Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol.

Practical 1: Introduction to
the Stat-JR workflow system

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.2

1.1 Overview

These practicals are designed to introduce new users to Stat-JR and in particular to its new workflow
interface. Whilst the new workflow interface is still under development as part of the eBook grant,
much of its structure and functionality is already in place, and today we will introduce the principles
underlying how it works via a number of practical examples. As well as getting a handle on how the
system works, any feedback you pass onto us will be very valuable in helping shape the development
of the workflow system as it progresses over the remainder of the project.

In order to introduce the workflow interface, we will provide an overview of how to use the TREE
(Template Reading and Execution Environment) interface to Stat-JR and will briefly touch on certain
aspects of the Python language (https://www.python.org/) in which large portions of Stat-JR is
written.

The main building block in Stat-JR is the template: a piece of code that performs operations one
might associate with a (statistical) software package. For example, one template might draw a
certain type of graph, whilst another might fit a particular statistical model, and so on. Templates are
the common currency shared by the various Stat-JR interfaces —i.e. they are used in the workflow
system, TREE and DEEP (Documents with Embedded Execution and Provenance) — so it is important
to have an understanding of how they work in order to use Stat-JR. In order to perform its function
appropriately, a template requires inputs from the user (just like a function call in R or Stata, for
instance). For example they typically need to know which variables to use, and might need input
concerning estimation options (for a model fit), plotting options (for a chart), etc. We will begin by
illustrating this using the TREE interface.

1.2 Starting up TREE
To start we will fire-up Stat-JR TREE which we do by clicking on the executable file tree.cmd. When
we do this we will find a command window appears which looks something like the following:

-

B8 CAWINDOWS\system32\emd St e

| -

0 : 0 : R—pe 5

¥

e J

Figure 1

https://www.python.org/

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.2

This command window will be where the software is actually running from and will contain
debugging information, but the user interacts with the software via a web browser (although often it
will be running locally on the user’s machine); this should open automatically after a few seconds, as
follows®:

Stat-JR:TREE

Welcome to Stat-JR 1.0.3

Thank you for using our software. Stat-JR has been developed by a team of programmers based at the Universities of
Bristol and Southampton and funded by several grants from the UK Economics and Social Science Research council
(ESRC). For more information on the software, including downloadable manuals, please visit our webpages.

If you use this software for your research, then please cite it as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J.,
Goldstein, H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2013) Stat-JR version 1.0. Centre for Multilevel
Modelling, University of Bristol & Electronics and Computer Science, University of Southampton.

Figure 2

Now clicking on the Begin button will allow you to run the Stat-JR TREE software and the main
screen will look as follows:

1 Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is Internet
Explorer it is best to open a different browser and copy the html path to it. You can change your default
browser via Settings in the Chrome menu, or via Options > General in the Firefox menu (both menus are
found in top-right of their respective browser windows).

3

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.3

Stat-JR.TREE Start again Dataset~ Template ~ Regression1 |Ready (1s) | Settings Debug-|

© Response:

i

© Explanatory variables:

school
student
normexam
cons
standirt

girl
schgend
avsirt
schav
vrband

© Current input string: {}

© Command: RunStatJR(template='Regression1’, dataset="tutorial’, invars = {}, estoptions = {})

Figure 3

The TREE interface allows the user to try out one template at a time, using one dataset, and you can
see at the top of the screen pull-down menus headed Dataset and Template, and the names of the
template and dataset currently selected by default (tutorial and Regression1). These pull-down
menus allow you to change the template and dataset you are using (and also to view, edit and
summarise the current dataset).

Below the black bar, in the central area of the window, you can see some of the inputs required for
the currently selected template (Regression1), namely the Response and Explanatory variables, and
you can further see that you are being offered variables from the default dataset (the tutorial
dataset) as possible values for some of these inputs.

1.3 Using your own dataset

Below we will be working with one of the sample datasets provided with the Stat-JR package (one
which you may be familiar with from MLwiN, namely the tutorial dataset). However, you might like
to use your own dataset in certain sections (or try out both). The remainder of this section details
how to import your dataset; if you don’t have your own dataset, you can move onto Section 1.4.

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in
the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user
name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black
bar at the top of the browser window in the TREE interface).

If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >
Upload (menu options in the black bar at the top of the browser window), which will upload it into
the temporary memory cache, or by (ii) saving your dataset in the Stat/R\datasets folder, and then
selecting Debug > Reload datasets (again, accessible via the black bar at the top of the browser
window). If, instead, you have it (iii) saved as a .txt file, you can use Stat-JR's LoadTextFile template

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.4

to save it into the temporary memory cache (the template LoadTextFileMoreOptions allows you to
specify more particulars, and can also handle string variables).

In the case of options (i) and (iii) the dataset will be available for use in the current session, but you
then need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the
Stat/R\datasets folder) for use in the future sessions too.

So, via option (iii) (and downloading), Stat-JR will save your dataset as a .dta file, but you can also
create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

1.4 Viewing the dataset
You can select your dataset of choice via Dataset > Choose, remembering to press the Use button
once you have selected it from the list.

Once the dataset is selected, if we click on the Dataset menu and click on View we will get a second
tab in our browser as shown:

Stat-JR:TREE

Dataset name: tutorial |E

Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
=] school student normexam cons standlrt girl schgend avsirt schav vrband

1]} 1 1 0.261324 1 0.619059 1 mixedsch 0.166175 mid vb1 \‘I
2 a 1 2 0.134067 1 0.205802 1 mixedsch 0.166175 mid vb2 M
3 a 1 3 -1.72388 1 -1.36458 0 mixedsch 0.166175 mid vb3

4+ o 1 4 0.967586 1 0.205802 1 mixedsch 0.166175 mid vb2

5 a 1 5 0.544341 1 0.371105 1 mixedsch 0.166175 mid vb2

6 a 1 6 1.7349 1 2.18944 0 mixedsch 0.166175 mid vb1

7 =] 1 7 1.03961 1 -1.11662 0 mixedsch 0.166175 mid vb3

8 o 1 8 -0.129085 1 -1.03397 0 mixedsch 0.166175 mid vb2

9] 1 9 -0.939378 1 -0.538061 1 mixedsch 0.166175 mid vb2

10 a 1 10 -1.21949 1 -1.44723 0 mixedsch 0.166175 mid vb3

11 =] 1 11 2.40869 1 2.43739 0 mixedsch 0.166175 mid vb1

12 o 1 12 0.610729 1 2.10679 0 mixedsch 0.166175 mid vb1

13 o 1 13 -1.83669 1 0.040499 0 mixedsch 0.166175 mid vb2

14 a 1 14 -0.129085 1 1.19762 0 mixedsch 0.166175 mid vb1

15 a 1 15 2.20312 1 2.52004 0 mixedsch 0.166175 mid vb1

16 a 1 16 1.24053 1 1.11497 1 mixedsch 0.166175 mid vb1

17 m} 1 17 1.7349 1 1.03232 1 mixedsch 0.166175 mid vb1

18]} 1 18 1.31014 1 0.784362 0 mixedsch 0.166175 mid vb1

Figure 4

You can see the top few rows of the tutorial dataset, together with several tabs one could then click
on. Clicking on Summary, for example, produces the following:

