Practical 2 for SAE workshop

The following document is likely to become the LEMMA materials practical using StatJR for Small
Area Estimation. There is too much material here for the remaining workshop time but we felt it was
better to give you more material along with the memory stick so that you can try out all 3 examples
in your own time after the workshop. For today we suggest you work through the practical as far as
you can with our support and then work on the rest if you wish in your own time.

Small Area Estimation Practical using Stat-JR

This practical describes the functionality in Stat-JR for fitting Small Area Estimation (SAE) models and
complements the Concepts and R practicals for the Small Area Estimation LEMMA module. In this
practical we will use 3 data examples to illustrate some aspects of small area estimation. The first
‘Toy’ example will use the tutorial dataset which is an education dataset with pupils in schools and
will be used to illustrate some of the general principles of small area estimation in a non-standard
setting (where the areas are in fact schools). The second example is the eusilc dataset which is a
more standard example where interest is in the average income in a series of geographical ‘small’
areas. It will be used to show an application of small area estimation on a larger dataset and also to
illustrate the use of transformations (in this case the Box-Cox transform) in small area estimation.
Finally the third example is the simulated voteleave dataset where interest lies in whether people
will vote to leave or stay in the EU based on a sample of voting intentions from an exit poll and here
this example is used to illustrate another typical usage of small area estimation but in particular to
illustrate how small area estimation translates to other response types, in this case binary.

In this practical we will illustrate two interfaces into Stat-JR. We will first use the TREE interface to
run the templates that have been written to do the SAE modelling directly and then we will show
how these templates along with other existing templates have been combined into an eBook that
can be used using the DEEP eBook interface to Stat-JR. We will begin with example 1.

Example 1 The tutorial dataset

The basic idea behind small area estimation is to estimate aggregated values of a variable at the
level of a series of “small areas” e.g. what is the average income in each of a series of geographical
subareas in a large dataset (see the second example) or what are the likely voting intentions and
thus voting outcomes in each of a set of constituencies (see the third example). Here we begin with
an example where actually the “small areas” are not areas but schools and this illustrates in fact that
the term ‘small area’ is simply used to refer to groupings of observations into clusters — very much
like higher levels in multilevel models.

We will here use the tutorial dataset that is commonly used in examples from our research centre
and contains the results of 4,059 students from 65 schools in exam scores taken at age 16. In SAE we
normally have 2 datasets — a census or population dataset which contains some variables (but not
the variable of interest) for all observations in the population of interest, and a survey or sample
dataset which contains the same variables as the population dataset for a subset of observations
from the population with in addition the variable of interest.

For illustration purposes here we are going to assume that the population is in fact the 4,059
students that are present in the tutorial dataset but that we have a roughly 10% sample dataset,
tut_smp of 400 students. A possible scenario in education is that some form of intervention has
been carried out for this sample and their exam scores are known but we are interested in finding



out what the impact of the intervention might be for all pupils and what the average effect would be
for each school.

Such data would be collected for real in the UK by for example projects funded by the Education
Endowment Foundation (EEF) that looks at the effect of various school-based interventions. Often
when people test for the impact of the intervention the scores on standard tests/exams are used.

So here we will look at our example:

Firstly we need to start up Stat-JR TREE so insert your memory sticks in your machine and in the
home directory of the stick you should find a short cut to TREE.exe which if you click on it you should
find that Stat-JR TREE starts up in your web browser.

We now need to change dataset so click on Dataset and Choose and select tutsamp from the list as
shown below:

Change dataset

eusilcA_pop
eusilcA_smp
tutorial

tutsamp Description:  Random sample of exam results

voteleave_pop for six inner London Education
voteleave_sam Authorities

Name: tutsamp

Now click on Use and this dataset will be selected. If we wish to view the dataset then choose View
from the Dataset menu and we get the following in a fresh tab:



Stat-JR:TREE

Unload Download

Dataset name: tutsamp E Duplicate

Data Summary Add variable Delete variable Edit data label Edit value labels
tutsamp (Random sample of exam results for six inner London Education Authorities) (-]
[ schoot student nermexam cons standirt girl schgend avsirt schav vrband
1 ] 1 2 0.134066799995¢ 1 0.205801599595¢ 1 mixedsch 0.1661745 mid vb2 A
2 ] 1 3 -1723882 1 -1.364576 ] mixedsch 0.1661745 mid vb3 |2
3 ] 1 15 2203121 1 2520043 ] mixedsch 0.1661745 mid vb1
4 O 1 20 1.039608 1 -1.199273 1 mixedsch 0.1861745 mid vb3
O 1 30 1.900335 1 2024134 0 mixedsch 0.1861745 mid vb1
6 O 1 68 -0.1290847 1 -0.1248039 0 mixedsch 0.1861745 mid vb2
7 O 1 70 1310142 1 1.693528 0 mixedsch 0.1861745 mid vb1
8 O 1 72 0.896565699999¢ 1 0.867013599999¢ 0 mixedsch 0.1861745 mid vb1
9 O 2 18 220121 1 1.280271 1 girlsch 0.395148899999¢ high vb1
w0 O 2 19 1.439532 1 0.040499 1 girlsch 0.395148899999¢ high vb2
n O 2 2 0.0043218 1 -0.6207128 1 girlsch 0.395148899999¢ high vb2
2 O 2 33 0.3280722 1 1.362922 1 girlsch 0.395148899999¢ high vb1
13 O 2 46 1.109438 1 2189437 1 girlsch 0.395148899999¢ high vb1
1w O 2 47 1.039608 1 1810877 1 girlsch 0.395148899999¢ high vb1
15 [ 3 19 1.813826996995¢ 1 1.197618 ] mixedsch 0.514155389989¢ high vb1
(| 3 20 0.134066799995¢ 1 0.3711048989989 1 mixedsch 0.514155389999¢ high vb2
7o O 3 25 04026686 1 0.288453399560¢ 1 mixedsch 0.514155389999¢ high vb2
(| 3 38 2102875 1 0849665 1 mixedsch 0.514155389999¢ high vb1
19 O 3 42 0.134066799999¢ 1 06190583 ] mixedsch 0.514155389999¢ high vb1
20 [ 4 18 157922 1 0.3711048989989 ] mixedsch 0.0817638 mid vb2
2 ] 4 28 0699504599599 1 -1.188273 ] mixedsch 0.0817638 mid vb3
» O 4 30 -0.1280847 1 06190583 ] mixedsch 0.0817638 mid vb1
23 [ 4 3 01941482 1 -0.0421524 ] mixedsch 0.0817638 mid vb2
24 [ 4 76 1.108438 1 1.858831 1 mixedsch 0.0817638 mid vb1
25 [ 5 02613245 1 0849665 ] mixedsch 0.2105248 high vb1
26 [ 10 01941482 1 05364078 1 mixedsch 0.2105248 high vb2
w7 O 27 -1.219488 1 -0.703364099999 1 mixedsch 0.2105249 high vb2 -
+ T PG s B Columns View 1-30of 40%

Here there are a large number of variables including the variable that we are interested in which is
called normexam. This is the total points score across the GCSE exams for these students but it has
then been transformed by a normalising transformation i.e. the scores have been translated after
sorting to the equivalent quantiles of a standard normal distribution which means it should follow a
normal distribution with mean 0 and variance 1 (actually in practice this was done for the 4,059
students rather than the sample of 400).

Now we also see potential predictor variables for this outcome but here we will use just two: gir/
(which is a born-sex related binary variable taking values of 1 for girls and 0 for boys), and standirt
(which is an intake Reading test score for the students). The idea therefore would be to create a
model that relates the normexam scores to these 2 predictor variables (as well as school) and then
use this model to predict scores for the 3659 students who are not in the sample. In practice we
often cannot identify which specific observations are in the sample so we actually predict scores for
all 4,059 students.

To fit the model we can use the template 2/levelSAEMCMC which we can select by returning to the
original tab and clicking on Template and Choose and selecting from the list thus:



Change template

1-Level 2-Level Binomial Complementarylog-log Customc Data manipulation estat
GenStat_ model JAGS Logit MLwiN_IGLS MLwiN_MCMC MLwiN:point & click Model wnormal
OpenBUGS Poisson Probit Pytth_SCf’ipt R_brms R_hglm R_INLA R_.Ime4 R_MCMCglmm
R_nimble R_RStan R_script SAE SAS_model SPSS_model Stata_model WinBUGS [reset]

2LevelMod -
2LevelSAEMCMC @QName:  2LlevelSAEMCMC

EMDI
Regression1 Description:  Fits 2-level random intercept
Normal model using MCMC to a

sample dataset and uses this
SAEPredictor

with a population dataset to
SAEResponse

create SAE estimates.

