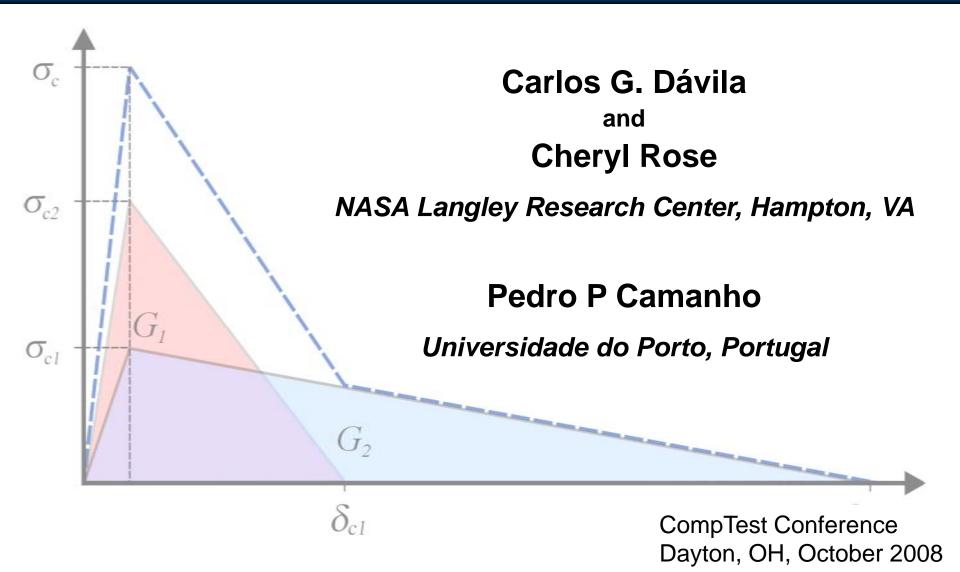
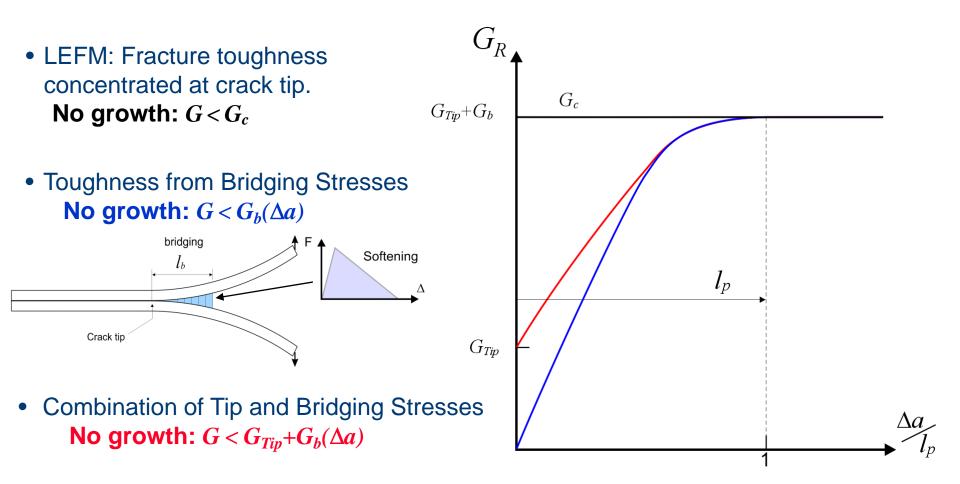
Modeling R-Curve Toughening Mechanisms with Complex Softening Laws



Resistance Curve

"However complex a fracture process is, a single material property (the fracture toughness) quantifies the resistance to fracture"



Objective

Add higher level of fidelity to FE prediction of fracture: R-Curve

Rationale

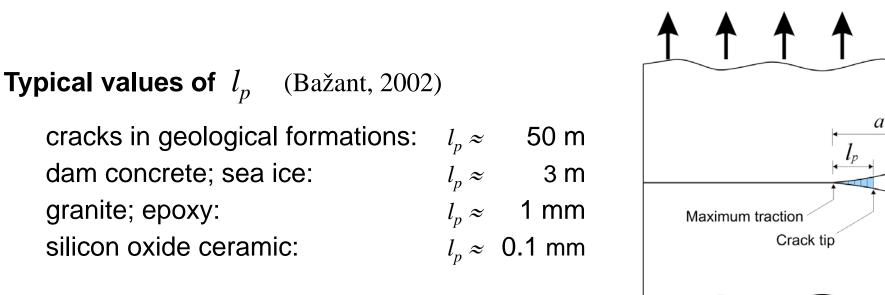
Relationships between:

- Resistance curve (R-curve)
- Fracture process zone length (l_p)
- Shape of the traction/displacement softening law

Approach

- Develop equations to predict R-curve for superposed linear cohesive laws
- Demonstrate use of superposed cohesive elements to account for experimental R-curve

Different Failure Theories for Different Structural Scales



$$\eta = \frac{a}{l_p} \begin{cases} \eta < 5, & \text{ductile damage, plasticity} \\ 5 \le \eta \le 100, & \text{quasi-brittle fracture mechanics} \\ \eta > 100, & \text{brittle (LEFM)} \end{cases}$$

Material Softening Laws

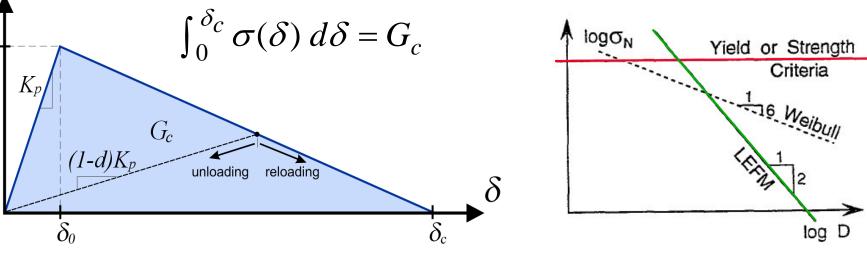
Linear Traction-Displacement Law

 σ

 σ_{c}

Two material properties:

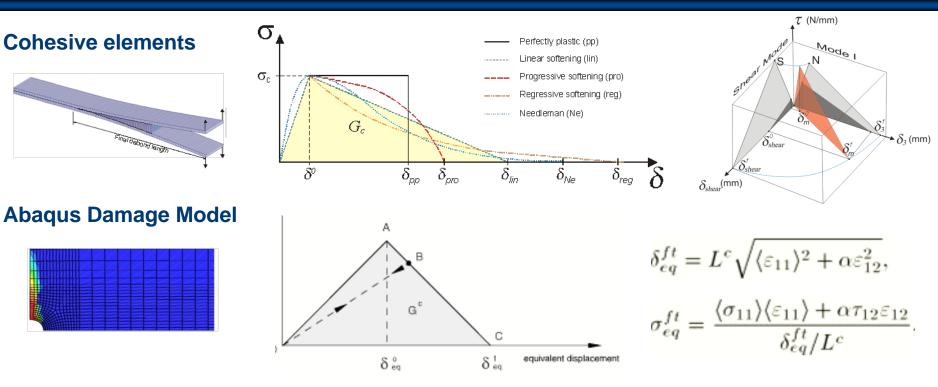
- G_c Fracture toughness
- σ_c Strength



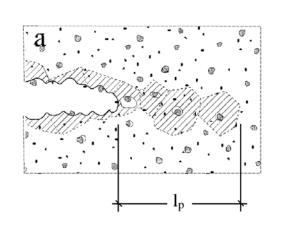
Characteristic Length:

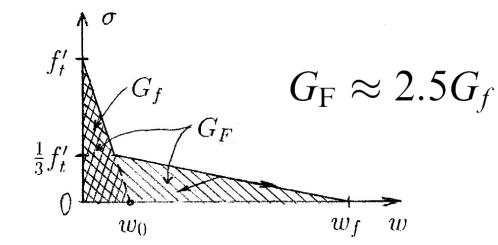
$$l_p = \gamma \frac{EG_c}{\sigma_c^2}$$

Material Softening Laws

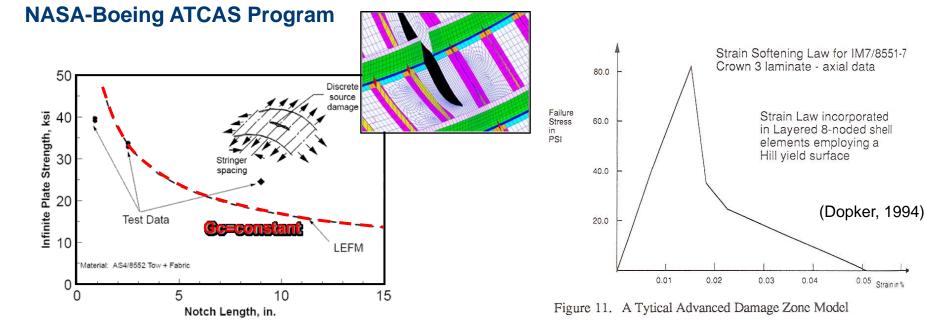


Standards of American Concrete Institute





Material Softening Laws for Composites



LaRC-based damage model (Maimí, 2007)