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.4

Stat-JR:TREE

Dataset name: tutorial E

Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels

Name Count Missing Min Max Mean Std Description Value Labels
school 4059 0 1 65 31.0066518847 18.9368110726 School ID
student 4059 0 1 198 38.6999260902 30.2606908983 Student ID
normexam 4059 0 -3.66607 3.66609 -0.000113912741¢ 0.998821 Age 16 exam score (normalised)
cons 4059 0 1 1 1.0 0.0 Constant
standlrt 4059 0O -2.93495 3.01595 0.0018102547619! 0.993102 Age 11 exam score (standardised)
girl 4059 0 0 1 0.60014781966 0.489867751763 Girl
schgend 4059 0 1 3 1.80487804878 0.914079654538 School gender schgend
avslrt 4059 0 -0.75596 0.637656 0.0018102471949! 0.314831 School average LRT score
schav 4059 0O 1 3 2.12712490761 0.652926315528 School average LRT score (3 categories) schav
vrband 4059 0 1 3 1.84306479428 0.630784592987 Age 11 verbal reasoning level vrband

Page 1 of 1 View 1 - IOGFT?‘
Figure 5

This gives us, for each of our ten columns in the tutorial dataset, some basic statistics including the
minimum, maximum, mean and standard deviation. In fact one of the first things one might do when
presented with a dataset might be to produce summary statistics. The summary statistics we’ve just
viewed are not actually produced via a template: this dataset summary table is just an in-house
widget the TREE interface has to assist users with their exploratory data analysis (much like the data
viewer in RStudio, which allows the user to explore aspects of their data independent of commands
in the R console). However, various summary statistics can be produced via templates, and we will
do this ourselves as a means of illustrating both the TREE and workflow interfaces to Stat-JR.

Click on the first tab in the browser to return to the screen with the Regression1 inputs showing. If
you now choose the Template menu and click on Choose, a new window will appear that contains a
list of templates (and a cloud of key terms to help pare down the list to those most relevant).

Scroll down and select AverageAndCorrelation from the list and the screen will look as follows:

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.4

m

.

Change template
1-Level 2-Level Altemnative MCMC methods aML Averages Binomial
Categorical predictors Complementary log-log Complex level 1 Correlation
CustomC Data manipulation Diagnostics ©Stat GenStat_model
gretl_model JAGS Logit MATLAB_script Minitab_model MLWIN_IGLS
MLWiN_MCMC MLwiN_script MLwiN:point & click Model
Multiple membership Multivariate response N-Level Negative binomial Normal
Octave_script OpenBUGS Ordered multinomial QOrthogonal parameterisation
Plots Poisson Population ecology Predictions Probit Python_PyMC
Python_script R_gim R_INLA R_me4 R_MASS R_MCMCglmm
R_MCMCpack R_mgecv R_RStan R_script R_scriptMCMC R:comments
Random slopes Recapture Reference category SABRE SAS_model
Saving and Loading SPSS_model Standard deviation Stata_model
Summary stats Unordered multinomial \WinBUGS [reset]
AverageAndCorrelation &
BarChart
BoxPlot
BoxPlotGroup
Calculate
CapRecap
CaterpillarPlot35
CaterpillarPlotSD
Choose
Generate
' Histoaram aZ
WLIName: AverageAndCorrelation
Description: Choose to either calculate mean averages and standard deviations, or
correlations, for selected variables.
Close

If we next click on Use then the main screen will reappear, but this time asking for the inputs specific
to this template. We can fill these in as follows (Operation: averages; Variables: normexam, girl; or
variables from your own dataset if not using tutorial):

Figure 6

tutorial AverageAndCorrelation Ready (1s)

Operation:

averages E

Variables:

school
student
cons
standirt
schgend
avslrt
schav
vrband

normexam
girl

© Current input string: {

@ Command: RunStatJR(template="AverageAndCorrelation', dataset="tutorial, invars = {}, estoptions = {})

Figure 7

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.4

Here we have selected averages (as opposed to calculating correlations) and chosen two variables to
work out averages for. If we then click on Next to confirm the inputs and Run to run the template,
the screen will look as follows:

AverageAndCorrelation Ready (1s)

Operation:

averages remove

Variables:

normexam,girl remove

Download Add to ebook

@ Current input string: {'vars': 'normexam,girl’, 'op": 'averages'}

© Command: RunStatJR(template='AverageAndCorrelation’, dataset="tutorial', invars = {'vars": ‘normexam,girl’, 'op":
'averages'}, estoptions = {})

script.py || Popout

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput()
if op == 'averages':
tabout.column_headings = ['name', ‘count®, 'mean', 'sd']

Figure 8

At the bottom of the screen there is a results pane which displays whatever output object is selected
in the pull-down list just above it. Here we see the Python script (script.py) that has been run to
execute the template. If instead we pick the object table from the pull-down list of outputs then the
screen looks as follows:

AverageAndCorrelation Ready (1s)

Download Add to ebook

© Current input string: {'vars": 'normexam,girl', 'op': 'averages'}

© Command: RunStatJR(template='AverageAndCorrelation’, dataset="tutorial', invars = {'vars': 'normexam,girl', 'op":
‘averages'}, estoptions = {})

table ~| Popout
name count mean sd
normexam 4059 -0.000113912741654 0.998821
girl 4059 0.60014781966 0.489867751763

Figure 9

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.4

So here we have done something really rather simple which is to execute a template that has taken
the two variables we chose and worked out their means and standard deviations; these should
correspond to those we have already seen in the Dataset Summary screen we looked at earlier.

We will shortly use this template in the workflow version of Stat-JR to create a workflow that
performs the same averaging operation. For this we need to pay attention to the names of the
inputs, which you can see in the grey Current input string box and again in the Command box below
(which is how one would run this template with these inputs in the Python command driven version
of Stat-JR).

As this implies, the templates are written such that the input questions asked of the user in the
browser window (in this example, Operation and Variables) might be different to the name the
template actually assigns to those input objects in the background (in this example, op and vars,
respectively). This simply allows the input questions posed of the user to be more expansive than
the underlying assigned names, which may be shorter to spare the coder’s fingers and allow for
coding efficiency. We’ll have a look at the template itself in a moment to illustrate how this
distinction is realised in its code.

So using TREE is a useful way to test out a template and find the names of the inputs it requires, and
the names of the output objects too (via the pull-down list above the results pane); i.e. we now
know:

e The name of the template: AverageAndCorrelation
e The inputs it requires:
o op, which we assigned the value averages
o vars, which we assigned the value normexam, girl
e The name of the template’s output most relevant to us: table

We will soon open up the workflow interface and build a simple workflow from scratch using this
information, but we hope that in future you will be able to immediately save a workflow of your
executions in TREE for direct translation into the workflow system.

