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Resistance Curve

• LEFM: Fracture toughness 
concentrated at crack tip.
No growth: G < Gc

“However complex a fracture process is, a single material property 
(the fracture toughness) quantifies the resistance to fracture”

• Toughness from Bridging Stresses
No growth: G < Gb(Δa)

• Combination of Tip and Bridging Stresses
No growth: G < GTip+Gb(Δa)



Complex Cohesive Laws for the Fracture of Composites

Relationships between:
• Resistance curve (R-curve)
• Fracture process zone length (lp)
• Shape of the traction/displacement softening law

Objective

Rationale

Add higher level of fidelity to FE prediction of fracture: R-Curve

• Develop equations to predict R-curve for superposed 
linear cohesive laws

• Demonstrate use of superposed cohesive elements to 
account for experimental R-curve

Approach



Different Failure Theories for Different Structural Scales

Typical values of  lp (Bažant, 2002)

cracks in geological formations: lp ≈ 50 m
dam concrete; sea ice: lp ≈ 3 m
granite; epoxy: lp ≈ 1 mm
silicon oxide ceramic: lp ≈ 0.1 mm
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Material Softening Laws

Linear Traction-Displacement Law
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Two material properties:
• Gc Fracture toughness

• σc Strength
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Material Softening Laws

Cohesive elements

Abaqus Damage Model

Standards of American Concrete Institute



Material Softening Laws for Composites

NASA-Boeing ATCAS Program

(Dopker, 1994)
Gc=constant

rL+: LaRC04 failure criterion for fiber tension

LaRC-based damage model (Maimí, 2007)

How to obtain the shape of the softening law from experiments?



Good representation 
of bilinear cohesive 

elements

Length of the Process Zone – Various Models
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Crack Growth Resistance (R-Curve)
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For a bilinear softening law

Linear  Softening Law
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Bilinear Softening Laws

• Let G1 represents a mechanism acting close to the tip
• Let G2 represent a mechanism acting further into the crack wake

The net effect of the superposition 
is a bilinear softening law

Consider two simultaneous damage mechanisms:



R-Curve for Superposed Linear Softening Laws

R-Curve (linearized)
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R-Curve for Superposed Linear Softening Laws
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Measuring Toughness of Fiber Fracture

Compact Tension Specimen [90/0]ns

Pinho, 2006



Analysis of Compact Tension Specimen

Compact Tension Specimen 

Shell model of CT Specimen 

Finite Element Analysis
• Cohesive elements (linear softening).
• Gc=180 kJ/m2 (from Pinho).
• Implicit dynamic analysis for improved 

convergence rate.
• Low and moderate Raleigh damping.
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Extracting R-Curves by MCC Method

Modified Compliance Calibration
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Experiment Finite Element Model
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Analysis with Superposed Cohesive Elements

Solve for n from:
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Concluding Remarks

• The importance of lp & the R-curve, on the prediction of fracture 
of a composite laminate was examined.

• Two new alternate equations for the R-curve of superposed linear 
softening laws were proposed:                and 

• Fracture of a CT specimen was analyzed with cohesive 
elements.

– A linear softening law is insufficient: fiber bridging and fiber 
pullout result in R-curve.

– was used for determining the parameters of the 
bilinear softening law.

• Compared to linear softening, bilinear softening reduces the error 
in the strength of the CT specimen from 29% to 2.8% . 

)( aG NL
R Δ )( aG L

R Δ

)( aG L
R Δ


	Slide Number 1
	Resistance Curve
	Complex Cohesive Laws for the Fracture of Composites
	Different Failure Theories for Different Structural Scales
	Material Softening Laws
	Material Softening Laws
	Material Softening Laws for Composites
	Length of the Process Zone – Various Models
	Crack Growth Resistance (R-Curve)
	Bilinear Softening Laws
	R-Curve for Superposed Linear Softening Laws
	R-Curve for Superposed Linear Softening Laws
	Measuring Toughness of Fiber Fracture
	Analysis of Compact Tension Specimen
	Extracting R-Curves by MCC Method
	Comparing R-Curves from Test and Analysis
	Analysis with Superposed Cohesive Elements
	Concluding Remarks

