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Material  / Wave interaction:
Which physical phenomena are involved in such sensor ?

Comparable to high or low frequency analyses in electrical engineering
Comparable to acoustics: Wave propagation – reflection analysis, defects detection.
Comparable to XRays.

For an optical wave:
Maxwell theory: wave propagation defects due to optical index variations revealed by 
the optical signalthe optical signal.
Interferences and  diffraction: Involve both the geometry and the optical index of a 
“shape” encountered => analysis of the corresponding variations.

Advantages of an optical fibre:
Low signal reduction => High distance interrogation.
Low size: 125 µm diameter and even 80 µm on custom products.
Hi h iti itHigh sensitivity.
Locate several sensors in a single optical fibre multiplexing.
Low sensitivity to electromagnetic disturbances

Two ways of interrogation: 
•Measure the optical index (and its variations) of the constitutive glass of 
the optical fibrep
•Analyze the evolution of the propagation medium which is the optical fibre 
submitted to environmental constrains.



Which sensors and what kind of interrogation ?

Commercial solutions
Optical Rayleigh Backscattering :
• Shift of the spectral response <=> Strain (µepsilon)
• Spatial resolution: 2 mm over 100 m
• Sensitivity: +/- 1 µstrain

Optical Stimulated Brillouin Backscattering:
• Shift of the spectral response <=> Strain (µepsilon)
• Spatial resolution: 0.5 m sur 10 km
• Sensitivity: 25 µstrain 



Fibre Bragg Grating Sensors - FBGS

λ Bragg wavelength

Periodical undulation of the optical index
of the heart of the fibre.

The active part is in the heart of the fibre (10/125μm)
Uncoated optical fibres

FBGS applications
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Tracking of the Bragg wavelength
(sensitive to both temperature and strain)

Uniform strain ε along a FBGS:
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.
Optical Low Coherence Reflectometry:

Measure of the complex reflection index of a FBGS



Phase measurement of a FBGS

Measure of the complex 
reflection coefficient

λ BRAGG wavelength

Inverse algorithm: 
layer-peeling *

g

layer peeling 

Spatial resolution along z: 20µm

(*) On the synthesis of fiber Bragg gratings by layer-peeling,
J. Skaar, J. of. Quant. Elec., 37(2), 165-173, 2001



Non-uniform strain characterization along a FBGS
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(*)Determination of strain distribution and temperature gradient 
profiles from phase measurements of embedded fibre Braggprofiles from phase measurements of embedded fibre Bragg 
gratings (X Chapeleau et al.)
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• An example of strain gradient measurement

Fiber Bragg Grating

N i l d f ti l l t d (CASTEM)Numerical deformation calculated (CASTEM)
Determination of strain distribution and temperature gradient profiles from phase measurements of 

embedded fibre Bragg gratings (X Chapeleau et al.)



Where ?
Across the width of a laminate

Optical fibre Optical fibrep p

Laminate Laminate

Opportunity for 3D strain measurement



Why ?
Assumptions validation with in situ measurementAssumptions validation with in-situ measurement



Why ?

Sensor evaluation
Composite materials investigation

Physics Useful for

Cure shrinkage
Residual stresses Composites manufacturing

Complex strain state
Durability

p g
Characterization

Structural Health Monitoring
Damage, delamination



How ?
Supports

FBGS

Laminate

Mould

Weights



Cure shrinkage at 90° from the laminate surface
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Cure shrinkage at 45° from the laminate surface
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4 points bending test



Response of the FBGS under 4 points bending test

Strain profile (μm/m)T(N)M(N.mm)Test setup
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Response of the FBGS under 4 points bending test

Déformation (μm/m)T(N)M(N.mm)Séries de mesures

13.170

13.17494



Response of the FBGS under 4 points bending test

Under pure bending
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Conclusions and prospects

This in-situ strain gradient measurement technique is promising

But it requires a specific know-how to insert the optical fibres

Still to improve
• Need of a better signal processing to• Need of a better signal processing        to
• Understand the “noise” significance     and
• Find the plies across the widthFind the plies across the width

Candidate for 3D reinforcement stress analysis ?y


