Critical energy densities of resin systems: the key to matrix dominated composites failure

Leif E. Asp^{1,2}, Janis Varna² and Ramesh Talreja³

- ¹ Swerea SICOMP AB, Sweden
- ² Luleå University of Technology, Div. of Polymer Eng., Sweden

swerea sicomp

³ Texas A&M University, Dept. of Aerospace Eng., USA

Failure of composite structures

Matrix dominated failure

Which comes first: fibre debonding or matrix cracking?

Governing mechanisms – fibre debonding vs. matrix cracking

Micro structure – fibre distributions

Micro structure

- stress distributions from thermal loading

Local stress state from thermal and mechanical loads depends on:

Fibre and matrix properties; fibre distribution and V_f .

Local stress state from transverse loading (including thermal stresses)

Effect of Dilatational (hydrostatic tension) stress

Effect of dilatational (hydrostatic tension) stress

 σ_2 When dilatational energy reaches critical value, cavities burst open, causing debonding σ_2

Effect of Distortional stresses

Debonding vs. Matrix cracking

 Depends on manufacturing induced fiber distributions and voids

Engineering Approach:

Find worst-case (extreme) scenarios for design
Consider thermal loads in micro-mechanical analyses

Composite unit cell

- Fibres and voids explicitly represented in the microstructure
- Material model
 - Fibre: linear elastic
 - Matrix deformation: Macromolecular model, glassy polymers
 - Matrix fracture: Yielding, e.g. New craze model (Rice-Tracy ductile fracture model)
 - Fibre-Matrix debonding: Dilatational energy density criterion
- Loading: Plane strain tension
 - Temperature
 - Strain rate

Matrix cracking: design data

- Material data are to be <u>measured on glassy polymers</u> (not on composite materials!)
 - High distortional energy densities: measure yield stress
 - High dilatational energy densities: measure stress at crack initiation by micro cavitation

High distortional energy density tests – Yield stresses

- Uniaxial tests according to ASTM D638M-81
- Plain strain compression test (friction free)

High dilatational energy density tests – Cavitation stress (3D)

The Poker-chip test, a 3D-tension test

- Very difficult test to perform

High dilatational energy density tests – Cavitation stress (plane stress)

 Biaxial tension tests of hybrid composite/glassy polymer laminates (1.25mm thick polymer layer), thermal stresses considered.

High dilatational energy density tests – Cavitation stress (equibiaxial stress)

- Thermo-mechanical disk test (loaded by cooling down to temperatures of -160°C)
- Equibiaxial, meaning that radial and tangential stress components are equal.

Dilatational vs Distortional energy density criteria

- The dilatational energy density criteria is applicable only when the level of distortional energy density is low.
- There is a need to identify these regions in stress space where matrix failure is governed by either dilatational or distortional energies.
- These <u>tests</u> are to be performed <u>on neat resins</u> and to be used in computational analyses of composite materials and their structures.

Prediction of matrix cracking/ debonding in composite materials

 Measured dilatational and distortional energy densities are employed in micromechanical analysis of composites

- Debonding:
$$U_{\nu} = \frac{1-2\nu}{6E} (\sigma_1 + \sigma_2 + \sigma_3)^2 = U_{\nu}^{crit}$$

 cracking/yielding: von Mises or modified yield criteria for polymers.

Rice-Tracy ductile fracture model

Example: Failure initiation predictions

- Matrix cracking predicted by von Mises yield stress
- Matrix debonding/cavitation was predicted by the dilatational energy density criterion.

Glass/epoxy laminates

Assuming square array fibre distribution.

Material	Young's modulus (GPa)	Poisson's ratio	Thermal expansion coefficient (10 ⁻⁶ /ºC)
E-glass	70	0.22	7
Ероху	3.2	0.37	67.5

Results

Transverse failure by debonding, i.e. cavitation, predicted for all composite laminates.

Conclusions

- Prediction of matrix dominated failure in polymer composites should rely on test data on the glassy polymer considering:
 - Matrix cracking
 - Fibre debonding/matrix cavitation
- Test methods for biaxial tensile loading with varying biaxiality ratio should be expanded
- Further studies needed:
 - composite matrix failure under more general imposed loading should be performed
 - Influence of voids, misalignments, and other defects

References

- 1. L.E. Asp, L.A. Berglund and P. Gudmundson, Effects of Compositelike stress state on the fracture of epoxies, Composites Science and Technology, Vol. 53, No. 1, (1995), pp. 27-37.
- 2. L.E. Asp, L.A. Berglund and R. Talreja, Effects of fiber and interphase on matrix initiated transverse failure in polymer composites, Composites Science and Technology, Vol. 56, No. 6, (1996), pp. 657-665.
- 3. L.E. Asp, L.A. Berglund and R. Talreja, Prediction of matrix-initiated transverse failure in polymer composites, Composites Science and Technology, Vol. 56, No. 9, (1996), pp. 1089-1097.
- L.E. Asp, L.A. Berglund and R. Talreja, A criterion for crack initiation in glassy polymers subjected to a composite-like stress state, Composites Science and Technology, Vol. 56, No. 11, (1996), pp. 1291-1301.
- 5. L.E. Asp and L.A. Berglund, A biaxial thermomechanical test for glassy polymers, Experimental Mechanics, Vol. 37, No. 1, (1997), pp. 100-105.