As well as gleaning a template’s required inputs by running the template in TREE, however, you can
also retrieve that information by looking at the code in the template file itself. In the Stat-JR
directory from which you ran TREE, you will see there is a subdirectory called templates. In this
subdirectory there will be a Python file for each template; for example AverageAndCorrelation.py
contains the Python code for the template we’ve just run. If you open this file you will see the
Python code as shown below:

Copyright (c) 2013, University of Bristol and University of Southampton.
from EStat.Templating import Template
class TemplateAverages (Template) :

'Choose to either calculate mean averages and standard deviations, or correlations, for
selected variables.'

__version = '1.0.0'
tags = ['Summary stats', 'Correlation', 'Averages', 'Standard deviation']
engines = ['Python script']
inputs = ''"'
op = Text('Operation: ', ['averages',6 'correlation'])

vars = DataMatrix ('Variables: ')

pythonscript = '"'

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput ()

if op == 'averages':
tabout.column headings = ['name', 'count', 'mean',6 'sd']
for i in range (0, len(vars)):
var = datafile.variables[vars[i]]['data']

tabout.add row(vars[i], [len(var), var.mean(), var.std()])

if op == 'correlation':
invars = numpy.ma.row stack([datafile.variables[var]['data'] for var in vars])
corrs = numpy.corrcoef (invars)
tabout.column headings = ['name']
for j in range (0, len(vars)):
tabout.column headings.append(vars[j])

for i in range (0, len(vars)):
row = []
for j in range (0, len(vars)):
row.append (corrs[i, j])
tabout.add row(vars[i], row)

outputs|['table'] = tabout

Here you can see that the template code is structured such that it includes an inputs section where
you can see both the prompts asked of the user (Operation and Variables) and, importantly, the
names the template assigns to the values provided by the user to those prompts (op and vars,
respectively; all highlighted in yellow); i.e. the latter names are the same as those appearing in the
Current input string box in TREE. You can also see why we were offered a choice of averages or
correlation as values for op, since these are coded as the options to be presented to the user.

Below that you will find a section of the code called pythonscript; this contains the Python code
executed once the inputs defined in the section above have all been completed (i.e. had values
assigned to them) by the user (you can see that the objects op and vars are used in this section, so
the template cannot run to completion unless the user has provided values for them). On the last
line of this section you can see the output name of interest (table; again highlighted in yellow),
which is one of the outputs which appeared in TREE.

So at this stage you will see that there are two ways (via TREE, and via the template code itself) to
find out the information we will need in the next section, when we write a workflow to execute the
same operation.

1.5 STAT-JR Workflows

We will now open the workflow interface to Stat-JR. If you return to the main Stat-JR directory you
will see that there is another executable described as wf.cmd. Clicking on this executable will fire-up
another command window which will contain debugging commands and another web browser
window for the workflow version of Stat-JR, as shown below:

10

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

= e ERj P)
I} stat-JR 1.0.3:WF x \
C [Y localhost:59342 B3 =

{ Control Selected

Logic block

Math
Lists
Text |
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Dummy

Figure 10

The workflow version of Stat-JR is still using Python as the code in the background but the web
interface is using a program called Blockly (developed by Google;
https://developers.google.com/blockly/; https://blockly-games.appspot.com/); this is a visual
programming system that involves using blocks to represent operations, and has been used by a
variety of applications as an aid to help people learn to code.

Here we will begin illustrating the workflow system by replicating the averaging we did in the TREE
interface. The window shown above contains menus at the top and a panel to the left that contains
a palette of blocks. If you click on the terms to the left you will see that blocks appear, e.g. clicking
on Control results in the screen looking as follows:

11

https://developers.google.com/blockly/
https://blockly-games.appspot.com/

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

0IWE X =5 =R e
"9 Stat-JR 10.3WF x \
C [J localhost:59342 % g =
Selected

Logic block:

Math

Lists
Text
Hypothesis

Data Preparation

Data Exploration -

Models fepest ‘ e

Post-process do

Input

Output .

Variables nErE

Procedures do

Other

Dummy

for each item (B in list

Figure 11

We will begin our workflow with the Start block whose simple purpose is to indicate the start of the
workflow. To use it, click on it with the left mouse button and, holding down the button, drag it
across to the white area; the window should now look thus:

- & e

I} stat-JR LO3WF x \

C [I localhost:59342 e EE e R ‘

Control Selected

‘ Logic block: 11

Math €a
Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Dummy

Figure 12

12

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

So we have a start (literally) but we need a dataset. In this example we will use the tutorial dataset

we used earlier in TREE, but you can use a dataset of your own choice if you prefer. If you click on
Data Preparation in the left-hand menu, you will see a block entitled Select dataset. Click on this
block and drag it to below the Start block, so it will be the next block used in the workflow
(workflows run sequentially downwards). It should join to it with a satisfying clicking noise (if your
speakers are on), and visually ‘snap’ into place. The screen will look thus:

| Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation

Data Exploration

Models

‘ Post-process
Input

| Output

Variables

Procedures

Other

Dummy

Selected
block: 61

S & | =RAC X
I stat-JR LO3WF x \
C [localhost:59342 Bk @ =

Figure 13

In fact, one of the strengths of using Blockly to realise Stat-JR’s workflow system is that many of the
syntactical rules are inherent in the shape of the blocks, and their readiness to fit together. The
Select dataset block you have just introduced, for example, has a slot on its right-hand side, like the
side of a jigsaw piece. As you might imagine, this can only take another block which is appropriately
shaped to fit into that slot. However, it can’t take any such block: for example if you try to fit the not
block (from the Logic menu) into this slot, you'll see it resists, like trying to join like poles of two

magnets:

13

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

Control Selected
Logic block:
Math Start a1

Lists Sélect dataset :

Text m

Hypothesis

Data Preparation
Data Exploration
Models

Figure 14

Clearly, this is the wrong sort of block (if you wish to tidy it away, you can select it and press the
Delete button on your keyboard, or you can drag it to the bin in the bottom right corner - the bin will
open and if you let go of the mouse button it will swallow the blocks!) As it happens, what we need
is a text block in which we can write the name of our dataset. If you click on Text in the left-hand
menu, you will see a list of blocks; select the first one, which is a blank text string, and drag it so that
it slots (successfully this time) into the Select dataset block thus:

— N - 8] == e
i1 Stat-JR 1L03:WF %\
C | [4 localhost:59342 ™ =

Control Selected
Logic block:
Math Start 223
Lists Select dataset [¢ (% |

Text

Hypothesis

Data Preparation
Data Exploration
Models -

» -

Figure 15

Next we can type in the name of our dataset of choice, in our example tutorial:

- | === & =B
i1 Stat-JR 1L03:WF %\
C | [4 localhost:59342 ™ =

Control Selected
lLogic block:
Math Start 223
Lists s""é'lect dataset

Text

Hypothesis

Data Preparation
Data Exploration
Models -

» -

Figure 16

14

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

We will next include inputs for our template (we will nominate the particular template we wish to
user later); we do this via the Set Input block which can be found in the Models menu, resulting in
the following:

R & =
/ § stat-JR LO3WF x \
C | [localhost:59342 w B 3 =

Selected
block:

Control
Logic
Math
Lists | Selectdataset | ¢ [IEE])
Text =
Hypothesis

Data Preparation
Data Exploration
Models
Post-brocess n e

Figure 17

You will see that the Set Input block has two gaps: here we need to add blank text blocks from the
Text list to the left thus:

R & =
/ § stat-JR LO3WF x \
C | [localhost:59342 w B 3 =

Control Selected
LOgiC block:
Math a19
Lists | Selectdataset | ¢ [IEE])

Text

Hypothesis Set Input I'E =

Data Preparation
Data Exploration
Models

Post-nrocess e
r

Figure 18

In fact, we have two inputs to set up so this gives us the opportunity to show another feature of the
workflow system. If you right-click on the Set Input block you can choose Duplicate from the menu
that appears and a copy of the block (with embedded text blocks) appears (alternatively you can
select the block(s) you wish to duplicate and press Ctrl-C then Ctrl-V to copy and paste). If you attach
this to the workflow the screen will look as follows:

15

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

—— (&) b= | B e

/ Y Stat-IR LO3WF ®\

‘ C [localhost:59342 v B 8 =
Control Selected
oo block:

320
Math Start
Lists Select dataset |
Text [oaay
Set| P » =
| Hypothesis nput | Q

Data Preparation
Data Exploration
Modsls

Post-nrocess , e

Figure 19

4

We can now fill in the inputs we noted earlier, namely “op” which takes value “averages”, and “vars”
which takes value “normexam, girl”, resulting in the workflow now looking as follows:

, Sy P
/ Y Stat-IR LO3WF ®\
C [localhost:59342 v B 8 =

Enitial Selected
Logic block:
Math Start

1 Lists Select dataset |

1 setiput | €@ | = | CEETDY
Data Preparation SRR vars EAMEETS normexam, girl |2
Data Exploration
Models
Post-process n M

.

Figure 20

Next we add the template we wish to execute with these inputs; this currently requires the selection
of the black Template block from the Dummy menu. This will run whatever template is named in a
block appended to the right of it, and so we add a text block to this with the name
AverageAndCorrelation thus:

16

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

; e

\

-
/ Jf} stat-JR 1.0.3:WF x

C [localhost:59342 v B 8 =

Control Selected
Logic block:
Math

Lists

Text
Hypothesis — —
Data Preparation Setlnput | ¢ (B »] — | normexam,grl |-}]
Data Exploration . . e .
Models
Post-process
Input

Output
Variables
Procedures
Other

Dummy

=

=yl Cl) AverageAndCorrelation 22

Figure 21

Finally we want to display an output resulting from the template’s execution. This is done via the
Show block from the Output menu. Put this on the end of the workflow, together with an embedded
text block in which we will type our output name (“table”) thus:

f - B
/ Y Stat-JR LO.3:WF %\
C | [localhost:59342 w3 =
Control Selected
Logic block:
Math
1 Lists
L Text
Hypothesis [
. =
Data Preparation Set Input [¢¢ (EID)] = [4 normexam,girl |-]
Data Exploration T ...
e Template (& »
Post-process Show [¢ [EER) »
Input ;
Output
Variables
Procedures
Other
Dummy
Figure 22

This is our complete workflow and at this point it would be good to save it, so click on Save and
choose a name (we will name it after this section of the practical, and choose pracl_5.xml) thus:

17

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.5

Save Workflow

Filename pract1_5.xml

Figure 23
You will be asked for a directory, so store this file somewhere you know where to find it!

Now, clicking on the Run button will execute the workflow which will bring up another tab in the
browser; in our example it looks as follows:

I} stat-JR LO.3WF % [JJ stat-JR 1LO.3WF
= = € [localhost:59342/run/ K E =
Results

Block 1 DatasetSelect(tutorial)

A

Block 2 Setlnput(op, averages)

v

Block 3 Setlnput(vars, normexam,girl)

v

| Block 4 TemplateExecution(AverageAndCorrelation)

v

Block 5 OutputObject(table)

name count mean sd
normexam 4059 -0.000113912741654 0.998621 o
girl 4059 0.60014781966 0.489868

‘ =] wslxml T ¥ Show all downloads.. %

Figure 24

The current output from workflows is a little crude: essentially we get a list starting with “Block 1”
and numbered through to “Block 5”, corresponding to the five blocks (counting vertically,

18

Stat-JR Workflow & eBook Workshop 3" Sept 2015, Bristol. Practical Workbook 1 — Section 1.6

downstream from the Start block) in the workflow. The final Show block (Block 5) returns our
requested table: this is the same as the output we saw in TREE.

1.6 Making our workflow interactive

As things stand we have made what is effectively a log of what we did in TREE and for which there is
no interactivity. Next we will show how we can make the workflow interactive by asking the user
which variables they want to use to calculate the averages.

We will firstly do this rather crudely: click on the first tab to return to the workflow creation screen.
Now click on the textual block that contains normexam, girl and holding the mouse button drag it to
the waste bin in the bottom right of the pane. The screen will now look as follows:

! IR Stat-JR 1.0.3:WF x \Jf} Stat-R 1LO.3:WF x
‘ [C' [} localhost:59342/# HP Bk @ =
Control Selected
Logic block
3
Math Start | 22
Lists Select dataset L tutorial B2
Text [P 1l 1
: SetInput | ¢ 9 =1 2
Hypothesis IR it lm ’ _—_ [
Data Preparation Setinput |« EER» | = ‘
Data Exploration oy 1,— =
Models Templ ate lJ AverageAndCorrelation
e
Post-process Show [¢¢ (EL3) »
Input ——
Output
Variables
Procedures
Other
Dummy
=] wslxml 7 # Show all downloads.. X
Figure 25

There is a gap in the inputs and this time clicking on Run the workflow stops at that point thus:

19

Stat-JR Workflow & eBook Workshop 3" Sept 2015, Bristol. Practical Workbook 1 — Section 1.6

/ Jf stat-IR 1L03:WF %/ stat-IR LO.3WF x \Jf; Stat-R 1.03:WF x
C | [localhost:59342/run 99 BE M= i
Results

Block 1 DatasetSelect(tutorial)

v

Block 2 Setlnput(op, averages)

v

Input for TemplateExecution(AverageAndCorrelation)

Variables: school

student
normexam
cons
standirt
girl
schgend
avsirt
schav
vrband

=] wslxml % ¥ Show all downloads... X

Figure 26

If we click on standirt and schgend (or variables of your choice) and then Submit then the workflow
will execute and look as follows:

/ I Stat-IR LOZWF x) Of Stat-IR LO3WF x (Jf} stat-IR 1L0O3WF x

€« C [Y localhost:59342/run/ B =

Results

Block 1 DatasetSelect(tutorial)

v

Block 2 Setlnput(op, averages)

v

Block 3 TemplateExecution(AverageAndCorrelation)

v

Block 4 OutputObject(table)

name count mean sd
standirt 4059 0.00181025476195 0993102
schgend 4059 1.80487804878 0.914080

Provenance

| Validate | Translate into | json || xml || provn || turtie || trig || svg

| Show Prov | e

=] wslxml ¥ Show all downloads... X

Figure 27

20

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.7

And thus we have created a workflow that will ask the user for variables (from the tutorial dataset,
in our example) and then produce their means and standard deviations.

