Residual Strain Development in Laminated Thermoplastic Composites Measured using Fibre Bragg Grating Sensors

Larissa Sorensen, Thomas Gmür and John Botsis
Laboratory of Applied Mechanics and Reliability Analysis
Swiss Federal Institute of Technology, Lausanne
Outline

- Residual Strains in TP Composites
- FBG’s for Residual Strain Measurements
- Fabrication and Measurement Procedures
- Experimental Results
- Modeling
- Conclusions and Perspectives
Residual Strains in TP Composites

- CTE matrix ≠ CTE reinforcing fibres
 - Micromechanical strains
- Anisotropic plies
 - Interlaminar strains
- Moulding pressure, temperature gradients
 - Global strains

Stresses During Cooling
Motivation & Direction

- Residual strains can be the source of damage initiation and premature failure in composites….

Objective:

- Develop a method for direct internal strain measurements:
 - (residual stresses, process monitoring)
Measuring the Internal Strain State

- How can we best measure internal residual strains?

Fibre Bragg Grating Sensors
- Minimal disruption of surroundings
- Precise location in given layers
- Sensitive to multi-dimensional and non-uniform strain fields
Thermomechanical-Optic Relations

\[
\frac{\Delta \lambda_b}{\lambda_b} = \varepsilon_z - \frac{n_0^2}{2} \left[p_{11} \varepsilon_x + p_{12} (\varepsilon_z + \varepsilon_y) \right] + \xi \Delta T
\]

IF \(\varepsilon_x = \varepsilon_y = -\nu \varepsilon_z \) and \(\Delta T = 0 \)

\[
\frac{\Delta \lambda_b}{\lambda_b} = (1 - p_e) \varepsilon_z
\]

- \(n_0 \): Effective Index of Refraction
- \(\varepsilon_i \): Normal Strain in i-Direction
- \(p_{11}, p_{12} \): Pockel’s Constants
- \(\xi \): Thermal-Optic Coefficient
- \(\Delta T \): Change in Temperature

Uniform Strain Field

CompTest 2004, September 21-23 2004
Pe Simplification Limitations

Consider the following cases:

- Plane Strain \((\varepsilon_z = 0)\)

- Thermal Contractions \((\varepsilon_x = \varepsilon_y \neq -\nu \varepsilon_z)\)

- Birefringence \((\varepsilon_x \neq \varepsilon_y)\)

Error depends on 3D strain state!
Unequal Transverse Strains

\[
\begin{align*}
\Delta \lambda_{bx} &= \varepsilon - \frac{n_0^2}{2} \left[p_{11} \varepsilon_x + p_{12} (\varepsilon_z + \varepsilon_y) \right] + \xi \Delta T \\
\Delta \lambda_{by} &= \varepsilon - \frac{n_0^2}{2} \left[p_{11} \varepsilon_y + p_{12} (\varepsilon_z + \varepsilon_x) \right] + \xi \Delta T
\end{align*}
\]

2 Equations, 3 Unknowns!
Composite Specimens

- AS4/PPS prepreg
 - Unidirectional (UD) and Cross-ply (CP) laminates (28 plies)
- FBG sensors: 22mm gauge length, 1300nm
 - Coating removed past sensor length
- 250µm diameter thermocouple
Consolidation Process

- Plies are compressed in hot press
- A polarized tunable laser probes the FBG
- Photodetector retrieves reflected spectra
- Thermocouple & FBG readings
Consolidation Process

- FBG responds to
 - Pressure changes
 - Material changes

Temperature Compensated Bragg Wavelength Changes
\[
\frac{\Delta \lambda_{by}}{\lambda_b} = \varepsilon_z - \frac{n_0^2}{2} \left[p_{11} \varepsilon_x + p_{12} (\varepsilon_z + \varepsilon_y) \right]
\]

\[
\frac{\Delta \lambda_{bx}}{\lambda_b} = \varepsilon_z - \frac{n_0^2}{2} \left[p_{11} \varepsilon_y + p_{12} (\varepsilon_z + \varepsilon_x) \right]
\]
Changes in Bragg Wavelengths

- Temperature compensated changes in $\Delta \lambda_x$ during consolidation process
- Slopes of X-ply > UD
Modeling Considerations

What factors affect the internal strain state in the composite during consolidation?

- Thermal expansion/contraction
- Thermal gradients
- Crystallization
- Hot Press/ Mould forces frozen into laminate
- Relaxation

Material properties depend on local temperature!!
Simplified Consolidation Model

Assumptions for a simplified model:

- Generalized plane strain
- Thermal contraction dominates
 - i.e. neglect crystallization effects
- Negligible thermal gradients
- Temp dependent polymer moduli and CTE
- Stresses/strains accumulation can be divided into steps that will be summed
Elastic Step Model

- Divide the cooling process into 13 steps
- Steps represent temperature ranges where material properties are piecewise constant

\[
\varepsilon_{\text{total}_{ij}} = \sum_{k=1}^{13} \varepsilon_{ij}^k (T)
\]

\[
\sigma_{\text{total}_{ij}} = \sum_{k=1}^{13} \sigma_{ij}^k (T)
\]
FEM Model – Elastic Step Method

$\varepsilon_x, \varepsilon_y, \varepsilon_z$ from fibre core are inserted into optomechanical equations

$\Delta \lambda_b(\varepsilon_x, \varepsilon_y, \varepsilon_z)$
Evolution of $\Delta \lambda_{bx}$ During Cooling (Uni)

Temperature (°C)

Free

In Mould

Experimental

Unidirectional

$\alpha_{mould} = 10^{-6}$
Conclusions

- FBG’s are capable of registering changes in material state and moulding pressure.

- During consolidation, residual strains accumulate at different rates according to lay-up.

- Consolidation pressure & mould contact cause birefringence in FBG sensors.

- Complete opto-mechanical relationships are required to use FBG measurements.
Future Perspectives

- Improve the consolidation model that relates strains in the FBG with strains in composite

- Continue to improve methods to account for polarization/birefringence effects
 - Including a method to decouple non-uniform longitudinal strains from transverse strains
Acknowledgements

The authors would like to acknowledge:

The financial support of the Swiss National Science Foundation, Grant no. 20-68279.02/1

&

Composite prepreg from Cytec Industries Inc.