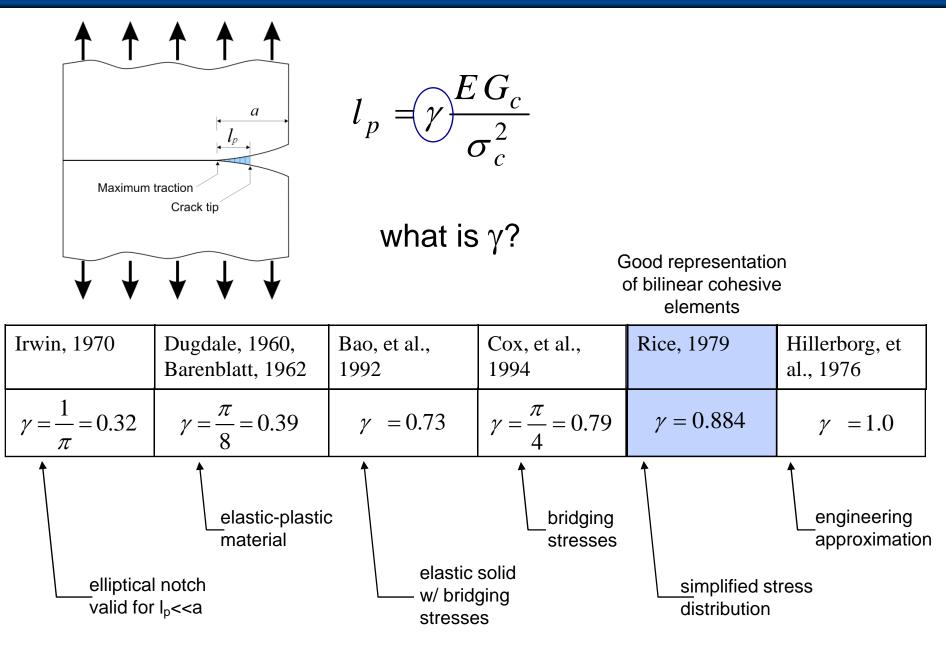
$$d_{1+} = 1 - (1 - d_{1+}^{\rm F}) \frac{r_{L+}^{\rm F}}{r_{L+}} \exp\left[A_{1+} \left(1 - \frac{r_{L+}}{r_{L+}^{\rm F}}\right)\right]$$

 r_{L+} : LaRC04 failure criterion for fiber tension

 σ_{11} X_{r} X_{pq} g_{1+} $g_{e_{1+}}$ $g_{e_{1+}}$ E_{11}

How to obtain the shape of the softening law from experiments?

Length of the Process Zone – Various Models



Crack Growth Resistance (R-Curve)

Foote et al. ['86]

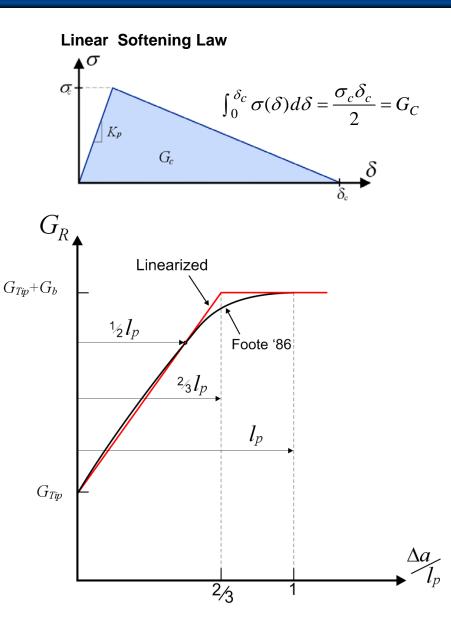
$$G_R = G_{Tip} + \int_0^{\Delta a} \frac{\sigma_c \delta_c}{l_p} \left(1 - \frac{x}{l_p} \right) dx$$