1.7 Adding question blocks

If we want to change how we ask for an input —i.e. the prompt presented to the user — from within
the workflow (cf. changing the code in the template itself) then instead of leaving the slot in the Set
Input block empty, we can instead add a question block. So from the Input list of blocks select the
Ask multiple variables? block from the list and drag it to fill the hole we left in the Set Input block.
You will see that the Ask multiple variables block has a blank box in which you can type your
guestion thus:

I} Stat-JR LO.3:WF

C [} localhost:49745 v B =
Control Selected
Logic block: 40

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Dummy

| Select dataset || ¢¢ [TGED %
Setlnput | ¢ @7 » S8 averages E|
Set Input | . “ED » ‘ 5 LS] Which variables do you want to calculate average of?]l
REEICH (0 AverageAndCorrelation 22
Show | «CEED» |

Figure 28

Running the workflow will then prompt the user with this question, as we see below:

i} Stat-JR 1.0.3:WF
€ [localhost:49745/run/ w =3 =

% ¥ i} stat-IR 1.0.3:WF

Block 1 DatasetSelect(tutorial)

Block 2 Setlnput(op, averages)

v

Input for QueryMultipleVariable()

Which variables do you want to calculate average of?: school
student
normexam
cons
standirt
qirl
schgend
avsirt
schav
vrband

Figure 29

2 We’re using the Ask multiple variables block here as it allows the user to select more than one variable in
their answer; the Ask single variable block only allows the user to select one variable.

21

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.8

Here if we answer the question we will once again get a fourth block showing the means and
standard deviations for the selected variables.

1.8 Plotting a histogram

We will now move on from working with the AverageAndCorrelation template and turn our
attention to trying a second template and placing it in a workflow. This will be another operation
one might do when beginning to look at a dataset, namely plotting a histogram of a variable to
assess the shape of its distribution. Again we will first do this in TREE before moving across to the
workflow system.

If you don’t have TREE still active you will need to restart it. In the main TREE window we will need
to choose the Histogram template from the list, so click on the Template list and click on Choose and
highlight Histogram as shown:

I} Stat-JR 1L0.3:TREE x ‘Dﬂ Stat-JR LO.3TREE
&« C' [localhost:51764/run/#

Change template

1-Level 2-Level Alternative MCMC methods aML Averages Binomial Categorical predictors Complementary log-log
Complex level 1 Correlation CustomC Data manipulation Diagnostics eStat Genstat_model gretl model JAGS Logit
MATLAB_script Minitab_model MLwiN_IGLS MLwiN_MCMC nLwiN_script MLwiN:point & click Model
IMultiple membership Muliivariate response N-Level Negative binomial Normal Octave_script OpenBUGS
Ordered multinomial Orthogonal parameterisation Plots Poisson Population ecology Predictions Probit Pythan_PyMC
Python_script R_gm R_INLA R_med4 R_MASS R_MCMCgimm R_MCMCpack R_mgcy R_RStan R_script
R_scripiMCIMC Ricomments Random slopes Recapiure Reference category SABRE SAS_model Saving and Loading
SP3S_model Standard deviation Stata_model Summary stats Unordered multinomial wi WinBUGS [resef]

CapRecap - WLName: Histogram
CaterpillarPlota5
CaterpillarPlotSD Description: Produces a histogram from a column of data, with
Choose the number of bins chosen by the user.

Generate |:|
Histskew

Listwise

LoadTextFile

LoadTextFileMoreOptions

Figure 30

Now click on Use and the inputs for the Histogram template will appear. In our example we will
choose normexam as the Values for which we wish to plot a histogram, and 15 for the Number of
bins. Clicking on Next and Run, and selecting histogram.svg from the object list, gives the following
screenshot:

22

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.8

Values:

normexam remove

Number of bins:

15 remove

Download Add to ebook

@ Current input string: {'vals': 'normexam’, 'bins": '15'}
Set

@ Command: RunStatJR(template='Histogram', dataset="tutorial', invars = {'vals": ‘normexam’, 'bins': '15'}, estoptions = {})

histogram.svg v | Popout |

800 - T T T T T

700}

600} 1 -

|
|
[
|

Figure 31

So here we have the inputs that we require (vals and bins) along with the output that we want to
show (histogram.svg; again you could glean this information by looking at the template code itself in
the templates directory if you so wished).

We will now return to the workflow system with our workflow for the averages still visible. Rather
than start from scratch we will break up the current workflow by clicking on the Set Input block for
“op” and moving it and the following blocks to the right so that the screen looks as follows:

I Stat-JR 1.0.3:WF x \ iJff stat-IR 1L03:WF

€ [1 localhost:49745 7 BE ™ =

Control Selected
Logic block: 4
Math Start

Lists Select dataset || ¢¢ [T »
Text

Hypaothesis

Data Preparation Template WEEE »

Data Exploration [

e Show [¢ (ERT) 2

Post-process

Input

Qutput

Variables

Procedures

Other

Dummy

Figure 32

23

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.8

The workflow system doesn’t currently have a separate place to store fragments of workflow;
however, only those blocks that are contiguous with the Start block will be executed by the Run
button, so effectively we’ve rendered these inactive by removing them from the workflow stream;
i.e. we're simply storing them to the side for now. We will next add the blocks to produce the
histogram. These will look similar to those for the first workflow as we will need two Set Input blocks
(from the Models list), one Template block (from the Dummy list) and one Show block (from the
Output list) along with several text blocks (from the Text list; alternatively we can duplicate blocks
we already have elsewhere in the central workflow pane, and modify as appropriate).

We show below the workflow and so see if you can replicate it for yourself:

- =
I stat-JR LO3:WF x 1 I stat-JR LO3WF
€ | [9 localhost:49745 s E M =

Control Selected
| Logic block

Math E

Lists Select dataset | ¢¢ [IGEIE] »?

::”;Lthesis Setinpul | €EED» | | L

- [—— — I EICE . 1 AverageAndCorrelation |-
Data Preparation Setinput [« @ » | = (« g » pate
)] | e
Data Exploration Show [¢ ”
Models Templale IEEE ” !
[y e————

Post-process CUCVIERT histogram.svg [22)

Input

Output

Variables

Procedures

Other

Dummy

i

& —
Figure 33

To test it out we click on the Run button and get the following:

24

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.9

= efl= e =]
I stat-IR 1.03:WF x | O stat- IR L03WF x
@ | [localhost:49745/run/ wH ™=

Extra code ignored

Results

Block 1 DatasetSelect(tutorial)

Block 2 Setlnput(vals, normexam)

Block 3 Setlnput(bins, 15)

Block 4 TemplateExecution(Histogram)

Block 5 OutputObject(histogram.svg)

800,

" -

Here the initial comment that “Extra code is ignored” is simply the system telling us that there are
blocks on the workflow screen that aren’t currently part of the workflow (i.e. it’s detected that we
detached some from the active workflow headed by the Start block). We then see, in block five, the
histogram we requested. It would be good to save your workflow at this point, so return to the main
workflow window and click on Save. This time save it as prac1_8.xml.