Clicking Use, we can then fill the inputs in as follows:



Stat-JR:TREE

Response: normexam  remove
Specify distribution: Normal remove
Transformation: None  remove
Level 2 ID: school remave
Explanatory variables: cons,standlrt,girl  remove
Do you want to calculate poverty related estimates, e.g. Head count ratio?: No  remove

Do you want to calculate inequality related estimates, e.g. GINI index?: No  remove
Number of parallel cores: 6 remove
Population dataset tutorial remove
Number of chains: 3 remove

Random Seed: T remove

Length of burnin: 500 remove
Number of iterations: 2000 remove
Thinning: T remove

Use default algorithm settings: Yes remove
Generate prediction dataset: No  remove

Use default starting values: Yes remove

Name of output results: out remove

Here we see that we have chosen normexam as our response variable of interest and told Stat-JR
that we wish to fit a Normal response variable to an untransformed (choice None) response. We
indicate that the small area indicator (Level 2 ID) in this case is school. We then tell Stat-JR which
predictor variables to use in our small area estimation model which here is cons, standlrt and girl.
Here cons is a column of 1s and is used to indicate we wish an intercept in the multilevel regression
model used within the SAE modelling. Small Area Estimation models are often used with salary data
(see example 2) and so the template can construct various poverty/inequality indices but here as we
have an education example we say not to calculate them. The template in Stat-JR allows parallel
processing to speed up the MCMC estimation so here we will indicate 6 for the number of cores to
use which will be the default in other templates we use later. There are then several estimation
inputs which for now we will use the default values for by clicking on Next twice and typing out for
the name of the output file to use.



All being well the input string given after the inputs in the current input string box will be as follows:

Current input string: {'povind": ‘No', 'L2ID": 'school’, ‘popdata": 'tutorial’, ‘burnin’: '500', 'D":
‘Normal', 'outdata’: 'out’, 'defaultalg": 'Yes', 'transform': ‘None', 'numproc": '6', 'thinning": '1",
'nchains”: '3', 'ineqind": 'No', ‘iterations': '2000', 'y": 'normexam’, 'x": ‘cons,standlrt,girl’,

'makepred’: '‘No', 'seed": '1', 'defaultsv': 'Yes'}

If we then click on Run then Stat-JR will run the model with these inputs. This will involve compiling
the code to fit the model, fitting it using MCMC estimation and producing small area estimates.
When the model has finished running the screen should look something like the following (if you
scroll to the bottom):

Stat-JR:TREE sta n D t emplate ~ (2levelSAEMCMC cBook Ready (23s)

Extra Iterations: m
Download  Make workflow

@Current input string: {povind": ‘No’, ‘L2ID": "school’, ‘popdata’: ‘tutorial’, ‘burnin’: '500', ‘D": ‘Normal’, 'outdata’: ‘out’, 'defaultalg”: ‘Yes', ‘transform’: ‘None’,

@Command: RunStat/R(template="2LevelSAEMCMC', dataset="tutsamp’, invars = {'povind": ‘No’, ‘L2ID": 'school’, ‘popdata" ‘tutorial’, 'D": 'Normal’, ‘transform":
‘Nene', ‘numproc™ ‘6", ‘ineqind’: ‘No', y': ‘normexam’, 'x': ‘cons,standIrt,girl’}, estoptions = {'burnin’: *500", ‘defaultsv’: *Yes', “thinning": *1', ‘nchains™: ‘3", ‘defaultalg:
‘Yes', 'iterations”: "2000', ‘outdata”: ‘out’, ‘seed": '1", ‘makepred": 'No’})

equation.tex E Popout

normexam, ~ N(u,, %)
H; = Pocons; + §standlrt; + B, girl, + ugcpoqgly
Uschoolp ™ N(0,0)
Byl x1
T~ I'(0.001,0.001)
a?=1/t
7, ~ I(0.001,0.001)

gl =1/1,

You will see that to the right at the top it says Ready with a time in seconds and this indicates that
the model running has finished and how long it took. At the bottom of the screen is a pull-down list
of the objects created by the template with one chosen —in this case equation.tex which shows the
model that was fitted to the sample dataset. We can now view some of the other outputs to see
what has actually happened in this template so if you click on the pull down list there are lots of
outputs but if you choose yj_mean_0.svg you should (after a short pause for compilation) see the
following:



Stat-JR:TREE  Start again emplate Ready (23s)

yj_mean_0.svg E Popout
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Here we see some MCMC estimation diagnostics for the estimate of the mean of the first school (the
template counts from 0 rather than 1 when numbering the schools). Essentially the template fits a
model to the 400 pupils in the sample dataset and uses MCMC estimation which consists of a series
of random draws for parameter estimates (from their appropriate posterior distributions) for each of
a series of iterations. At each iteration the template then in addition draws an exam score for each
of the 4,059 pupils in the larger population dataset. For this first school there are 8 pupils who
happen to be in the sample dataset and 73 in the population dataset. So at each iteration the
template is generating scores for the 73 pupils and then it uses these marks to create small area
(school) estimates. So in the plots above we can see in the top left plot 2000x3 estimates (due to the
MCMC running 3 chains in parallel each for 2,000 iterations) of the average score for the first school.
We see that for this school the average score is more often positive although as shown in the Kernel
density plots to the top right there are quite a few occasions when the average is predicted to be
negative.

To better interpret this an estimate that is positive reflects a school where on average pupils do
better than the average pupil in the population and negative means the school does on average
worse than the average of the population. So for this school our estimate is positive meaning better
than average but we are not 100% confident that this is true as for a percentage of iterations the
estimate is negative. These MCMC diagnostics plots are perhaps not the best route to looking at the
estimates and so if we scroll down the list (or type the first letters of the name into the pull down
list) we will find the output ModelParameters which we can choose and which looks as follows (if
we scroll down the list a bit):



Stat-JR:-TREE st a mplate k Ready (235)

yj_mean_0 0.316533897129 0.237608289872 4350 school
yj_mean_1 0.501456730006 0.253187683559 5236 school
yj_mean_2 0.537654455071 0.268914212695 4692 school
yj_mean_3 0.165439731031 0.262690605824 5335 school
yj_mean_4 -0.0516945225604 0.306131994841 5720 school
yj_mean_5 0.894991811121 0.258174601733 3903 school
yj_mean_6 0.0251135570901 0.268574495958 6281 school
yj_mean_7 -0.029342619401 0.198866771299 5917 school
yj_mean_8 -0.379303407137 0.297125398067 5323 school
yj_mean_9 -0.273048569652 0.24097860245 5166 school
yj_mean_10 0447711862132 0.244815478139 5445 school
yj_mean_11 -0.277381844854 0.251136992176 5661 school
yj_mean_12 -0.116270446678 0.232328392736 6914 school
yj_mean_13 -0.161774025396 0.167427437976 4591 schaool
yj_mean_14 0.00851087433954 0.20958001825 6088 school

Here we can see the long list of model parameters and for each 3 summary columns, the mean
which is a point estimate for the parameter, the sd which is the posterior sd, a measure of the
variability in the point estimate and an estimate of the standard error of the parameter and the ESS
which is a diagnostic indicating whether the MCMC estimation has been run for long enough (with
larger values being better).

Here we see that the estimate for the first school (yj_mean_0) is 0.317 with an SD of 0.238 i.e. we
have the positive effect we saw in the diagnostic plot but as the estimate is not bigger than 1.96
times the SD then this effect is not significantly different from 0. The second school (yj_mean_1) has
an estimate of 0.501 with an SD of 0.253 so again the estimate is above average but just about
significant in this case. As we look down the first 12 schools we see that 7 have positive effects, 5
have negative but only school 6 (yj_mean_5) has an effect that is clearly statistically different from 0.
This is perhaps not so surprising as we have data on only 400 children overall in our sample so we
might expect quite a bit of uncertainty.

Within this ModelParameters output we can scroll down and find other small area statistics for our
schools. So here we have scrolled down as shown in the screen shot next until we have come across
the estimates for the 10™ percentile for each school. These are estimates of the mark below which
we would expect to find only 10% of children in the school and above which we would find 90%. The
template constructs these estimates by at each iteration taking the estimated scores for all the 4,059
children and for each school taking its children’s score sorting them and finding (often with some
interpolation) the score that is in the 10" percentile position.



