INTRODUCTION

Usually, no difference between tensile and compressive modulus is considered in the analysis of bending of unidirectional composites, in spite of tensile and compressive tests bring different values of modulus.

In the present work, considering the difference between modulus, an experimental method in order to obtain tensile, compressive and flexure modulus using bending tests is proposed.

E_t: Tensile modulus
E_c: Compressive modulus
E_f: Flexure modulus

According to Classical Beam Theory:

Provided that resultant force is 0

$$\int \sigma dA = 0 \Rightarrow \begin{cases} h_1 = \frac{h}{1 + \sqrt{\lambda}} \\ h_2 = \frac{h}{1 + \sqrt{\lambda}} \end{cases}$$

Provided that resultant moment is M

$$\int \sigma y dA = M \Rightarrow \begin{cases} E_t \lambda \rho \varepsilon_t = \frac{P}{2} \\ E_c \rho \varepsilon_c = \frac{P}{2} \end{cases}$$

Where:

- ε_t: Strain in the outer face (tensile)
- ε_c: Strain in the inner face (compressive)
- ρ: curvature radius
- P: resultant force
- M: resultant moment

Experimental Procedure

As long as for the same load P the curvature radius is the same, λ and β are obtained.

Flexure modulus E_f is determined in the same specimen from the slope of load-displacement curve of a 3-point or 4-point bending test.

Having determined E_f and knowing β, E_t is calculated.

Finally, knowing E_t and λ, E_c is calculated.

<table>
<thead>
<tr>
<th>Material</th>
<th>Strain gage position</th>
<th>P/N</th>
<th>E_t (MPa)</th>
<th>E_c (MPa)</th>
<th>E_f (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS4/3501-6</td>
<td>Tension</td>
<td>44,922</td>
<td>117,900</td>
<td>1,193</td>
<td>123,300</td>
</tr>
<tr>
<td></td>
<td>Compression</td>
<td>41,134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS4/8552</td>
<td>Tension</td>
<td>94,394</td>
<td>131,200</td>
<td>1,209</td>
<td>137,600</td>
</tr>
<tr>
<td></td>
<td>Compression</td>
<td>85,864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM7/8552</td>
<td>Tension</td>
<td>188,916</td>
<td>150,000</td>
<td>1,198</td>
<td>157,100</td>
</tr>
<tr>
<td></td>
<td>Compression</td>
<td>172,595</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

Authors acknowledge to Hexcel Composites for providing the material used in experiments.

REFERENCES