Critical energy densities of resin systems:
the key to matrix dominated composites
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Failure of composite structures
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Matrix dominated failure

Matriy

Which comes first: fibre debonding or matrix cracking?
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Governing mechanisms
—fibre debonding vs. matrix cracking

Debond cracks
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into the matrix

Matrix cracks
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To be determined
by local stress
state and failure
criteria!
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Micro structure — fibre distributions
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Micro structure

— stress distributions from thermal loading

Local stress state from thermal and mechanical loads depends on:

Fibre and matrix properties; fibre distribution and V..
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Local stress state from transverse
loading (including thermal stresses)
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Effect of Dilatational (hydrostatic
tension) stress

i‘ Cavitation, presumably
C=— - A T = from free volume in
V_/ _____ - polymers
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J mm Unstable growth of cavitation
o at critical dilatational energy
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Effect of dilatational (hydrostatic
tension) stress
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Effect of Distortional stresses
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‘ Matrix cracks form by

‘ yielding, void growth and
‘ coalescence
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Debonding vs. Matrix cracking

= Depends on manufacturing induced fiber distributions
and voids

Engineering Approach:

-> Find worst-case (extreme) scenarios for
design

Consider thermal loads in micro-
mechanical analyses
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Composite unit cell

= Fibres and voids explicitly represented in the microstructure

= Material model
— Fibre: linear elastic
— Matrix deformation: Macromolecular model, glassy polymers

— Matrix fracture: Yielding, e.g. New craze model (Rice-Tracy ductile
fracture model)

— Fibre-Matrix debonding: Dilatational energy density criterion
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Matrix cracking: design data

= Material data are to be measured on glassy polymers
(not on composite materials!)
— High distortional energy densities: measure yield stress

— High dilatational energy densities: measure stress at crack
initiation by micro cavitation
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High distortional energy density tests
— Yield stresses

= Uniaxial tests according to ASTM D638M-81
= Plain strain compression test (friction free)
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High dilatational energy density tests —
Cavitation stress (3D)

= The Poker-chip test, a 3D-tension test
— Very difficult test to perform
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High dilatational energy density tests —
Cavitation stress (plane stress)

= Biaxial tension tests of hybrid composite/glassy
polymer laminates (1.25mm thick polymer layer),
thermal stresses considered.
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High dilatational energy density tests —
Cavitation stress (equibiaxial stress)

= Thermo-mechanical disk test (loaded by cooling
down to temperatures of -160°C)

= Equibiaxial, meaning that radial and tangential stress
components are equal.

Steel ring

Epoxy disk
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Dilatational vs Distortional energy
density criteria

= The dilatational energy density criteria is applicable
only when the level of distortional energy density is
low.

= There is a need to identify these regions in stress
space where matrix failure is governed by either
dilatational or distortional energies.

= These tests are to be performed on neat resins and
to be used in computational analyses of composite
materials and their structures.
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Prediction of matrix cracking/
debonding in composite materials

= Measured dilatational and distortional energy densities
are employed in micromechanical analysis of
composites oy

— Debonding: Uv - 6E (Grl e G-E +D'3 )2 — Usm

— crackingl/yielding: von Mises or modified yield criteria for
polymers.

Rice-Tracy ductile fracture model
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Example: Failure initiation predictions

= Matrix cracking predicted by von Mises yield stress

= Matrix debonding/cavitation was predicted by the
dilatational energy density criterion.

Glass/epoxy laminates
Assuming square array fibre distribution.

Material Young’'s modulus | Poisson’s ratio Thermal
(GPa) expansion
coefficient
(10°rC)
E-glass 70 0.22 7
Epoxy 3.2 0.37 67.5
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Results

Transverse failure
by debonding, i.e.
cavitation, predicted
for all composite
laminates.
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Conclusions

= Prediction of matrix dominated failure in polymer
composites should rely on test data on the glassy
polymer considering:
— Matrix cracking
— Fibre debonding/matrix cavitation

= Test methods for biaxial tensile loading with varying
biaxiality ratio should be expanded
= Further studies needed:

— composite matrix failure under more general imposed
loading should be performed

— Influence of voids, misalignments, and other defects
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