Stat-JR:-TREE  Start again emplate ~ (2levelSAEMCMC ' cBook Ready (23s)

yj_q10.0 -0.917790189349 0.287851057652 4949 school
yj_q10_1 -0.752933277924 0.308765959078 5173 school
yj_q10_2 -0.620349839012 0.320450962779 4513 school
yj_q10_3 -1.0498336023914 0.303434527439 5076 school
yj_q10_4 -1.103446369279 0.349510205721 5949 school
yj_q10.5 -0.245795880009 0.298255693625 3668 school
yj_q10_6 -1.110460911428 0.300379196323 6229 school
yj.q10_7 -1.269619302827 0.239237210242 6123 school
yj_q10_8 -1.66022079083 0.373275950013 4994 school
yj.q10_9 -1.359071975246 0.288197575481 5903 school
yi_q10_10 -0.746883090595 0.292332910949 5244 school
yj.q10_11 -1.418901119832 0.303558516839 6373 school
yi_q10_12 -1.345755007167 0.279534789083 6612 school
yj.q10_13 -1.358426475526 0.191706707885 5150 schaool
yi_q10_14 -1.12598941459 0.245512380575 6651 school

Here perhaps unsurprisingly we see negative values for all schools as it would be an unusual school
that had 90% of its children doing better than the national average. The closest of the schools here is
school 6 (yj_g10_5) which has a 10" quantile estimate of -0.246 which is only slightly negative.

There are many other small area statistics that are calculated but at this point you are perhaps
wondering why you are having to look at such an untidy output object and why we have not
improved on this output. In fact this template, 2LevelSAEMCMC, is something of a building block and
we have improved outputs in a second template called SAEModel.

Using the SAEModel template

One feature of Stat-JR is that we can use templates as building blocks to produce further templates.
The 2LevelSAEMCMC template is a powerful template in terms of flexible model fitting but is
primarily designed for just the model fitting. We are therefore now going to move onto a second
template called SAEModel which is a type of template that we call a “super” template in that it calls
other templates from within its code and pieces the outputs together. In this case SAEModel will call
2LevelSAEMCMLC to do the model fitting but then will do some work to make the outputs more
intelligible. This template has primarily been developed to be used within the SAE eBook that we will
come on to later when we discuss the DEEP interface to Stat-JR.

To get started we need to switch templates so click on Templates and Choose and select SAEModel
from the list



Change template

1-Level 2-Level Binomial Complementarylog-log CustomC Data manipulation estat
GenStat_model JAGS Logit MLwiN_IGLS MUwiN_MCMC MiwiN:point & click Model Normal
OpenBUGS  Poisson  Probit PythOﬂ_SCl’ipt R_brms R_hglm R_INLA R.Ime4 R_MCMCglmm
R_nimble R_RStan R_script SAE SAS_model SPSS_model Stata_model WinBUGS [reset]

2LevelMod -
2LevelSAEMCMC WBName:  SAEModel
EMDI
Regression1 Description:  Uses the 2LevelSAEMCMC
SAEData template to fit SAE models

SAEMadel using MCMC and constructs lots

SAEPredictor

of related graphs for use in the
SAEResponse

SAE eBook.

Clicking on Use will allow us to now use this template and specify inputs for it. The screen will
initially look as follows:
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Stat-JR:TREE

Ready (235)

Population dataset:

Response variable:

Specify distribution:

Transformation:

Common ID variable:

Common predictor variables

Do you want to calculate poverty related estimates, e.g. Head count ratio?:

Do you want to calculate inequality related estimates, e.g. GINI index?:

Random Seed:

Number of chains:

Length of burnin:

Number of iterations:

Thinning:

Parallel cores for predictions:

tutorial remove

Normal remove

None  remove

school
student
normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

Ne  remove

No  remove

T remove

500 remove

2000

Next

@Current input string: {povind": ‘No’, ‘popdata’: tutorial’, ‘seed" *1", ‘burnin’: ‘500", ‘'D": 'Normal’, ‘transform": '"None’, ‘ineqind’: ‘No'}

@Command: RunStat/R(template="SAEModel", dataset="tutsamp’, invars = {‘povind" ‘No’, ‘popdata" ‘tutorial’, ‘burnin’: ‘500", 'D": ‘Normal’, ‘transform: "None’,

‘seed: 1", 'ineqind": 'No'}, estoptions = {})

Here you will see that some inputs have been filled in for us and it is the case when templates share
the same input names as each other that they are transferred across. We will here have to fill in the
ones that are missing and one distinction here from the last template is that this template will
automatically add an intercept into the model so we do NOT add cons in the predictor list. So now

we fill in the missing inputs as follows:
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Stat-JR:TREE

tutsamp SAEModel

Population dataset:

Response variable:

Specify distribution:

Transformation:

Common ID variable:

Common predictor variables

Do you want to calculate poverty related estimates, e.g. Head count ratio?:

Do you want to calculate inequality related estimates, e.g. GINI index?:

Random Seed:

Number of chains:

Length of burnin:

Number of iterations:

Thinning:

Parallel cores for predicticns:

Ready (0s)

tutorial remove

normexam remove

Normal remove

None  remove

school remove

standlrt,girl remove

No  remove

No  remove

T remove

3 remove

500 remove

2000 remove

T remove

6 remove

@Current input string: {'povind’: 'No', 'niter': '2000", 'popdata*: 'tutorial’, 'burnin’: ‘500", 'D": 'Normal', 'pred": 'standlrt,girl', ‘resp': 'normexam

‘transform’: *None’, ‘'seed”: '1", "thin’: "1, *idcol’: ‘school’, ‘'nproc’: '6', "ineqind’: "No'}

', 'nchain® '3,

©@Command: RunStat/R(template="SAEModel’, dataset="tutsamp’, invars = {'povind": 'No’, ‘niter’: ‘2000, ‘popdata’ ‘tutorial’, ‘burnin: "500", 'D": ‘Normal’, ‘pred":
‘standlrt,girl’, ‘resp’: ‘normexam’, ‘nchain® '3', ‘transform’: ‘None’, 'seed” '1*, ‘thin*: '1", ‘idcol: ‘school’, ‘nproc”: ‘6", ‘ineqind": ‘No'}, estoptions = {})

When this is done we click on Run and we can wait for the model fitting to be executed. This will
finish when the counter to the top right changes to Ready with an execution time. We can next scroll
to the bottom of the screen and see what outputs this template produces.

First if we select prediction_summary from the list we will see the following:

12



Stat-JR:TREE

prediction_summary E Popout
Code Name Sample mean Sample sd Population mean Population sd

1 school==1 0.7038589749999999 1.1784082709404249 0.31653389712858876 0.9790783120537278
2 school== 1.0206821666666668 0.7181607901940569 0.5014567300062268 0.999981942978715
3 school==3 0.9175208400000001 0.8603882370805532 0.5376544550708034 0.9235885993671615
4 school==4 0.41084350000000003 0.8275857168224304 0.1654397310311137 0.9672913736260003
5 school==5 -0.2546707666666667 0.6827783711115262 -0.051694522560401406 0.8555384084493256
6 school== 1.3087024333333335 0.5114860974716117 0.8949518111214044 0.8052119389180522
7 school==7 0.267959625 0.33745926518343194 0.0251135570900555 0.9142818444949465
8 school== -0.109044075 0.8701009530402686 -0.029342619400953188 0.993871882347211
2 school==9 -0.8049013666666668 0.9612966325666958 -0.3793034071369808 1.008274456999396

10 school==10 -0.6745578 0.5067262255351306 -0.2730485696517508 0.8740106700221169

11 school==11 0.6459189571428571 0.3467591844268578 0.44771186213212466 0.9455901668640496

12 school==12 -0.8433703857142856 0.4316742698183118 -0.2773818448540265 0.9092923358678555

13 school==13 -0.3199274875 1.2036705084889991 -0.11627044667796095 0.98246969987247

Here we see the results for the different schools (and this list now uses the actual codes of the

schools rather than a list starting at 0). In the Name column if the dataset had names we would see
them here (see the second example later) but here we simply have the numbers converted to names
e.g. school==1. There are then 4 columns of small area statistics, the third column population mean
is one that we have seen already and happily we see the estimated value of 0.317 for school 1 we
have seen earlier. The column to the right, population sd is as it suggests an estimate of the standard
deviation of scores in school 1. Note this is different from the posterior sd for the mean we saw
earlier which is in fact an estimate of the standard error of the mean and NOT the standard
deviation for the school.

