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Background

• Seminal work by Rubin in 1980s resulted in the now 
standard approach via multiple imputation.

• Further work by various investigators introduced extensions 
and algorithmic simplifications

• This workshop will be using recent work at Bristol and 
London School of Hygiene extending this work to handle 
multilevel data, non-normal variables with missing values 
and interaction terms in the model of interest.

• For practicalities such as sensitivity analyses, distributional 
checking etc. see http://missingdata.org.uk/

• First, however, an overview of the problems, especially how 
not to handle missing data.
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First of all: missingness is not just another category

• Suppose we have a true model. 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒 (1)

• One recommendation is:

If missing data in 𝑥2 introduce 𝑥3 = 1 𝑖𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑒𝑙𝑠𝑒 0 and set 𝑥2 to 0 if missing.

• To give the extended model

• 𝑦 = 𝛽0 + 𝛽1
∗𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝑒 (1a)

• So that where we have a missing value we get

• 𝑦 = (𝛽0 + 𝛽3) + 𝛽1
∗𝑥1 + 𝑒 (2)

• If 𝑥2 missing completely at random (2) implies that, conditional on 𝑥1 the (unknown) value 
of 𝑥2 is actually unrelated to 𝑦, which is now just a function of 𝑥1 (i.e. (2) is the marginal 
model for 𝑥1), but this is only compatible for all values of 𝑥2 in the true model (1) if 𝛽2 =
0, which is of course not generally true, i.e. 𝛽1 ≠ 𝛽1

∗. 

• Thus, where we are actually missing the value of  𝑥2 using (1a) implies we are estimating 
𝛽1
∗ and whereas when not missing we are estimating  𝛽1. 

• Thus, fitting the combined model; (1) for non-missing and (1a) for missing, will produce a 
biased estimate lying somewhere between 𝛽1 𝑎𝑛𝑑 𝛽1

∗.
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Let’s illustrate other approaches 
using a simple regression of y on x

• 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖 𝑦, 𝑥, 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙

• For example data might look like:
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y x
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* 1.9

. .

. .

So now let’s generate a dataset – large enough so we can 
illustrate matters without having to go through tedious 
simulations.



The dataset
•

𝑦
𝑥

~N
0
0

,
1
0.5 1

(1)

• i.e. regression is:

• 𝑦 = 0.5𝑥 𝜎2 = 0.75 ( መ𝛽 = 𝑐𝑜𝑣(𝑥𝑦)/𝑣𝑎𝑟(𝑥))

• Simulate 100,000 pairs of values and estimate regression:

• We get መ𝛽 = 0.502 (0.00274) ො𝜎2 = 0.751

• Set about 20% of y’s missing at random  20% x’s missing – but 
not at random. Pr(𝑥 𝑚𝑖𝑠𝑠𝑖𝑛𝑔) ∝ |y|)

• We will now apply some popular (intuitive?) procedures to 
see what happens
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What not to do  - 1

• Calculate mean of observed and substitute for missing

• We get estimates (standard error in brackets);

• መ𝛽 = 0. 455(0.00275) ො𝜎2 = 0.632

• This is biased.

• Also note standard error - as before but wrong since ~36% 
values are ‘imputed’ and not actually observed so estimate 
too small. Correct standard error in this case is elusive.

• Original መ𝛽 = 0.502 (0.00274) ො𝜎2 = 0.751
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What not to do  - 2
• Use observed ‘complete’ records to predict y|𝑥 & 𝑥|𝑦 and use predicted 

values to plug in for missing. Prediction imputation

• We get estimates (standard error in brackets);

• መ𝛽 = 0.573 (0.00264) ො𝜎2 = 0.591

• Parameters still biased as is standard error. 

• Now use just the complete records

• መ𝛽 = 0.569 (0.00357) ො𝜎2 = 0.851

• This is popular because simple but large bias still because complete records 
not a random sample

• But, if you have complete cases as a random sample we get;

• መ𝛽 = 0.500 (0.00341) ො𝜎2 = 0.748

• So now unbiased but standard error larger than for full data since smaller 
sample.

• original መ𝛽 = 0.502 (0.00274) ො𝜎2 = 0.751
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How to do it better  - 3

• For plug in and prediction imputation 𝜎𝑦
2, 𝜎𝑥

2, 𝜎𝑥𝑦 biased.

