A Tensile Setup for the IDNS Composite Composite Interlaminar Shear Test

Kaj B. Pettersson and Jonas M. Neumeister

Department of Solid Mechanics
Royal Institute of Technology, KTH
Stockholm, Sweden
The IDNS concept

1. $K_I^N = \sigma^N \sqrt{\pi a} f^N$
 $\sigma^N < 0$

2. $K_I^M = \sigma^M \sqrt{\pi a} f^M$

Proper combination when: $K_I^{tot} = K_I^N + K_I^M = 0$
The IDNS Test

- Composites are built up of thin laminae
- Weak between layers: Testing important
- Relies on proper loading combination
- Proportional loading important

Shear test method for interlaminar shear properties
Inclined **Double Notch** Shear Test

- Proportional and proper loading of N and P

is achieved with the proper inclination angle, α^λ

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
IDNS – Main features

- Uses DNC specimen (Double Notch Compression)
- DNC gives poor stress uniformity
- Superimpose bending moment M (opening)
- By holders and support reactions (statically determined)
- M gives equally poor stress field (opposite sign)
- Characterized by mode I singularity (K_I)
- Require $K_{I,tot} = 0$ (proper loading combination)
- Proper proportion by correct holder inclination α
- Proportional loading is paramount (throughout test)
IDNS Fixture (old) Issues:

- Compressive setup
- Instability phenomenon
- Specimen deformation
- Adjustment of $\alpha < \alpha_{\text{calc}}$
- K_I cancelled, but $K_{II} = ?$
- Transverse stresses?
- What notch distance?
Simultaneous Cancellation of K_I and K_{II}

Mode I: $K_I = \sigma^N \sqrt{\pi a F_{I,N}} + \sigma^M \sqrt{\pi a F_{I,M}}$

Mode II: $K_{II} = \sigma^N \sqrt{\pi a F_{II,N}} + \sigma^M \sqrt{\pi a F_{II,M}}$

13.3°
Cancelling K_I and K_{II} in an IDNS specimen

$\gamma = 13.3^\circ$ (for pure loading conditions), but here:

- Two nearby notches
- Loading points (P) in vicinity
- Numerically, $\gamma \sim 20^\circ$ gives low K_I and K_{II},
- For an isotropic specimen!
Cancelling K_I and K_{II} in Composite Specimen

Composites - Orthotropic materials:
- Similar stress fields are achieved in rescaled geometry
- Rescaling lengthwise by $1/\lambda^{1/4}$,
- where $\lambda = E_z/E_x (= 1/14$ here)

\begin{align*}
\gamma_{ortho} &= \tan^{-1}\left(\frac{\gamma_{iso}}{\frac{1}{4\sqrt{\lambda}}}\right)
\end{align*}

\[E_x = 140 \text{ GPa} \]
\[E_z = 10 \text{ GPa} \]
Tensile IDNS Setup

- Tensile nominal loading (N)
- No instability phenomenon
- Less specimen deformation
- Proportional loading (N and P)
- Through specimen holders
- External load (F)

- Simple calculation of α
- Tilted notches minimize K_I and K_{II}
- What notch distance?
\[N = F \cdot \cos \alpha \]

\[P = F \cdot \frac{(L_{\text{tot}} + 2l_i) \sin \alpha + b \cos \alpha}{L_{\text{tot}} + l_p + 2l_i} \]

\[R = F \cdot \frac{l_p \sin \alpha - b \cos \alpha}{L_{\text{tot}} + l_p + 2l_i} \]

\[M = -F \cdot \frac{(L_{\text{tot}} + 2l_i - L) l_p \sin \alpha + (L + l_p) b \cos \alpha}{2(L_{\text{tot}} + l_p + 2l_i)} \]

\[\sigma^N = \frac{N}{b W} \quad \sigma^M = \frac{6M}{W b^2} \]

\[K_I^N = \sigma^N \sqrt{\pi a f_x^N} \quad K_I^M = \sigma^M \sqrt{\pi a f_x^M} \quad K_I^N + K_I^M = 0 \]

\[\alpha_K = \arctan \left(\frac{b (f^N(l_p + L_{\text{tot}} + 2l_i) - 3f^M(L + l_p))}{3f^M l_p (L_{\text{tot}} - L + 2l_i)} \right) \]
Numerical (FE-) shear stress fields

DNC (ASTM)

IDNS (old)

Tensile IDNS ($\gamma = 40^\circ$)

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
Numerical (FE-) shear stress profiles

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
Numerical (FE-) stress profiles

Shear stress (nominal)

$L/b = 2$

Transverse stress

$L/b = 2$

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
Tensile IDNS Fixture

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
Experimental shear strain fields

DNC (ASTM standard)

IDNS (compressive)
- Low load
- High load

Tensile IDNS
- High loads ($\gamma = 20^\circ$ and 60°)

Kaj Pettersson and Jonas Neumeister, Solid Mechanics, KTH, Stockholm, Sweden
Conclusions

• Tensile IDNS setup feasible (gripping)
• Less specimen deformation, no instability
• Adjustment of α simpler, according to eq.
• Lower α needed, more benign loading
• Tilted notches favorable, diminishes K_{II}
• Notch tilt $\gamma_{iso} = 20^\circ$, rescale by $(E_x/E_z)^{1/4}$
• Adjustment of α insensitive to γ
Conclusions (continued)

• Even more uniform shear stress distributions
• Particularly for the shortest notch distances
• (still, most uniform profiles for longer L/b)
• Lower levels of transverse stress
• Higher shear strengths than old IDNS
• Notch distance $L/b = 0.8$ optimal
• More difficult handling/gripping/adjusting