For a bilinear softening law

$$G_{R}^{NL}(\Delta a) = \begin{cases} G_{Tip} + G_{b} \frac{\Delta a}{l_{p}} \left(2 - \frac{\Delta a}{l_{p}}\right) & \text{for } \Delta a < l_{p} \\ G_{Tip} + G_{b} & \text{for } \Delta a \ge l_{p} \end{cases}$$

Alternate linearized expression

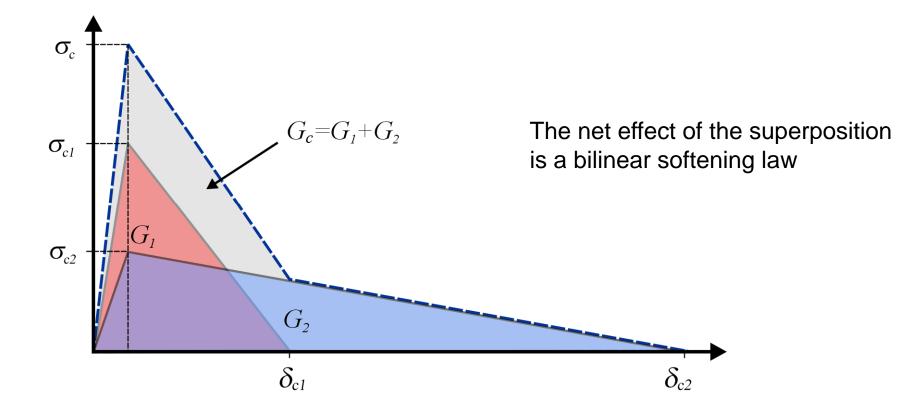
$$G_{R}^{L}(\Delta a) = \begin{cases} G_{Tip} + \frac{3}{2}G_{b}\frac{\Delta a}{l_{p}} & \text{for } \Delta a < \frac{2}{3}l_{p} \\ G_{Tip} + G_{b} & \text{for } \Delta a \ge \frac{2}{3}l_{p} \end{cases}$$



Bilinear Softening Laws

Consider two simultaneous damage mechanisms:

- Let G₁ represents a mechanism acting close to the tip
- Let G₂ represent a mechanism acting further into the crack wake



R-Curve (linearized)

$$G_{R}^{L}(\Delta a) = G_{Tip} + \frac{3}{2}G_{b}\frac{\Delta a}{l_{p}}$$

$$G_{R}^{L}(\Delta a) = G_{1}\frac{3}{2}\frac{\Delta a}{\beta_{1}l_{c}} + G_{2}\frac{3}{2}\frac{\Delta a}{\beta_{2}l_{c}}$$

Choose

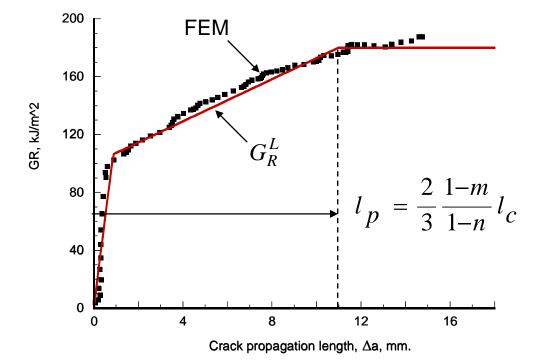
$$\beta_1 = \frac{m}{n}; \quad \beta_2 = \frac{1-m}{1-n} \quad \text{where} \quad n = \frac{\sigma_{c1}}{\sigma_c} \quad m = \frac{G_1}{G_c}$$

$$\implies l_p = \beta \frac{\gamma E G_c}{\sigma_c^2} \quad \text{where} \quad \beta = MAX[\beta_1; \beta_2]$$

$$G_R^L(\Delta a) = MIN\left(G_1; n G_c \frac{3}{2} \frac{\Delta a}{l_c}\right) + MIN\left(G_2; (1-n)G_c \frac{3}{2} \frac{\Delta a}{l_c}\right)$$
(Dávila, 2008)

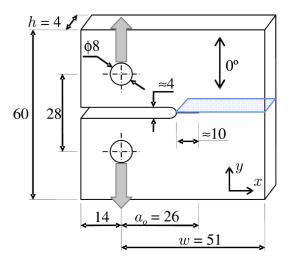
where
$$l_c = \gamma E G_c / \sigma_c^2$$
 $n = \frac{\sigma_{c1}}{\sigma_c}$ $m = \frac{G_1}{G_c}$