Figure 34

1.9 Connecting up the operations

We have now created two workflows and an obvious next step is to join them together. Fortunately
we have both workflows on the screen and so we can quite easily join them. Have a go at doing this
yourself to produce the following:

[— FEE=E x |
/3B stat-JR LO3WF x I stat-IR LO3IWF 2
&« € [} localhost:49745/# w BE =@ =
Control Selected
Logic block: 53
Math
Lists Select dataset | ¢ EIEGE]) %
Text | — EE——
Set Inj 13 » | = & ”»
Hypothesis | put | & g
Data Preparation Setinput | RSBV ETE IS Wihich variables do you want to calculate average of?
Data Exploration
Models LGy el AverageAndCorrelation |2
_
Post-process Show [¢ [EE5) »
Input
Output Set Input [¢ » | = « 2
Variables e T eva e
Setlnput | <« »? = | «EP»
Procedures '—] L]
Other Template K66 ”
Dummy S hisiogram svg [
Figure 35

25

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.10

If we press Run, and then answer the question when prompted (here | have chosen just normexam)
we will see that both operations are done thus:

I Stat-JR 1.0.3:WF x J Y] stat-JR LO.3:WF x \
€« C' [localhost:49745/run Q¥ K ™8 =
Results

Block 1 DatasetSelect(tutorial)

v

Block 2 Setinput(op, averages)

v

Block 3 Setinput(vars, QueryMultipleVariabie())

v

Block 4 TemplateExecution(AverageAndCorrelation)

v

Block 5 OutputObject(table)

Block 6 Setinput(vals, normexam)

v

Block 7 Setinput(bins, 15)

v

Block 8 TemplateExecution(Histogram)

v

Block 9 OutputObject(histogram.svg)

500

400

Figure 36

1.10 Using variables in a workflow

So we have now seen how we can join up two template executions in one workflow and it is easy to
continue this with further operations to create a logfile-style workflow to replicate your analysis. As
mentioned earlier, in the future we hope to add a feature into TREE so that this is done
automatically.

We have investigated how to ask questions to replace hard-wired inputs and add an element of
interoperability. A natural extension of this is to ask a question where the answer is shared by
several templates downstream. To do this we will introduce the concept of variables within a
workflow and illustrate it by constructing a workflow that asks for a single input and then produces
its average and its histogram.

You will see in the lists to the left there is a menu entitled Variables and in this list is a red set <item>
to block. Grab a copy of this block and place it in your workflow under the Select dataset block (if
you place it in the approximate area and let go of the mouse button it should be added into the
workflow thus):

26

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.10

r —— s T — Tr
/ 3} stat-R LO.3WF x \{Jﬂ Stat-JR LO.3WF x|\
= C [} localhost:49745/# s E [+ —
Control Selected
Logic block:
Math Start 199
Lists Select dataset | ¢¢ [TGEGE] %
Text
Hypothesis — —
Data Preparation Setinput ||« @ | = | & »
aﬁt: IEproratlon SetInput | < ”» l ST SR Which variables do you want to calculate average of? I
odels [i, e el
Post-process LEUECl | AverageAndCorrelation |
(eI eEn?
Qutput R
Variables Setinput | ¢ (ED» = | ¢ [ELEZD? |
Pfocedures - ﬁ
v Setinput [« (D | = [«{D»
Dummy LS Histogram |-
= -
LR hisitogram svg |1
=] ws3uml N ¥ Show all downloads.. %
Figure 37

By default the variable is called item but we can change this by clicking on the pull-down arrow to

the side of it and selecting New variable... A window appears where we can enter a name; we will

choose response:

The page at localhost: 49745 says:

Mew variable name:

respo nse|

OK Cancel

Figure 38

Clicking on OK will select response as our variable name. We now need to assign it a value (in this
case the answer to a question), and so from the Input list select Ask single variable and move it to

the right of response. We can then add the question text as shown below:

27

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.10

[el =] B [t
/I stat-JR 1.0.3:WF x \g}, Stat-JR L03:WF x
& = € [localhost:49745/# v B @ =
Control Selected ’_‘I
Logic block:
Math
Lists Select dataset | ¢¢ [TELE]) 22
Text set T Y Wiat is your variable of inferest?
Hypothesis s
Data Preparation Setinput | &) | = ||« EEEED Y
aat: IExp\orahon Set Input | e ”» } SRR) 17 ST T) Which variables do you want to calculate average of? }
odels — ., —— — e, ,,,” -
Post-process Template L 117 AverageAndCorrelation [2)
P ——
Input Show ¢ [ED
Output .
Variables
Procedures
Other 3
Dummy Template 66 »
Show | &)
= ws3uml - # Show all downloads.. X
| |

Figure 39

This has created a variable (called response), the value of which will be whatever the user chooses
when prompted by the question “What is your variable of interest?” However, before running this
workflow, we first need to slot this variable (response) into places in the workflow where it is to be
used (as the values for inputs vars and vals, for example). Have a go at doing this yourself (you'll
need a new type of block from this list on the left). The completed workflow looks as follows:

[e
{ I Stat-JR LO.3WF x ‘{gﬂ Stat-JR 1.0.3:WF x B
&« C [localhost49745/# v HEE =
Caontrol Selected ’_‘I
T block:
Math 218
Lists Select dataset | ¢ [IELE]D 2
Text P8 response + LeE C it ye L e S What 15 your variable of interest?
Hypothesis e
Data Preparation Set Input
Data Exploration Set [
Models
Post-process Template [
=
Input Show (¢ (ZEE »
Output | _
Variables Setinput || s EE» | =
Procedures e)
v Setinput ||« I | = | @D
Dummy Template BSEESIEGHTENI) S

LR Tistogram sva |2

Show all downloads.. X

Figure 40

28

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

Hopefully you managed to find the block you needed.? We can now save this workflow as
pracl_10.xml before clicking on the Run button to run the workflow. In our example we’ve chosen
avsirt in answer to the question:

=
i} Stat-JR 1.03:WF x | J stat-JR LO.3:WF x N\ Jf stat-JR LO3WF x
| &« C | [} localhost:49745/run/ bk EE M=
Results
Block 1 DatasetSelectitutorial)

v

Block 2 Setinput{op, averages)
v
Block 3 Setinputfvars, Variable(response

v

Block 4 TemplateExecution{AverageAndCorrelation)

v

Block 5 CutputObjectitable)

Block 6 Setinput(vals, Variable(response))

v
Block 7 Setinputibins, 15)
v

Block 8 TemplateExecution(Histogram)

v

Block § QuiputObjectihistogram svg

Figure 41

Here we see the mean and then a histogram for the avsirt variable; i.e. it’s taken our answer and
used it as input for two template executions.

1.11 Running a statistical regression model and showing predictions

We will now move on to actually fitting a statistical model in Stat-JR. We will continue our approach
of adding to our current workflow. We have so far seen how we can put together a sequence of
operations in one workflow but up to now outputs from one template execution have not yet been
used as inputs for the next template execution. We will remedy that by illustrating how to create
predictions for our regression model based on the model fit.