• So for regression impute let’s add a random variable on to each imputed 
(predicted) value,  drawn from the regression residual distributions, i.e. 
𝑓 𝑦 𝑥 & 𝑓(𝑥|𝑦)

• We now get estimates (standard error in brackets);

• መ𝛽 = 0.502 (0.00279) ො𝜎2 = 0.754

• Bias now virtually gone but standard error still too small since takes no account 
of fact that imputed values are derived from data and not observed and hence 
similar to  full data s.e.

• We call this random regression imputation

original መ𝛽 = 0.502 (0.00274) ො𝜎2 = 0.751
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How to do it better  - 4

• Hot decking – as enjoyed by survey analysts.

• For each missing x (or y) find the set of y’s (x’s) that are ‘similar’ to the 
value of y, say y*, and for x , say x* associated with the missing x (y).

• Issue about how to define similar – in present case we shall take all 
those y’s in the range y ∗ ∓0.1 but we can do sensitivity analyses

• For that set of y’s select one at random – or if you want to be 
sophisticated sample according to  the distance from y*. 

• This then becomes the imputed value. 

• Results, when it works,  similar to random regression imputation

• In practice the choice of range is crucial and for several variables we 
may not be able to find suitable pools of records from which to 
randomly select
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How to do it better  - 4 ctd.

• So: when missing not random the only procedure 
that gives unbiased parameter estimates, but 
incorrect standard errors  is random imputation.

• When missingness is random, complete case 
analysis and random imputation are unbiased; the 
former is inefficient, the latter gives incorrect 
standard error.
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How to do it properly
• Known as multiple imputation it basically does a random imputation but 

repeats it independently n times, where n is a suitably large number –
traditionally 5, but more realistically up to 20. An MCMC chain is 
typically used. 

• We therefore obtain n estimates of 𝛽, 𝜎2, and these are averaged –
using Rubin’s rules (below) - to obtain final values together with 
consistent standard error estimates. For n=5 in our data we get

• መ𝛽 = 0.503 (0.00290) ො𝜎2 = 0.752

• And we now have unbiased estimates with correct standard error (albeit 
of course larger)  and is efficient.

• This is then the basis for a more general implementation (multilevel 
with mixed variable types) as in REALCOM and STATJR.

• Finally – a fully Bayesian procedure has been developed that is fast, very 
general and is also available in STATJR 
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Session 2: General approaches to MI
• Two approaches widely implemented.

1. Fully conditional or chained equation approach (STATA). 
• Take each variable in turn with missing data and regress on remainder 

(with suitable starting values and a burn-in) 

• Impute from conditional (residual) distribution

• Repeat and select n completed datasets, suitably spaced

• Fit to each model and combine (Rubin’s rules)

• Advantage is it is a series of univariate models and can handle discrete 
variables with missing value e.g. via logistic regression.

• Disadvantage is it cannot deal with level 2 variables having missing values

2. Joint modelling approach (REALCOM, STATJR)
• Basic assumption is set of variables with missing data are MVN or can be 

made so using a ‘latent normal’ transformation.

• Form an MCMC chain, conditional on non-missing variables, where missing 
values are imputed from their posterior distribution at each iteration.
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Joint modelling  ctd.

• We have a multilevel MOI with a response (possibly >1) and covariates –
possibly at several levels.

• We take all the variables at each level and make a multivariate response 
model with  ‘complete’ variables either as responses or covariates. 

• We finish up with a multilevel multivariate response model and at each 
higher level we allow the responses at that level to correlate with 
random effects derived from a lower level. 

• At this point we can include ‘auxiliaries’ that are not in the MOI but 
might be associated with the propensity to be missing thus improving 
our ability to satisfy the missing at random (.MAR) – i.e. randomly 
missing given the other variables in the model. This assumption is 
needed.

• Within an MCMC chain we produce n ‘complete data sets and fit the 
MOI to each one.