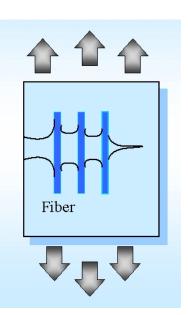
١

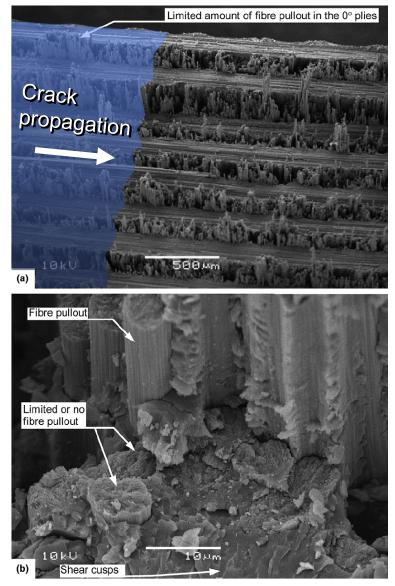


Measuring Toughness of Fiber Fracture

Compact Tension Specimen $[90/0]_{ns}$





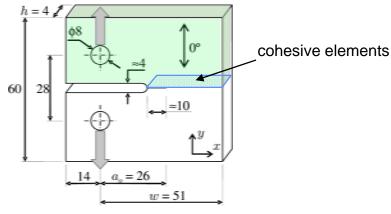


Pinho, 2006

Analysis of Compact Tension Specimen

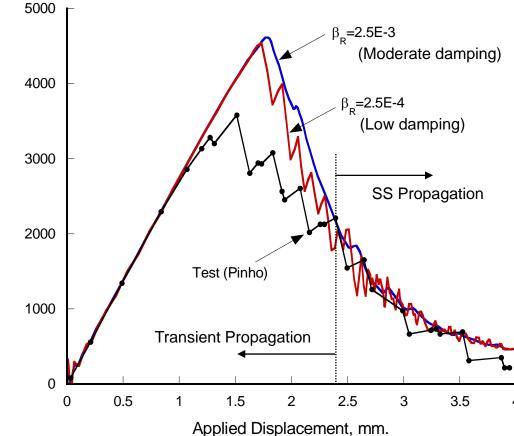
Reaction Force, N

Compact Tension Specimen

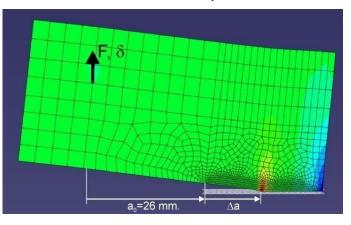


Finite Element Analysis

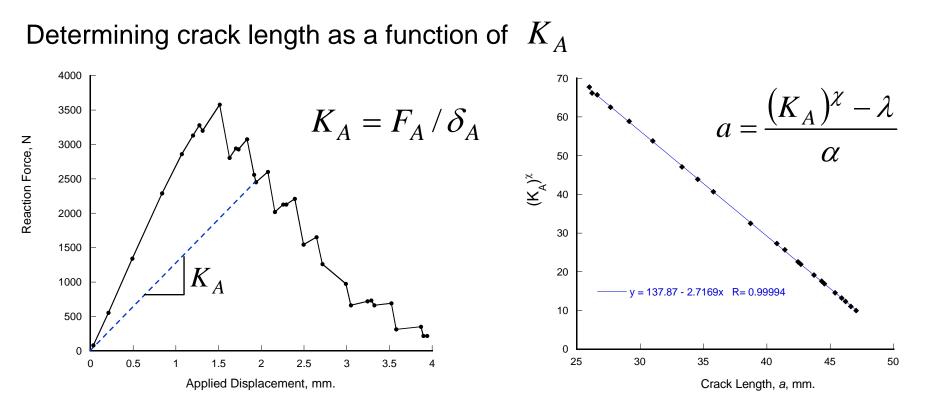
- Cohesive elements (linear softening).
- G_c=180 kJ/m² (from Pinho).
- Implicit dynamic analysis for improved convergence rate.
- Low and moderate Raleigh damping.