We will begin by returning to TREE to fit a model using Stat-JRs built-in eStat MCMC engine. To do
this we will use the Regressionl template to fit a simple regression. The Regression1 template
requires the user to include a constant in their list of predictors if they want to fit an intercept. As it
happens, the tutorial dataset we have been using has a constant of ones (the variable cons) which
we could use, but since you may be using your own dataset which might not have a constant already
in it, we’ll show how to add a constant to the dataset using the template Generate.

3 Look under the Variables list. Once you’ve chosen the correct block, you can change the name away from
item by selecting response from the drop-down list in the block.

29

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

Here, having selected the template Generate in TREE, we request our constant of ones as follows:

Output column name: ntercept remove
Type of number to generate: Constant remove
Value 1 remove
Name of output dataset: my_dataset remove

Download Add to ebook

@ Current input string: {'type": ‘Constant’, ‘outdata’: ‘'my_dataset’, ‘outcol” ‘intercept’, 'value': *1}

@ Command: RunStatJR(template="Generate’, dataset="tutorial’, invars = {outcol’: "intercept’, 'outdata'. 'my_dataset', 'type': 'Constant’, ‘value’: 17, estoptions = {})

my_dataset ~| Popout
school student normexam cons standirt girl schgend avslrt schav vrband intercept
1 1 1 0.261324 1 0.61%059 1 1 0.166175 2 1 1.0 3
2 1 2 0.134067 1 0.205802 1 1 0.166175 2 2 1.0
3 1 3 -1.72388 1 -1.36458 0 1 0.166175 2 3 1.0
L) 1 4 0.967586 1 0.205802 1 1 0.166175 2 2 1.0
5 1 5 0.544341 1 0.371105 1 1 0.166175 2 2 1.0
Figure 42

On pressing Run we create a variable consisting solely of ones called intercept in a new dataset
called my_dataset (which is exactly the same as our original dataset, but with the new variable
appended to the end; you can inspect the dataset either by selecting my_dataset from the pull-
down list of outputs to view it in the results pane, as shown above, or by choosing Dataset > View
once you have selected it as the current dataset via Dataset > Choose).

Selecting this modified dataset (my_dataset) from the list of datasets, and Regression1 from the list
of templates, we can now include this new variable as one of our predictors, setting up the inputs as
follows:

Stat-JR:TREE tart n - Template ~ Regression1
©Response: normexam remove
© Explanatory variables: intercept,standirt remove
Number of chains: 3 remove

Random Seed: 1 remove
Length of burnin: 500 remove
© Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: Yes remove
Use default starting values: Yes remove

© Name of output results: out remove

© Current input string: {burnin': '500', 'defaultsv': 'Yes', 'outdata". 'out, ‘thinning": '1', 'nchains': '3', ‘defaultalg": 'Yes', ‘iterations': '2000', 'y": ‘normexam’, 'x": ‘intercept,standirt, 'seed": 1",
'makepred" 'Yes'}

Figure 43

30

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

Here we are using the default settings for our MCMC estimation procedure*, although we answer
Yes to the prompt Generate a prediction dataset. Clicking on Next and Run will run the model and
choosing ModelResults gives a summary of the model we have fitted thus:

Stat-JR:TREE Start again Dataset~ my_dataset Template ~ Regression1 Ready (10s) Settings Debug+
Results
Parameters:
parameter mean sd ESS variable
tau 1.54160995074 0.0340065114631 5799
beta_0 -0.00127835184871 0.0125770014327 5960 intercept
beta_1 0.594959154334 0.012745358164 6129 standirt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.48848832 2.43302399601 6061
Model:
Statistic Value
Dbar 9763.48848832
D(thetabar) 9760.50978897
pD 2.97869934714
[2][e3 9766.46718766

Figure 44

As before, the list of inputs can be viewed in the Current input string box and we will need to include
all these in our workflow to replicate the regression fit®. There are also a lot more outputs in the
pull-down list that we might like to include in the workflow via Show blocks too.

So first we will return to the Stat-JR workflow system and continue with our existing workflow and
add blocks to the end of it as follows (we’ve blown up the latter part of the workflow so that you can
see the details):

4 This particular template can only use this estimation engine, although many others can use a wide variety of
third-party software, including R, Stata, MLwiN, etc.

5 Note that the workflow system has a Model Fit block which can be used instead of the Template block which
fills in defaults for some of the (estimation) inputs, but we will not use this here (as our general aim is to make
explicit the connection between operations in TREE and the workflow system).

31

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

1 outcol |11
1 type o0 |
1 value 21

" outdata .
6 ”

Set Input

Set Input

Set Input

Set Input

Template |

1 intercept |11

1 Constant |-/
“Eh” |

1 my_dataset |-2)

Select dataset | Retrieve [last + Rirlullzildd 38 elliiJiid my dataset

“m»
TR

% nchains |-/ |
1 seed | |
 bumin |- |
{1 iterations | 1) |
. thinning |-+ |
| defaultalg |2
% makepred |-/ 7
1 defaultsv |1 |

1 outdata 121
1 Regression1 |/
ST ModelResults 2 |

Set Input
Set Input

Set Input

Set Input

Set Input
Set Input
Set Input
Set Input

Set Input

Set Input

Set Input

Template

Figure 45

Here, then, we are again assuming we don’t already have a constant in our dataset, and so we first
add one using the Generate template as we did before. We then need to change the working dataset
name to that of our new dataset with our constant in it. This is done by appending the Retrieve block

(49 ‘@ »
19 Yes B

19 Yes B2 '

CEM |

(found in the Other menu) to the end of the Select dataset block. The Retrieve block retrieves a

named object from whatever stage of the workflow execution is cited in the block. Thus we have to
give the object name we want (my_dataset) and tell it which block to take this from. We perform the
latter by referencing a unique number each block is assigned —it’s the black Template block we need
to reference (the one to which “Generate” is appended) and in the example in the screenshot this is
number 38. This number will likely be different for you: you can find out by selecting the block you

32

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

need to reference and seeing which number pops up in the right-hand pane (see Figure 46). These
referencing numbers may change as you move blocks around and add new sections, but it will
always reference correctly (i.e. if the number of a block changes, then this will be automatically
updated in the Retrieve block itself). Note our choice of last in the Retrieve block simply tells the
workflow to take the version of the object created the last time this block was executed (this
becomes important within loops where the same block is called more than once).