The two columns on the left are useful comparisons and are alternative estimates that are derived
direct from the sample data. In other words the sample mean is simply the mean of the data
observed in the sample and the sample sd is the standard deviation of the data observed in the
sample. To see this more clearly we can scroll down and look at some of the later schools:
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Stat-JR:TREE st

32 school==32 -1.166238525 0.6168891778022102 -0.48012174794474294 1.0052836252636996
33 school==33 0.0035803000000000176 0.48506328588251935 0.04972995306207842 0.9007156348494285
34 school==34 -1.3400037666666667 1.4459588110512378 -0.6200104329275593 1.0625424984898353
35 school==35 0.967586 0.0 -0.02742741405466538 0.8671431277642286
36 school==36 -0.8677564666666667 0.42808543098113283 -0.10423636336743604 1.0205936908656847
37 school==37 -0.5060031333333334 0.7217084419371456 -0.4759497119762769 0.9725575311768185
38 school==38 -0.6624588124393999 0.7083206169786258 -0.33807948189978637 0.9871675752872652
39 school==39 -0.45629109999999995 0.036489699999999986 0.0963478282163559 0.9947618075609923
40 school==40 -0.12867554285714286 1.2386382599281348 -0.20675558130060434 0.8731572191441298
41 school==41 0.5473776 0.7687674059332293 0.1467976905530337 0.9347354674877779
42 school==42 0.0030751444444444154 0.6539100101830748 -0.058575712190500485 0.9113576537858707
43 school==43 -0.21622976000000005 0.8649633704670983 0.10913985776264233 0.8820505858812543
44 school==44 -0.2355532198440012 1.0218701223109232
45 school==45 -0.4259434125 1.0383986249450925 -0.2509225176675793 0.9386023937438233
46 school==46 -0.8668423000000001 1.1625589961379406 -0.15926512875129875 0.9180800069714735

Here we see for school 35 that the estimated SD is 0 and this occurs as we only have 1 pupil in the
sample for this school. Even worse we see no estimates for school 44 and this is because there are
no pupils at all in the sample for this school. Here we see a clear advantage therefore of the model-
based small area estimation approach in that we can borrow strength from the relationship between
predictors and the response in the sample as a whole to construct small area estimates for schools
that are not in the sample. So in this case although we have no responses for school 44 we do have
predictor variables (gender and standirt) for this school and these allow us to predict that the school
is likely to have an average score that is below average. We can also look at schools where the
sample and population estimates are very different for example school 34 where the sample data
gives a large negative estimate of -1.346 whilst the model gives an estimate of -0.620 which is closer
to 0. In fact only 3 of the 26 pupils in this school are in the sample and these 3 have scored less on
average than the other 23 (and if we had access to the scores for all 26 pupils the average is -0.371).
We'll look at this in more detail later.

The SAEModel template has a small group of outputs which are constructed from the parameter
outputs in the 2LevelSAEMCMC template. If we next look from the pulldown list at sae_mean.svg
and click on the Popout button to put it in a new tab we will see the following:
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Stat-JR:TREE

15 Prediction for normexam (mean)

1.0}

051

0.0

normexam

-1.0}

-1.5

school

Here we see the (mean) estimates for all 65 schools along with confidence intervals for each
estimate. For the first school we can see the mean estimate is 0.316 as in the earlier template with
an SD that results in a confidence interval that overlaps with 0 as expected and as earlier the second
school confidence interval doesn’t quite overlap with 0.

We can also see visualisations of other small area estimations, for example the quantiles that we
looked at earlier can be visualised in sae_quantiles.svg (and popped out) as shown below:
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Stat-JR:TREE

Prediction for normexam (quantiles)

normexam

10% quantile
25% quantile
50% quantile
75% quantile
90% quantile

20 30

40 50
school

70

Here we see a whole selection of quantiles in different colours for the different schools. Note we

previously looked at the 10" quantile which is to the bottom of the screen in dark blue.

Although the graph is pretty it is perhaps hard to focus on the results for a specific school so the plot

has a complementary table with the specific numbers, sae_quantilestable

Stat-JR:TREE

sae_quantilestable E
Code Name
1 school==1

2 school==2

3 school==3

4 school==4

5 school==5

6 school==6

7 school==7

8 school==8

9 school==9

10 school==10

1 schoal==11

tutsamp

Popout

Q1o

-0.917790189349

-0.752933277924

-0.620349839011

-1.0498336023914

-1.103446369279

-0.245795880009

-1.110460911428

-1.269619302827

-1.66022079083

-1.359071975246

-0.746883090595

SAEModel

Q25

-0.338087787345

-0.166797507793

-0.0716570388607

-0.482530629532

-0.623535201941

0.288469764615

-0.58821805526

-0.693412132308

-1.0328954481852

-0.859070830717

-0.184929397398

Q50

0.318846826762

0.505826287368

0.543281595799

0.159375433483

-0.0608983493222

0.892353437662

0.00772585073799

-0.0469929780717

-0.336955532651

-0.279196212381

0.449816512224

Ready (20s)

Q75

0.975459300687

1.181833770689

1.15481055129

0.811979353199

0.509180576512

1.502488500836

0.618950907227

0.616646853406

0.308903381021

0.305700852465

1.085267848088

Q9o

1.55304170335

1.757669648773

1.689712261361

1.39085928787

1.0104968328507

2.0407744198522

1.188380770149

1.22927226362

0.841136446509

0.820832028864

1.63491032074

Here it is easier to focus in on specific schools which each have a row in the table so for example
school 1 has an inter quartile range from -0.338 to 0.975. This template can produce several other
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visualisations and tables constructed from the small area estimates but we will discuss these when
we move on to the eBook interface later.

The SAEPredictor template

Before moving on to the eBook interface we will first look at one of the other SAE templates, that is
in fact used in the SAE eBook. If you recall when we looked at the SAEModel template we observed
that for some schools the small area estimate from the model is rather different from that from the
direct estimate from the data. One possible reason for this may be that the children from the school
in the sample are not typical children from the school as a whole. We can investigate this by looking
at the data we have both the sample and population i.e. the predictors. To do this we use the
SAEPredictor template.

First therefore Choose this template from the Template list as shown:

Change template

1-level 2-Level Binomial Complementarylog-log CustomC Data manipulation estat
GenStat_model JAGS Logit MLwiN_IGLS MLwiN_MCMC MLwiN:point & click Model nNormal
OpenBUGS  Poisson  Probit Pythonfscript R_brms R_hglm R_INLA R_lme4 R_MCMCglmm
R_nimble R_RStan R_script SAE SAS_model SPSS_model Stata_model WinBUGS [reset]

2LevelMod -
2LevelSAEMCMC ®eName:
EMDI
Regression Description:  Explores predictors variables for
SAEData SAE models and is used in the
SAEModel SAE eBook.

SAEPredictor
SAEResponse

SAEPredictor

Now clicking on Use we see that the template inputs are all filled in apart from the predictor to
choose so select standlrt and press Next and Run. This template produces several objects related to
the predictor we choose but for now we will focus on the summary object. Choosing this gives us an
output list of the sample and populations statistics for the predictor. Previously we had identified
school 34 as one where the estimates from the modelling approach and direct approach were rather
different. If we scroll down to see this school we see the following:

Stat-JR:TREE tutsamp SAEPredictor Ready (75)
30 school==30 0.701710833333 1.521026560212 0.26877450464 1.138387607328
31 school==31 -0.909992675 0.843895155463 -0.490831764681 0.683603828084
32 school==32 -1.67451875 0.122242900116 -0.650231011921 1.107832242383
33 school==33 -0.08347815 0.315630467728 0.075921094166 0.829560487588
34 school==34 -0.5656117 0.675970203163 -0.360042648247 1.337180965223
35 school==35 1.610877 0.0 -0.120453806888 0.759633521739
36 school==36 -1.529878766667 0.912915318112 -0.0964662359229 1.171943705776
37 school==37 -0.951318333333 0.766477889595 -0.755960478701 1.0884077659865

Here we see that the sample of pupils for school 34 had average standlrt score of -0.566 whilst the
larger population had average score -0.360. The sample is therefore of lower average intake score
than the population more generally. However this is actually not as dramatically different as many of
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the other schools. In fact it might also be that the sample simply have unusually low scores in the
response compared to the population regardless of the predictor.

We will end our exploration of the TREE interface here and now move onto the DEEP eBook
interface to Stat-JR next. In reality the eBook interface is meant to be self-contained and not need
instructions but here we will simply link what it shows to what we have learnt in this earlier section
by looking at templates directly in TREE.

The SAE eBook in DEEP

The DEEP eBook interface is a second interface into the Stat-JR package which shares much of the
underlying functionality in terms of Stat-JR templates that perform specific functions. It however
uses eBooks that the user can write which embed the templates and the output objects they
produce into an electronic book which wraps them in explanatory text and positions them in a
sensible way.

To run DEEP look in the home directory of the memory stick and double click on the shortcut for the
file DEEP.exe

The DEEP starting screen looks as follows:

Stat-JR:DEEP  Import

Your E-Books: About:
8 Author
Created at
Description
Continue reading: OR Start a new reading:
- New reading process name:

Brief description:

.
Start reading

To begin with we need to Import the eBook so to do this we click on Import and then on the green
Select an E-Book file button. In the window that appears find the file ExploreSAE.zip (from the
ebooks subdirectory of the home directory of the memory stick) and click on Open.

The screen should then look as follows:
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Import E-Book

eBook structure checking result

Errors:

The ResourceBinding (urn:uuid:e0512bf2-e2a6-4f35-93c5-da3be1b88fbc#template0-template2-dataset),
associated with ActivityRegion (urn:uuid:e0512bf2-e2a6-4f35-93c5-da3be1b88fbc#activityregion0), is not
defined.

