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Objective Methodology

~

The present project is dedicated to the characterization of strain acquisition at rates up

to 500 kHz via fiber Bragg grating (FBG) as strain sensor in composite materials under * CFRP plate processing using standard curing cycle in autoclave
dynamic excitation. « Determination of embedded fiber Bragg grating (FBG) position using OLCR
« Material properties identification using inverse mixed numerical experimental
identification
_ . « Experimental modal analysis of clamped specimens for numerical model validation
Steady State h armonic IOad « Dynamic excitation of specimens using steady-state harmonic load and impact load
: : « Local strain measurements using embedded FBG and high rate interrogation system
a Numerical Experimental  \ Lose sl
* FE numerical modal analysis « Test configuration: The CFRP UD beam « Construction of validated FE model to obtain mode shapes of harmonically loaded
» Qutput: Normalized displacement Is clamped on one end on an beam and perform plate impact simulation
shapes and strain shapes along the electrodynamic shaker « Comparison of experimental and numerical local strain signals
central axis of the beam * Loading: Harmonic excitation at \ /
» Comparison between experimental and eigenfrequencies of bending modes
numerical mode shapes using the modal ~ * Testing parameter: Length of the beam I m paCt IOad
assurance criterion (MAC) for a large frequency range
» Comparison between numerical local * Acquisition: Dlsplac(e;ment shapes along / Experlmental \
- - - central axis and FBG sensor
stral value and FBG strain amplitude interrogation * Test configuration: The CFRP cross-

ply plate is clamped on both sides.

« Experimental modal analysis of
clamped plate

« Loading: Impact load using a falling
mass of weight 880 g

» Acquisition: Force and acceleration
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« The repeatability of the FBG interrogation has been successfully proven for different
Impact energies.

It has been shown that the experimental results coincide with the numerical data.

* The frequencies of the transient response of the plate can be identified and correspond
to the eigenfrequencies determined by experimental modal analysis.

Relative difference A = £ s g hetween +/-10 % over a strain range of 800 pye and a

‘SFE‘

frequency range of 3000 Hz. An uncertainty in position of the FBG of +/- 1 mnj

Qvaluated.
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Figure 3: Comparison between experimental and numerical Figure 4: Spectrum of FBG transient strain
: : : ! train response to an impact load of 2.6 J. response.
- Broadband light is coupled into the FBG. [m \ Strain resp "mp P /
* The reflection spectrum from the FBG is .

CP FBG

passed through a Fabry-Pérot (FP) tunable
filter.

* The FP filter wavelength A: is tuned at low
rate to be at a constant mean offset from the

Bragg wavelength: j(,zB — 2. )dt = cst

Conclusion

| At t / \
I/\Aﬁ\ \ Embedded FBG sensors accurately measure the strain at selected locations. Such

e > sensors are suited for dynamic strain sensing applications and pave the way for

. . A)\
* A Bragg wavelength shift AAg(t) at hlglh( ;ate FPF == @ ------------ > Intensity developing semi-experimental methods for structural monitoring, damage detection and
iIs modulated into an intensity variation I(t). Tuning A, at low rate control.
« Considering the filter function of the FP filter,  forconstantmean ofiset ekl
. LS: Broadband Light Source FPF: Fabry-Pérot Filter
\the wavelength  shift AAg(t) can be Ce: Coupler PD: Photodiode / Qanks are due to the SNSF, Grant N°116715 /
calculated. |
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