• Then we combine.
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Combining MOIs Using Rubin’s Rules
• Take the average of the point estimates

• Take the average between-imputation 
variances

20/03/2018 14





N

n

n

P 1

)(ˆ1ˆ  



N

n

n

N 1

)( )ˆ(var
1

)ˆ(ianceWithin var 









 




N

n

n

NN 1

2
)( ˆˆ

)1(

1
)ˆ(between Variance 

)ˆ(Between
1

1)ˆ(Within)ˆ(var  









N



Handling a mixture of variable types
• All of this so far assumes normality. What if we also have categorical data?

• Most software assumes normality throughout. 

• While STATA (chained equations) can handle mixed variable types it cannot 
handle higher level variables, nor interactions among predictors.

• Joint modelling can also handle higher level variables with missing values but 
not interactions.

• Handles discrete variables via threshold models, e.g. probit model for binary 
data. In MCMC this involves an extra step to sample underlying normal 
distributions.

• Key reference:

• Goldstein, H., Carpenter, J., Kenward, M. and Levin, K. (2009). Multilevel models 
with multivariate mixed response types. Statistical Modelling, 9,3, 173-197.

• Essentially works by assuming underlying (joint) normal distributions that
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An efficient fully Bayesian joint 
modelling procedure

• We will deal with multilevel data but assume that missingness occurs only for 
variables defined at level 1 – although STATJR can deal with such variables 
defined at level 2 also.

• Our approach can deal properly with normal and categorical data  with missing  
values and also with interaction terms for variables with missing values.

• It does not involve multiple imputation and inferences are made from a single 
MCMC parameter chain. – it is fully Bayesian.  Recent work has extended the 
methodology to handle case weights such as typically occur in surveys.

See: Goldstein, H., Carpenter, J., and Kenward, M. (2018). Bayesian models for weighted 
data with missing values: a bootstrap approach. J. Royal Statistical Society, series C., DOI: 
10.1111/rssc.12259
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The one-pass Bayesian model -
outline

• We create an MCMC chain where at each iteration we update both the missing 
values and the MOI.

• Consider the linear joint model:

𝑋1= 𝑋2𝛼 + 𝛾2 - Imputation component

𝑌 = 𝑋𝛽 + 𝑒 - Model of Interest

where X1are the variables that have missing values.

• For each missing value we propose a new value and then compare the joint 
likelihood for  𝑋1, 𝑌with value at previous iteration, in a metropolis step to 
decide whether to accept the new value.

• This joint updating of imputation model and MOI results in a single chain for the 
MOI from which we can make the usual inferences.

• We note that the MOI can include discrete responses, can be multivariate, 

contain interactions, multilevel terms etc, so is completely general.
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STATJR (TREE)

• A menu based package. 
• Running details for STATJR are available at
http://www.bristol.ac.uk/cmm/media/migrated/1-0-1/manual-tree-beginners.pdf

Download missing data files from
http://www.bristol.ac.uk/cmm/research/missing-data/

• Assume we have started STATJR and selected the 
tutorial dataset with two levels) in the datasets folder 
and just the  regression template. Later we will use 
2LevelMissOnePass template.
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Running the model

• In the top menu bar we have several options for general settings, uploading a 
dataset etc.:

• Note that dataset should be in the STATJR datasets folder and in STATA format 
with DTA extension.

• After specifying the model we note that the model inputs have been 
summarised in a script under ‘current input string’. This is stored in 
Templates/set inputs  so that it may be re-used or modified without going 
through the full model setup.

• It is usually a good idea to specify > 1 chain to verify convergence (e.g. 3)

• In outputs we can specify MCMC chain plots and e.g. residual estimates.
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Imputation templates

• We will now use the tutmiss dataset with the one pass 
template – 2LevelMissingOnePass (note that we could 
import the script if it has been already run, to set this 
up, from templates/set inputs). 

• We can watch progress through a script window.
• This template will not yet handle missing data for 

ordered or unordered categorical predictor variables, 
only binary ones.

• For multicategory data we need to do multiple 
imputation with the 2level (or Nlevel) impute template.

• But note that multiple imputation is slower and cannot 
handle interactions. 
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Practical session

• Users own data or tutmiss

• Fit both onepass and 2level impute

• Include interactions in onepass

• Plot chains

• Try fitting a model with missing value in a level 2 
variable. You can use the data set tutmiss_lev2
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