE analysis

ϵ_{xz} shear strain (derived from displacement fields)

z (mm)

- Shear strain peak localized in the vicinity of each interlaminar interface
- High and clearcut strain peaks

Comparison between experimental and FE displacement fields

The material can be assumed as an equivalent homogeneous one \Rightarrow straight interfaces \Rightarrow same trends with FEC and DIC

- Macroscopic behavior (quasi UD CFRP)
 - [(15/-15)₂]_s stacking sequence
 - Loading/Unloading cycles
 - No residual strain

• Microstructure : no straight interface between plies \Rightarrow local heterogeneities

ONER

[90]₁₂

[(15/-15)₂]_s

How is the interlaminar shear strain distribution when the plies are no more straight?

ϵ_{xz} shear strain field at different locations

Through the thickness shear strain variation depends strongly on local microstructure

High V_f zones : High and clearcut shear strain peak like in pure UD

Low V_f zones: strongly attenuated peak, almost disparrear when resin only

The full resin areas can reduce delamination risk

z (mm)

7. Conclusion

- When the composite microstructure is close to an « ideal » one, free edge effect can be well predicted by finite element calculations
- For non uniform microstructure DIC shows :
 - High interlaminar shear strain in high V_f zones
 - attenuated interlaminar shear strain peak in low V_f zones
- The full resin areas could be *a priori* considered as defects but can, in fact, reduce the delamination risk, by decreasing the interlaminar shear strain concentration at free edges
- This study is going to be extended on laminate ply drop which is of great importance in industrial structures.

Thank you for your attention

COMPTest 2008 - Dayton - 19/18