The ResourceBinding (urn:uuid:e0512bf2-e2a6-4f35-93c5-da3be1b88fbc#template0-template 1-dataset),
associated with ActivityRegion (urn:uuid:e0512bf2-e2a6-435-93c5-da3be 1b88fbc#activityregion0), is not
defined.

The ResourceBinding (urn:uuid:e0512bf2-e2a6-4f35-93c5-da3be1b88fbc#template0-template4-dataset),
associated with ActivityRegion (urn:uuid:e0512bf2-e2a6-435-93c5-da3be 1b88fbc#activityregion0), is not
defined.

The ResourceBinding (urn:uuid:e0512bf2-e2a6-4f35-93c5-da3be1b88fbc#template0-template3-dataset),
associated with ActivityRegion (urn:uuid:e0512bf2-e2a6-435-93c5-da3be 1b88fbc#activityregion0), is not
defined.

Warnings:

No warning

Continue Uploading | Cancel Upload

These error messages are nothing to worry about as it is simply the software telling us we haven’t
yet loaded up datasets on each page of the eBook (which is done when the eBook is run) so click on
Continue Uploading and Continue. The eBook will then be loaded and appear in the list of eBooks at
the top left. If we click on it then information about it will appear in the top right and we can then
type a (reading process) name (e.g. test) in the bottom right as shown:

Stat-JR:DEEP

Your E-Books: About:
8 Author Chris Charlton and Bill Browne

Created at Thu Feb 21 17:18:31 2019
Description  Explores small areas

estimation with MCMC and
the EMDI R package

Delete ebook

<

Continue reading: OR Start a new reading:

-~ New reading process name:

test

Brief description:

.
Start reading
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Clicking on the green Start reading button next will allow us to start reading the eBook which will
appear as follows:

Stat-JR:DEEP  Upload

Small Area Estimation

Finished
« 2 3 4 5 » Go to page

I he d
celect he da Select the data

Exploring the response
Exploring the predictors Here we will choose the data to explore

Estimating the model

with MCMC

Estimating the model Sample dataset: E
with EMDI

Population dataset: E

about

Here we see that the eBook has 5 pages. The first page which we see is simply used to identify the
datasets that we will use in our SAE modelling. The other pages have a logical order in that pages 2
and 3 allow us to explore the dataset before we begin modelling. The modelling using MCMC is done
on page 4 and then finally on page 5 we can do similar modelling using a different method using the
EMDI package from R. We will begin by entering the datasets so as with our previous work in TREE
our sample dataset is tutsamp whilst out population dataset is tutorial. If we input these options and
press the green Submit button then the progress indicator (in the top left) will briefly indicate
activity before returning to saying Finished and the screen will look as follows:

Stat-JR:DEEP  Upload

Small Area Estimation

Finished
« 2 3 4 5 » Go to page

I he d
celect he dats Select the data

Exploring the response

Exploring the predictors Here we will choose the data to explore

Estimating the model

with MCMC

Estimating the model Sample dataset: tutsamp  change
with EMDI

Population dataset: tutorial  change

about

We can next move onto page 2 and do some exploratory work on the response variable of interest.
Clicking on the blue 2 will move us on to page 2 and we will see that this page first gives some
background text as shown below.
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Stat-JR:DEEP

Finished

Select the data
Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

Small Area Estimation

<<13451>

Exploring the response

Welcome to the statistical analysis assistant for Small Area Estimation. Small area estimation refers to statistical modelling where the purpose
is to find estimates of a function of a variable/quantity for each of a set of groups (areas) which the population as a whole can be subdivided
into.

‘ Go to page

For example we might be interested in the average salary of individuals for each postal code area or the proportion who are likely to vote for a
particular political party in each constituency. Here the population might be the whole country but this can then be subdivided into post code
areas and constituencies respectively. In the first example of salaries we may not only want to estimate the mean but also other quantities for
examples percentiles (e.g. what is the 90% percentile or the salary above which only 10% of the area earn) and what percentage of the area are
in poverty (perhaps defined by the proportion of individuals earning below a threshold)

In this SAA we will particularly be concerning ourselves with unit level models. For a unit level model we require 2 datasets — a sample dataset
and a population dataset. The sample dataset contains a sample of individual from some (but not necessarily all) of the groups in the
population and for each individual the variable of interest which we will call Y (e.g. salary, voting intention) is collected along with a lot of other
variables which we will call X that might be thought to predict the variable of interest (e.g. gender, benefits, family size).

The second population dataset contains records for the WHOLE population i.e. everybody in all groups. This dataset contains the same
predictor variables X but here the variable of interest Y is absent. The rationale for the unit level model is therefore to fit a (multilevel)
regression model to the Y in the sample dataset to investigate the relationship between Y and X. We then use this model to predict the values
of ¥ for the WHOLE population using the population dataset and then use the estimated Y produced to estimate small area quantities (e.g.
means, proportions and percentiles) for each small area.

We will first take a lock at the response variable that we wish to estimate at our small areas. We will on this page look at some summary
information about this variable and also consider whether the variable needs transforming. We often transform variables so that we can fit a
Normal response model and assume normality for the residuals. So firstly we ask for the name of the response variable and a value for the
parameter lambda used in the Box Cox transformation later.

Response variable: E

Commen ID variable: E

Lambda parameter for response tranformation:

When you come to fit models for small area estimation you will be allowed to choose between these possible transformations and so it is
worth looking at the shapes of the histograms here. However it is also worth noting that although the multilevel models used in small area
estimation make normality assumptions it is the residuals from the models rather than the responses that should be normally distributed. That
said skewed responses often lead to non-normal residuals.

about

We then have some boxes to fill in and we will choose normexam as the Response variable, school/
as the Common ID variable and for now 0.5 for the Lambda parameter value which is used to show
a particular transformation later. Clicking on Submit and the rest of the page is updated to take
account for the inputs.

The page first looks at what proportion of the population is contained in the sample:
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Stat-JR:DEEP

Small Area Estimation

Finished .
« 1 @l 3 4 5 »

Select the data In your dataset the small areas are represented by the variable name school and there are 4059 individuals in the population that
come from 65 areas in total. The sample dataset has 400 individuals in total (9.85% of the population) with individuals in the

‘ Go to page

Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model

sample coming from 62 areas.
P 9 about

In the table below we will lock at how representative the sample is of the population in each small area. The larger percentage of the

population that is in the sample the more confidence we will have in our small area estimates and the less we will have to use the response -

predictor variable relationships across all areas to estimate those small area estimates.

with EMDI
Code Name Nsamp Npop %
1 school==1 8 73 10.96
2 school==2 6 55 10.91
3 school==3 5 52 9.62
4 school==4 5 79 6.33
5 school==5 3 35 8.57
6 school==6 6 80 7.50
7 school==7 4 a8 4.55
8 school==8 12 102 11.76

Here we see that the sample contains nearly 10% of the population. We also see that in fact 3 of the
schools in the population have no data in the sample. This is expanded upon in the table which
shows the relative sizes of the sample and population for each school. Scrolling down we next look
at how important the clustering is in the response and as we see below it reports the variance
partitioning coefficient (VPC):

Stat-JR:DEEP U

Small Area Estimation

Finished
« 1 2 EERE 5 »

When we look at normexam in the sample dataset there is variability in the average response across the small areas that we are
estimating values for. It is important to estimate how much variation in the response is between small areas and how much is
within small areas and this is done with a statistic called the VPC. Here the VPC is 0.23. This means that 23% of the variation in
normexam is between small areas and therefore due to differences across areas. These differences may be explained by the

Estimating the model predictor variables in our later modelling.
with MCMC about

Estimating the model
with EMDI

‘ Go to page

Select the data
Exploring the response
Exploring the predictors

We next look at the shape of the response variable to see whether it needs transforming. First we look at the response itself as shown in the
histegram below.

Frequency

about

Here we see that 23% of the variability in exam score is due to school differences in the sample
suggesting that multilevel modelling is important in the modelling we do later. We next look at the
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shape of the response which as the data has been normalised looks unsurprisingly a good fit to a
normal distribution. This is confirmed by a skewness statistic and if you look further down you will
see similar plots for three possible transformations of this variable — a log transform and Box-Cox
and Dual Power transforms with a specific value of the lambda parameter in each case (0.5 which we
input). We will omit showing these here for brevity in particular as the data on the original scale
looks reasonably normal.

We will next move onto page 3 of the eBook which allows us to explore the potential predictor
variables in more detail. So click on the blue 3 and you will be taken to the following screen:

Stat-JR:DEEP U

Small Area Estimation

Finished
« 1 2 EN 4 5 =

| Go to page
Select the data . .
Exploring the response Explorl ng the pred ICtO rs
Exploring the We will use predictor variables that are present in both the datasets so that we can use the relationship that we find between our response and
predictors the predictors in the sample dataset to predict the response for the population dataset. It is therefore good to lock at the predictors in more
Estimating the model detail before we start modelling. Here you can look at one predictor at a time so in the pull down below choose a predictor to investigate.
with MCMC
Estimating the model .
with EMDI Common ID variable: E
Predictor variable E

We can also superimpose the population and sample in the same plot to investigate the closeness of their distribution for this variable. This is
shown below with the populaticn in blue and sample in green.

about

We will be fitting a multilevel model as part of the SAE modelling and so it is also interesting to look at how much of the variability in the
predictor variables is due to differences between small areas.