Shell model of CT Specimen



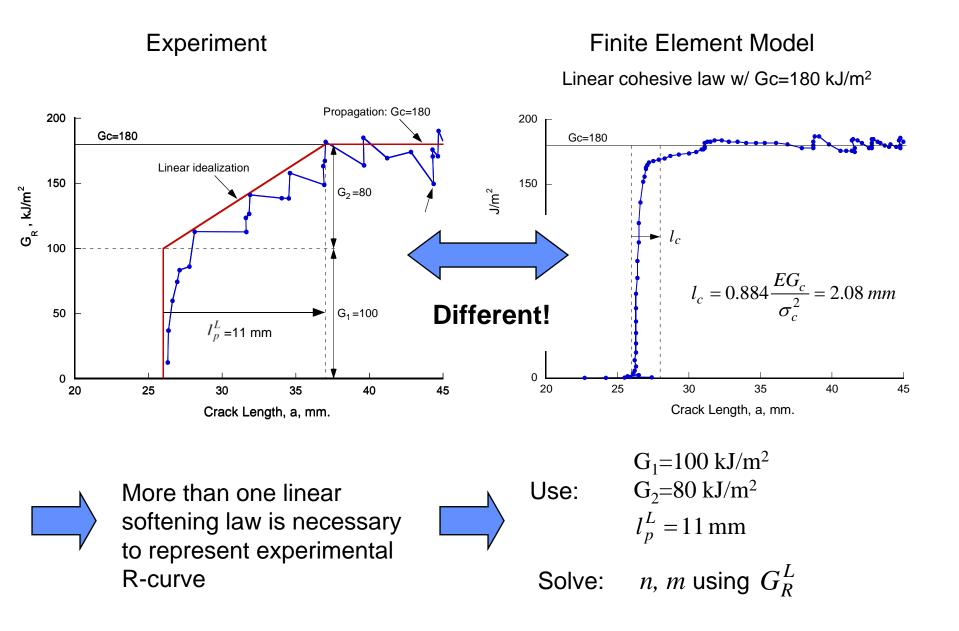
Extracting R-Curves by MCC Method



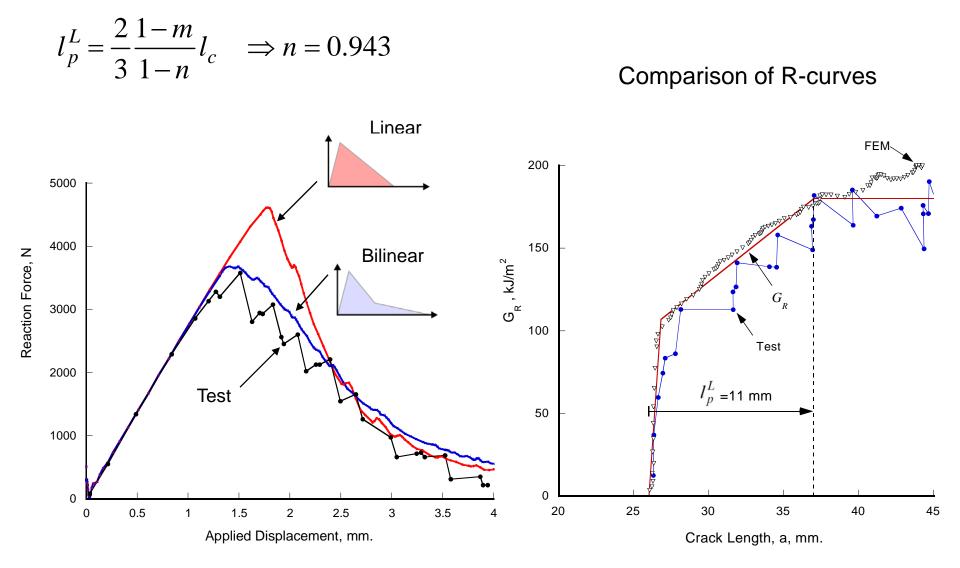
Modified Compliance Calibration

$$G_R(a) = -\frac{F_A^2}{2 \cdot t^0} \frac{\alpha (\lambda + \alpha a)^{-(1 + 1/\chi)}}{\chi}$$

Comparing R-Curves from Test and Analysis



Solve for *n* from:



- The importance of l_p & the R-curve, on the prediction of fracture of a composite laminate was examined.
- Two new alternate equations for the R-curve of superposed linear softening laws were proposed: $G_R^{NL}(\Delta a)$ and $G_R^L(\Delta a)$
- Fracture of a CT specimen was analyzed with cohesive elements.
 - A linear softening law is insufficient: fiber bridging and fiber pullout result in R-curve.
 - $G_R^L(\Delta a)$ was used for determining the parameters of the bilinear softening law.
- Compared to linear softening, bilinear softening reduces the error in the strength of the CT specimen from 29% to 2.8%.