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Resistance Curve

“However complex a fracture process is, a single material property
(the fracture toughness) quantifies the resistance to fracture”
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Complex Cohesive Laws for the Fracture of Composites

Objective
Add higher level of fidelity to FE prediction of fracture: R-Curve

Rationale
Relationships between:

 Resistance curve (R-curve)
* Fracture process zone length (1)
« Shape of the traction/displacement softening law

Approach

 Develop equations to predict R-curve for superposed
linear cohesive laws

 Demonstrate use of superposed cohesive elements to
account for experimental R-curve



Typical values of

cracks in geological formations:
dam concrete; sea ice:

granite; epoxy:

silicon oxide ceramic:

|, (Bazant, 2002)
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n <5, ductile damage, plasticity
5<7 <100, quasi- brittle fracture mechanics
n >100, brittle (LEFM)




Material Softening Laws

Linear Traction-Displacement Law

Characteristic Length:

Two material properties:
e (5. Fracture toughness
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Material Softening Laws @
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NASA-Boeing ATCAS Program

Material Softening Laws for Composites

50
\ et
L L/ o , damage| \
340} \ T AN, NN
= [\ \ 4—/,/ , N\ |
=) \ 575F ’
30 ‘\5\\ Stringer 7 \\
a \ \ spacing
e NS —
20 O\ =<
= Test Data =
E GEoCONS TN
£ 10} " LEFM
"Material: AS4/8552 Tow + Fabric
0 i 1 . . 1 " "
0 5 10 15

Notch Length, in.

LaRC-based damage model (Maimi, 2007)
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A Strain Softening Law for IM7/8551-7
Crown 3 laminate - axial data

Strain Law incorporated
in Layered 8-noded shell
elements employing a
Hill yield surface

(Dopker, 1994)
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II~ How to obtain the shape of the softening law from experiments?




Length of the Process Zone — Various Models
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Crack Growth Resistance (R-Curve)

Foote et al. ['86]
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Bilinear Softening Laws

Consider two simultaneous damage mechanisms:

» Let G, represents a mechanism acting close to the tip
» Let G, represent a mechanism acting further into the crack wake
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R-Curve for Superposed Linear Softening Laws

R-Curve (linearized)
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R-Curve for Superposed Linear Softening Laws

GL(Aa)= MIN[Gl; nGcglA—aj+ MIN[GZ; (1—n)GC§IA—a]
C

c (Davila, 2008)

where |C=7/EGC/o'C2 n=—¢ m=21
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Measuring Toughness of Fiber Fracture

Compact Tension Specimen [90/0], .
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Analysis of Compact Tension Specimen @

Compact Tension Specimen Finite Element Analysis
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Extracting R-Curves by MCC Method

Determining crack length as a function of KA

Reaction Force, N
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Comparing R-Curves from Test and Analysis @
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Analysis with Superposed Cohesive Elements

Reaction Force, N

Solve for n from:
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Concluding Remarks Q

The importance of |, & the R-curve, on the prediction of fracture
of a composite laminate was examined.

Two new alternate equations for the R-curve of superposed linear
softening laws were proposed: Gp - (Aa) and Gg (Aa)

Fracture of a CT specimen was analyzed with cohesive
elements.

— Alinear softening law is insufficient: fiber bridging and fiber
pullout result in R-curve.

— Gg(Aa) was used for determining the parameters of the
bilinear softening law.

Compared to linear softening, bilinear softening reduces the error
In the strength of the CT specimen from 29% to 2.8% .
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