Here we get some instructions and we need to again input the Common ID variable (school) as well
as this time a chosen Predictor variable for which we will start with standirt. This page actually sits
on top of the SAEPredictor template we discussed earlier and thus the outputs on this page come
from that template. If we click on the green Submit button the page will now be populated with
outputs that refer to these inputs.

For predictor variables we have data for both the sample and population so we can look at how
representative the sample is in several ways. To start with we look at the whole datasets as shown
below:
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Stat-JR:DEEP

Small Area Estimation

Finished
« 1 2 NEM 4 5 = ‘ Go to page
Select the data We can start by looking at the distribution of standlrt in the sample dataset (as a whole) and the population. In the plots below
Exploring the response we can see to the left the population and to the right the sample data with superimposed a best fitting normal curve. Although

the normality assumption in our modelling is not related to the predictors we might still want to transform them if they are
skewed as in this case outlying data points might have significant influence on the relationship used in the SAE modelling. Note
also that if the predictor variable is categorical this plot may be less informative Here aside from some areas having no sample
data we can look and see how representative the samples in other areas are of the population.

Exploring the
predictors
Estimating the model

with MCMC about
Estimating the model
with EMDI .
Population N Sample
T I
standirt ) ) i standirt V ’
about

Here we see two histograms, one for the sample and one for the population which don’t look wildly
different. To aid in comparison we next superimpose one on the other:

Stat-JR:DEEP

Small Area Estimation

Finished
<« 1 2 4 5 =

We can also superimpose the population and sample in the same plot to investigate the closeness of their distribution for this variable. This is
Select the data shown below with the population in blue and sample in green.

Go to page

Exploring the response
Exploring the
predictors [ Population ] Sample
Estimating the model

with MCMC ' ' ' ' ' '
Estimating the model w
with EMDI

Percentage

L !
standirt

about
We will be fitting a multilevel model as part of the SAE modelling and so it is also interesting to look at how much of the variability in the

predictor variables is due to differences between small areas.

Here for the predictor variable standlirt the VPC is 0.08 in the population dataset and 0.1 in the sample dataset. about

Here we can see strong overlap between the sample and population we also see in the box below
that in both the sample and population there is clustering of the predictor within schools with
schools explaining 9% of the variability in each case. We next look at summary statistics for each
area:
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Stat-JR:DEEP

Small Area Estimation

Finished
« 1 2 3 K 5 »

Select the data We will next look at the data in the individual small areas, and in particular the mean and standard deviation of the variable
standlrt for both the sample and the population dataset. Here aside from some areas having no sample data we can look and see
how representative the samples in other areas are of the population.

‘ Go to page

Exploring the response

Exploring the about
predictors
Estimating the model
with MCMC Code Name Sample mean Sample sd Population mean Population sd
Estimating the model
with EMDI 1 school==1 0.58 1.36 0.17 1.05

2 school==2 0.98 0.96 0.40 112

3 school==3 0.69 0.34 0.51 0.88

4 school==4 032 0.99 0.09 1.00

5 school==5 0.26 0.70 0.21 0.71

6 school==6 0.67 048 0.64 0.85

7 school==7 0.39 1.00 -0.03 0.87

8 school==8 -0.14 1.10 -0.04 1.10

9 school== -1.12 1.14 -0.49 1.14

10 school==10 -0.18 0.85 0.19 0.75

Here we see the differences in mean and sd between the sample and population as we saw earlier
only now the data has been tidied up and rounded to 2 decimal places. Finally we also show the
distribution of the data for each school both in the sample and population in a stacked boxplot
shown below:

Stat-JR:DEEP

Small Area Estimation

Finished
< 1 2 EEM4 5 = ‘ Go to page
Select the data We can also look at the distribution of the predictor standlrt for the sample and population in each district as shown in the
Exploring the response following plot: about
Exploring the
predictors
Estimating the model Sample I Population

with MCMC
Estimating the model
with EMDI

school==65
school==64}
school==63 |
school==62 |
school==61}
school==60 |
school==59 |
school==58
school==57}
school==56 |

school==55|

school==54 | 1

Here we see the degree of overlap for each school with sample data in pink and population data in
green. We can also see for example that school 63 only has 1 data point in the sample while school
54 doesn’t have any.
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MCMC Modelling in the eBook

If we now move onto page 4 by clicking on the blue 4 at the top of the screen we finally begin the
SAE modelling properly. This page in effect sits on top of the SAEModel template we looked at
earlier and all outputs will come from that template. The page initially requires a series of inputs and
these should be input as follows:

Stat-JR:DEEP

L . .

e o

Small Area Estimation
Running Python_script

« 1,2 3 5 = ‘ Go to page

Select the data - - -
froloring e esponse ESTIMating the model with MCMC
Exploring the predictors Now that we have looked at the response and predictor variables we will next fit a small area estimation model. Here we fit a multilevel model
Estimating the model to the sample dataset and then use the same model to predict the response in the population dataset and thus have predictiens for all
with MCMC individuals in the population. From these predictions we can form small area statistics by using the predicted values for individuals in each
Estimating the model small area.
with EMDI

In order to fit the model we here have to reinput the response variable and all of the predictors we wish te use in the estimation. We are also
given the choice of whether to fit a medel to the original response or to use a logged or Box-Cox transformation. To start the model running
make these selections from the box below. Note that we are using MCMC estimation which will not only give us small area estimates but also
Bayesian credible intervals. It is however a computationally intensive procedure and so this page will take seme time to run.

Response variable: normexam

change
Specify distribution: Normal  change
Transformation: None change
Common ID variable: school change

Common predictor variables standlrt.girl  change

Do you want to calculate poverty related estimates, e.g. No

change
Head count ratio?:
Do you want to calculate inequality related estimates, e.g. No change
GINI index?:
Random Seed: 1 change
Number of chains: 3 change
Length of burnin: 500 change
Number of iterations: 2000 change
Thinning: 1 change
Parallel cores for predictions: 6 change

about

Here as you can see to the top left on clicking submit for the last input the eBook begins running the
code (Python_script) to do the SAE modelling. This will take a while compared to the computation on
earlier pages and you will need to be patient at this point. When estimation is complete the
indicator in the top left will change to indicate this though because the SAEModel template does
several operations including the model fitting you will observe the page will update in stages while
the script is still executing so for example the equations and estimates of the model being fitted to
the small dataset are shown first:

26



Stat-JR:DEEP

Small Area Estimation

Finished
« 1 2 3 5 = ‘ Go to page
The model being fitted is:
Select the data
Exploring the response
Exploring the predictors normexam, ~ N(u,, 52)
Estimating the model u; = B, intercept; + f,standlrt; + B, girl, + Uschooly
with MCMC 2
u, ~ N(0,03)
Estimating the model scheoli “
with EMDI Forn By
7 ~ T(0.001, 0.001)
al=1/t
7, ~ T(0.001, 0.001)
ol =1/1,
about
The estimates for this model are as follows:
Parameter Variable Mean sD ESS
beta_0 Intercept -0.09195533 0.08193356 1897.
beta_1 standlrt 0.5846544 0.038422 4184,
beta 2 girl 0.1440423 0.08370726 3117,

Here we see a positive effect for standlrt (0.585, with a very small SD (0.038)) indicating that the
earlier London Reading test is a very important predictor of exam score. We also see a positive effect
for girl which indicates that girls do on average 0.144 points better than boys. This model will then
be used to predict exam scores for all 4,059 pupils for each iteration. When the model finishes
running we also observe some residual plots to assess model fit but we ignore these for now and
scroll down to look at the small area estimates.

We can first see the mean and sd estimates, both directly from the samples and based on the MCMC
modelling as shown below:
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Select the data Code Name Sample mean Sample sd Population mean Population sd
Exploring the response
Exploring the predictors 1 school==1 0.70 118 0.32 0.98
Estimating the model
with MCMC 2 school==2 1.02 072 0.50 1.00
Estimating the model hool
with EMDI 3 school==3 0.92 0.86 0.54 0.92
4 school==4 0.41 0.83 0.7 0.97
5 school==5 -0.25 0.68 -0.05 0.86
6 school==6 1.31 0.51 0.89 0.91
7 school==7 0.27 0.34 0.03 0.91
8 school==8 -0.11 0.87 -0.03 0.99
9 school==9 -0.80 0.96 -0.38 1.01
10 school==10 -0.67 0.51 -0.27 0.87
1 school==11 0.65 0.35 0.45 0.95
12 school==12 -0.84 043 -0.28 0.91
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These estimates we have already seen earlier when we looked at the SAEModel template and the
only difference here is that the table has been tidied up by reducing the number of decimal places.