Selected

Control
Logic iGN - Generate block: 38
Math Select dataset | Retrieve [EE35) from Block [EL) Output [TAEEEHE ‘
Lists I 1 1

Set Input | &€ » =
Text put (€6
Hypothesis ORIy LB intercept, standirt |-

Data Preparation

;
I
Data Exploration Set Input : nchains Lo 13 L)
Models SetInput |/ ¢ » = «g)» |
Post-process nput (| ¢ B = «@
L Setinput | 6 (ML » | = ||« G |
Output L L .
I I}
Variables Set Input | ‘ {1 iterations L2 SIS ‘ (142000 |1}
Procedures r r =
Other Set Input | . L1 thinning o8 Fol ‘ Y 1 R
Dummy Setinput || ¢ CEENE » | = || « QD » |
. - :
?ellnpul“uu S s B
Setinput [¢ CLE | = (R
: : =
Set Input h (17 outdata F-AEC ‘ {4 out B2
Template (6 ”
1T Y ModelResults |2
Figure 46

Here we have ordered the inputs in the same order as the questions in TREE (this isn’t necessary for
the template to execute correctly, it just helps us ensure we included them all!) We can use the
response variable we defined earlier as the input for “y”. We will Save this workflow as pracl_11.xml
and then Run it (in this example choosing normexam as our variable of interest). Note that it will
take a little longer for this workflow to finish its execution, and nothing will appear until the
workflow has finished. If you scroll down to the bottom of the window after running it, it will look as
follows:

33

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.11

Results
Parameters:
parameter mean sd ESS variable
tau 1.541610 0.034007 5799
beta_0 -0.001278 0.012577 5960 intercept
beta_1 0.594959 0.012745 6129 standirt
sigma2 0.648988 0.014307 5784
sigma 0.805549 0.008880 5789
deviance 9763.488488 2.433024 6061
Model:
Statistic Value
Dbar 9763.488488
D(thetabar) 9760.509789
pD 2.978699
pic 9766.467188
Figure 47

So we see the results that we saw within TREE, from our model fit, appearing in the final block of the
output.

The Show block is not the only way to see outputs; we can view any of the output objects from the
regression model fit via the pull-down list under the block above (Block 27 in this example) which
represents the Regressionl template run. For example if we choose equation.tex we get the
following output:

Block 27 TemplateExecution(Regression1)

equation.tex |

normexam; ~ N(u;, 02)
i = Pointercept; + Bystandlrt;
Boox 1
pi 1
7 ~T(0.001,0.001)
o’ =1/

Block 28 OutputObject(ModelResults)

Results

Parameters:
parameter mean sd ESS variable

tau 1.541610 0.034007 5799

Figure 48

The only difference with this and the Show block is that the pull-down list is interactive, but it can
only display one object at a time (whereas you could append several Show blocks on top of each
other).

34

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.12

1.12 Adding predictions to the workflow

Going back to the TREE interface, since we selected the option to generate a prediction dataset we
can look at the predictions graphically. The Regression1 template has created a dataset object called
prediction_dataset which we can select from the list of datasets in TREE (it will be in darker font to
indicate it has been generated by the software and is loaded in the current session). Having chosen
this as our dataset in TREE (it should appear in the black bar at the top once you have selected it) we
can perform operations on it — e.g. plot predictions — by choosing an appropriate template (we will
choose XYPlot) via the usual means.

Having chosen XYPlot, we can now set Y values to plot both the prediction and the original response
variable (pred_full and normexam, in our example) and the X values to be our predictor variable of
interest (standirt, in this example). Clicking on Next and Run will give the following (if we select
graphxy.svg from the list):

r -

/ YR stat-JR LO.3TREE x
« C' [3 localhost:49732/run/# e B B

Y values: pred_full,normexam remove

X values: standirt remove

Download Add to ebook

@ current input string: {'xaxis" 'standlrt’, "yaxis" 'pred_full.normexam’}

@ Command: RunStatJR(lemplate="XYPlot', dataset='prediction_datafile’, invars = {'xaxis": 'standIrt’, 'yaxis': 'pred_full.normexam’}, estoptions = {})

graphxy.svg v | Popout

x = pred_full
%% pormexam

5

Figure 49
Here we see the data in green and the regression line in blue.

So, to add this to the workflow we will need to change dataset (to the prediction_datafile generated
by the template). Let’s return to the workflow interface and add the following to our existing
workflow:

35

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.12

Control Selected

Logic SO R ntercept standirt 20 | block:
= L 296
Math :
Lists Set Input | &6 » | = «@»
JE Set Input | & » = "«gg» |
Hypothesis - — ,
Data Preparation Set Input L% burnin FEAREREE TS 500 |2
Data Exploration A — . =
Models et Inpuf 1 iterations EEES 112000 |-
Post-process Setinput | & LD »? | = «@»
Input — ,
Output Setinput [« CECMER)» = [«§CD»
Variables - :
Tl SetInput | ¢ » = « 9
Other Setinput | G ECCTCR Y | = | & »
Dummy - -
Set Input | & » =1 &« ”
Template (6K »
=LA 1 ModelResults &2
Select dataset | Retrieve [ES#i) from Block \e[V11.11{ prediction_datafile
Figure 50

As before, then, we change the dataset name via the Select dataset block, appending a Retrieve
block to the end of it, and specifying in that block that we want to use the output object called
prediction_datafile from the relevant template execution (the black Template block which runs the
Regressionl template).

For the graph, the input names and output objects are those we saw in TREE — we will leave these to
you to add (remember to choose the corresponding template too; if in doubt, see Figure 52 in the
Appendix). Save the resulting workflow as pracl_12.xml and then click on Run to see what happens
(in our example we again choose normexam when prompted). At the end of the run output you will
see the prediction plot thus:

36

Stat-JR Workflow & eBook Workshop 3 Sept 2015, Bristol. Practical Workbook 1 — Section 1.13

e B)
I} Stat-JR 1L.0.3:WF x) U Stat-JR LO.3WF x |
& C [localhost:49745/run/ < EE M =

Block 27 OutputObject(graphxy.svg)

pred_full
normexam

-3 =2 -1 0 1 2 3 4
standlrt

Figure 51

So here we have demonstrated how we can link together output (via an outputted dataset) from
one template as input for another template.

1.13 What have we covered?

From this first session you should now be comfortable with using Stat-JR TREE: selecting a dataset
and template, entering inputs, running it and inspecting the outputs. We've investigated how to use
this information (the dataset, template, inputs and outputs of interest) to replicate the same
operations in the Stat-JR workflow system. In doing so we have covered:

e how to find and append blocks;

e duplicating and deleting blocks;

e saving workflows;

e including questions in workflows;

e using the same variable more than once in a workflow;

e retrieving output from one template execution for use in a later template execution;
o the functional relevance of the Start block.

37

Stat-JR Workflow & eBook Workshop 3™ Sept 2015, Bristol. Practical Workbook 1 — Section 1.15

1.14 What's next?

In the next practical we will build on what we have covered and think about creating more
interactive, generalised workflows for fitting regression models and also introduce the idea of a
statistical analysis assistant. In doing so, we will also explore more of the workflow system’s
functionality.

1.15 Appendix

From Section 1.12, here’s the end of the workflow with our prediction-plotting blocks added to it;
remember to save the workflow as pracl_12.xml.

et Input | =l
Control P ! ﬁle'e;‘e“’
Logic Setnput | ¢ CEZNED? = | “EE» o
Math = = = =
Lists Set Input | ! “ » = : “ ”
Text L. | Regressiont [
Hypothesis -
Data Preparation Show " " ModelResults |-/
Data Exploration Select dataset | Retrieve [EEES from Block [EEF) Output (IS EEl)
Models e — T
Setlnput | ¢ EEY» = & »
Post-process Sl I
In (=
put Setlnput | & EEY» = | «EEI»
Output ' .
Variables Template 5 1 XYplot 2
Procedures AT S graphxy.svg 22
Other :
Dummy
Figure 52

38