We next look at boxplots produced by each method which allows us to compare estimates from the
modelling to the samples we had originally.

Stat-JR:IDEEP  Upload

Small Area Estimation

Finished
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‘ Go to page

Select the data | Sample I Population

Exploring the response

Exploring the predictors

Estimating the model hool==65 [pp—— e E——

with MCMC school==6s> - T - - -

Estimating the model school==64} ‘:7 M 4:::1_71

with EMDI school==63 | - ———I -—- +
school==62| L0 ' ',_E- Tt
school==61} . ____w-IZIII:::_ :' *
school==60 | R _—_ _____ .
school==59 o
school==58 T T
school==57} —_ et
school==56 o
school==55| AR 7":; T
school==54| - -i—
school==53} o L T
school==52} 7777 -‘_7_5‘ ,

The page continues with several more plots and tables including the error bar plots for the means
and then the plot and table for the quantiles all of which we saw earlier when we looked at the
SAEModel template.

You might like to think about other possible predictors e.g. school gender, VR band that are available
and what impact they have on the modelling we have done here though you will need to specify that
they are categorical when you add them as predictors.

Modelling using EMDI

On page 5 we can look at an alternative modelling approach using a software package called EMDI
which is run within the R package. Stat-JR has interoperability functionality which allows it to directly
call the EMDI package in R and bring back the outputs. We will do this next by clicking on the 5 to
turn to page 5 and to specify the inputs as follows:
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Running R_script
« 1 2 3 4 I> ‘ Go to page
Select the data . . .
fxploring e responce ESTIMAting the model with EMDI
Exploring the predictors For comparison we can also fit models using interoperability with the R statistical software and the emdi package. The emdi package only fits
Estimating the model Normal response models to continuous data but does allow a selection of transformations — identity, log and Box-Cox. Below you are asked
with MCMC again to input options for the model.
Estimating the model
with EMDI
Response variable: normexam  change
Transformation: ne change

Common 2 1D: school  change

Common predictor variables: standirt,girl  change

Do you want to calculate poverty related estimates, e.g. No change
Head count ratio?:

Do you want to calculate inequality related estimates, e.g. No change
GINI index?:

Parallel cores for bootstrapping: 6 change

about

As you can see we use the same inputs here although the names are sometimes slightly different.
When we click on Submit you will see that the top left progress indicator now says Running R_script
to explain that it is calling R in the background. If you haven’t previously used emdi in the R installed
on your machine then it may take a while to install all the required packages which Stat-JR does in
the background. The outputs begin with some diagnostic plots:
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Select the data Density - Pearson residuals

Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

04-

Density
o
o

2 0 2
Pearson residuals
about

Here you can see a plot of model fit. EMDI is showing how good a fit the normal model is to the data
at both levels of the multilevel model in two separate plots. There are also some QQ plots to also
look at model fit before some of the more familiar outputs like the table of sample of population
estimates shown below:
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Our primary interest is in the small area estimates that this model produces.The table below gives estimates for the mean and SD
for each of the 65 small areas in the dataset.These estimates can be found in the columns headed population whilst for

‘ Go to page

Select the data

Exploring the response ) . . :
P . ° p. comparison in the columns headed sample are the means and SDS for normexam just using the sample data.
Exploring the predictors about

Estimating the model

with MCMC school[Sample_mean|s le_sd Population_mean|Population_sd

Estimating the model 1 1 0.7 126 032 0.09

with EMDI 2 2 1.02 0.79 048 0.99
3 3 0.92 0.96 0.53 0.95
4] 4 0.41 0.93 0.12 0.97
5 5 -0.25 0.84 -0.1 0.89
3] [ 1.31 0.56 0.89 0.91
7 7 027 0.39 0.03 091
8 8 -0.11 0.91 -0.01 1
9 9 -0.8 1.18 -0.39 1.01
10( 10 -0.67 0.54 -0.34 0.86
1) 11 0.65 0.37 0.52 0.94
12| 12 -0.84 047 -0.35 093
13 13 -0.32 1.29 -0.11 0.99
14 14 -0.28 0.77 -0.19 0.94
15 15 0.03 0.96 0.04 09
16( 16 -0.33 0.91 -0.12 0.89
17 17 -0.32 1.22 -0.14 0.99
18( 18 0.03 1.21 0.03 0.84
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Here you might like to compare the (population) estimates given on this page with those from
MCMC on page 4. They will not be identical as the two approaches used are different but there
should be similarity in the patterns shown. This page then continues with various plots for the
means and quantiles which again you can compare with the MCMC approach. We will leave you at
this point to explore the eBook in more detail, after all the eBook is meant to be self-contained and
instead we will move onto a second SAE example.

Example 2 - The European Union Statistics on Incom and Living Conditions — Austria (EU-SILC A)
dataset

As mentioned previously our first education-based example was a slightly less common use of small
area estimation. In most applications of SAE the areas are generally geographical areas (as opposed
to schools) and the population is the whole population in those areas whilst the sample is some form
of census for a smaller group of people from this whole population. The EU-SILC Austrian dataset is
the example that is used in the vignette document (Kreutzmann et al. 2018) that was written as
documentation for the emdi package. The original (full) EU-SILC data comes from a household survey
and there are 8.8 Million people in Austria with Austria split into 94 districts which play the role of
small areas. The data that we in fact use is simulated and originates from the R package simFrame
(Alfons et al. 2010). Here we have a (reduced) population dataset, eusilcA_pop of 25,000 people and
a smaller sample dataset, eusilcA_smp of 1,945 individuals. As with example 1 the sample dataset in
EU-SILC contains individuals from some but not all of the small areas in the population. The
motivation behind the EU-SILC example is to look at income across Austria and in particular income
inequalities and poverty rates. This is an application area that often uses SAE methods and our
variable of interest will be (equivalized) household income — a household income adjusted for size of
household. The dataset contains several predictor variables like the household size, the gender of
the person sampled and various benefit type measures like unemployment, old age, sickness etc.
that can be used to predict the income.

There are two main motivations for using a second example here which cover features that were not
present in the first example. First, the response variable, normexam that we used in example 1 had a
symmetric distribution that was clearly normally distributed. In this example household income has
by no means a symmetric distribution and so we will need to transform the variable of interest prior
to fitting models to it. Second as we are interested in poverty and inequality there are a broader
selection of summary measures that we can estimate for each small area.

We could of course repeat the structure of example 1 and work our way slowly through several
templates using the TREE interface but here we will jump straight to the DEEP interface. So we start
by bringing up the DEEP interface (if you are proceeding on from the last section then simply click on
the white Stat-JR:DEEP in the top left to return to the opening screen). Assuming you have already
looked at example 1 in DEEP then the opening screen should look as follows:
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Your E-Books:

Small Area Estimation

Continue reading:

About:

Author
Created at

Description

OR Start a new reading:

New reading process name:

Brief description:

Start reading

Here we see that the eBook for Small Area Estimation is still listed in the list of eBooks and we can
click on it type in a new reading process name e.g. eusilc in the box towards the bottom right and
click on the green Start Reading button. Here once again we are greeted with the 5 pages and we
can on page 1 select the appropriate datasets as shown below:
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Finished
« 2 3 4 5 =

| he d
celect he dats Select the data

Exploring the response

Exploring the predictors Here we will choose the data to explore

Estimating the model
with MCMC
Estimating the model
with EMDI

| Go to page

Sample dataset:

eusilcA_smp E

Population dataset:

eusilcA_pop E

about

Now we click on the Submit button and move on to page 2 where we will explore the (response)
variable of interest, eqincome. On page 2 we can choose this response and note that the Common
ID variable i.e. the variable that indicates the small areas is district. We also need to input a lambda

value and here we will try 0.6.
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Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

Small Area Estimation

« 134 5 =

‘ Go to page

In this SAA we will particularly be concerning ourselves with unit level models. For a unit level model we require 2 datasets — a sample dataset
and a population dataset. The sample dataset contains a sample of individual from some (but not necessarily all) of the groups in the
population and for each individual the variable of interest which we will call Y (e.g. salary, voting intention) is collected along with a lot of other
variables which we will call X that might be thought to predict the variable of interest (e.g. gender, benefits, family size).

The second population dataset contains records for the WHOLE population i.e. everybody in all groups. This dataset contains the same
predictor variables X but here the variable of interest Y is absent. The rationale for the unit level model is therefore to fit a (multilevel)
regression model to the Y in the sample dataset to investigate the relationship between Y and X. We then use this model to predict the values
of Y for the WHOLE population using the population dataset and then use the estimated Y produced to estimate small area quantities (e.g.
means, proportions and percentiles) for each small area.

We will first take a lock at the response variable that we wish to estimate at our small areas. We will on this page look at some summary
information about this variable and also consider whether the variable needs transforming. We often transform variables so that we can fit a
Normal response model and assume normality for the residuals. So firstly we ask for the name of the response variable and a value for the
parameter lambda used in the Box Cox transformation later.

Response variable:

eqlncome E
district E

Lambda parameter for response tranformation: 06

Common ID variable:

about

We can now click on the green Submit button and observe the outputs that this will generate:
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Select the data
Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

Small Area Estimation

‘ Go to page

In your dataset the small areas are represented by the variable name district and there are 25000 individuals in the population

that come from 94 areas in total. The sample dataset has 1945 individuals in total (7.78% of the population) with individuals in

the sample coming from 70 areas.
P 9 about

In the table below we will lock at how representative the sample is of the population in each small area. The larger percentage of the

population that is in the sample the more confidence we will have in our small area estimates and the less we will have to use the response -

predictor variable relationships across all areas to estimate those small area estimates.

Code Name Nsamp Npop %
1 Eisenstadt-Umgebung 0 115 0.00
2 Eisenstadt (Stadt) 0 37 0.00
3 Giissing 0 74 0.00
4 Jennersdorf 0 49 0.00
5 Mattersburg 0 109 0.00
6 Neusiedl am See 16 155 10.32
7 Oberpullendorf 0 105 0.00
8 Oberwart 15 150 10.00

So initially we get confirmation of the population and sample dataset sizes and that we have slightly
under 8% of the population in the sample with individuals from 70 of the 94 areas. Unlike the first
example the areas have been given actual names so we can see them in the table above and in fact 6
of the first 8 areas have no individuals in the sample whilst the other 2 have approximately 10% in
the sample. In fact the (simulated) sample design appears to be to choose a sample of areas (in this
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case 70 of the 94) and for each area chosen sample approximately 10% of the population. If we scroll
lower down we see information about the VPC and a plot of the response:
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Finished
« 1 M3 4 5 =

When we look at eglncome in the sample dataset there is variability in the average response across the small areas that we are
estimating values for. It is important to estimate how much variation in the response is between small areas and how much is
within small areas and this is done with a statistic called the VPC. Here the VPC is 0.4. This means that 40% of the variation in
eqincome is between small areas and therefore due to differences across areas. These differences may be explained by the
predictor variables in our later medelling.

about

Select the data
Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model

with EMDI We next look at the shape of the response variable to see whether it needs transforming. First we look at the response itself as shown in the
V

histogram below.

Frequency

o zun00 0000 savon ‘san00 woons 120000
eqincome

about

Here we see that the small areas in this example have greater differences than the schools in
example 1 with 40% of the variability in eq/ncome being attributed to small area differences. The
graph below shows perhaps a typical income distribution with a skew to the right i.e. some
households earning far more than the majority. This will suggest that we will need to transform the
variable when we come to do our SAE modelling. The page next shows possible transforms so below
we see the log transform:
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One way of correcting for skew (to the right) is to use a log-transformation. A log transformation only works for positive values and so we first
shift our values so that they are all positive and then perform the transformation. The transformed variable is shown in the histogram below.

‘ Go to page

Frequency

Logleqincome)
about

Here the median is larger than the mean and there is significant skew to the left. The skewness value is -1.02. Here the statistical
significance may be to some degree due to the large sample size as from a practical perspective values of skew less than 2 in

magnitude are not considered too big a skew.
about

This does a reasonable job though seems to end up with a few low values now and thus a skew to
the left. The second possible transform is the Box-Cox transform (with fixed parameter lambda that
we have set to 0.6 and is shown as follows:
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Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI
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A more general transformation is the Box-Cox transformation which transforms the original response y to the function y;
ny, A=0
i

‘ Go to page

where lambda is a parameter that needs inputting (as you did at the top of the page). Again the Box-Cox requires a shift prior to transforming.
For the current value of A we get the histogram shown below

Frequency

&0 s om0 a0 s
Box-Cax(eqincome)

about

Here the median is smaller than the mean and there is significant skew to the right. The skewness value is 0.904. Here the
statistical significance may be to some degree due to the large sample size as from a practical perspective values of skew less

than 2 are not considered too big a skew.
about

Here we see that the transform has reduced the skew though the histogram is not perfect. It is
worth remembering when we come to modelling that it is the residuals after fitting models that
should be normally distributed rather than the response per se though of course having a symmetric
response is helpful. We will in a little while select the Box Cox transform as our choice but when we
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do that the value of lambda will be modelled rather than fixed to 0.6 as we see here. The page also
gives a third transform for completeness, the Dual Power transform but the modelling on pages 4
and 5 does not allow us to choose this transform so we will ignore it here.

If we move on to page 3 we can again look at the distribution of the possible predictor variables
within both the population and sample. Feel free to test this out for various predictors as in our
modelling we will include ALL predictors from gender through to tax_adj. As an example we have
chosen the variable, egsize (with Common ID variable district) and we can see the distribution as
follows:
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We can start by looking at the distribution of egsize in the sample dataset (as a whole) and the population. In the plots below we
can see to the left the population and to the right the sample data with superimposed a best fitting normal curve. Although the
normality assumption in our modelling is not related to the predictors we might still want to transform them if they are skewed
as in this case outlying data peints might have significant influence on the relationship used in the SAE modelling. Note also that
if the predictor variable is categorical this plot may be less informative Here aside from some areas having no sample data we can
look and see how representative the samples in other areas are of the population.

‘ Go to page

Select the data
Exploring the response
Exploring the
predictors

Estimating the model

with MCMC about
Estimating the model
with EMDI .
Population Sample
moe T T T e T T
aomo
om0
cano
T som0 o
2 7
2 e 2
200
200
200
eqsize equize
about

The main things to note here are the somewhat unusual shape of the distribution but that in
practice the shape is very similar for both the population and the sample and this can be seen again
in the later plot where both histograms are superimposed on each other. There are various plots and
tables later in the page and we show a screenshot below:
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Here for the predictor variable egsize the VPC is 0.01 in the population dataset and 0.02 in the sample dataset.

‘ Go to page

Select the data about
Exploring the response
Exploring the We will next lock at the data in the individual small areas, and in particular the mean and standard deviation of the variable
predictors eqsize for both the sample and the population dataset. Here aside from some areas having no sample data we can look and see
Estimating the model how representative the samples in other areas are of the population. bout
with MCMC
Estimating the model
with EMDI Code Name Sample mean Sample sd Population mean Population sd

1 Eisenstadt-Umgebung - - 1.75 0.52

2 Eisenstadt (Stadt) -- - 1.65 0.24

3 Glissing -- - 1.59 0.59

4 Jennersdorf - - 1.58 0.61

5 Mattersburg - - 1.69 0.56

6 Neusiedl am See 1.62 0.41 1.64 0.55

7 Oberpullendorf - - 1.73 0.64

8 Oberwart 1.61 0.60 1.60 0.57

9 Rust (Stadt) - - 132 0.44

Here we can see that perhaps unsurprisingly district doesn’t explain much of the variation in
household size with the VPC of 1% and 2% for population and sample respectively. Also for the 2
districts shown that have sample data, the summary statistics (mean and sd) are rather similar.

We will leave you to look at the other outputs and indeed the other possible predictors and now
move on to page 4 and some modelling and set the inputs as shown:
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Select the data EStImating the model Wlth MCMC

Exploring the response
Exploring the predictors Now that we have locked at the response and predictor variables we will next fit a small area estimation model. Here we fit a multilevel model

Estimating the model to the sample dataset and then use the same model to predict the response in the population dataset and thus have predictions for all
with MCMC individuals in the population. From these predictions we can form small area statistics by using the predicted values for individuals in each
Estimating the model small area.

with EMDI

In order to fit the model we here have to reinput the response variable and all of the predictors we wish to use in the estimation. We are also
given the choice of whether to fit a model to the original response or to use a logged or Box-Cox transformation. To start the model running
make these selections from the box below. Note that we are using MCMC estimation which will not only give us small area estimates but also
Bayesian credible intervals. It is however a computationally intensive procedure and so this page will take some time to run.

Response eqincome  change
variable:
Specify Normal change

distribution:

Transformation: Box-Cox change
Lambda: Modelled  change
Common ID district change
variable:

Common gender.eqsize,cash,self_empl,unempl_ben,age_ben,surv_ben,sick_ben,dis_ben,rent,fam_allow,house_allow,cag

predictor change
variables

Do you want to Yes change
calculate

poverty related

estimates, e.g.
Head count
ratio?:

Threshold Automatic  change

value:
Do you want to Yes change

calculate
inequality
related
estimates, e.g.
GINI index?:

Random Seed: 1 change

Number of 3 change
chains:

Length of 500 change

burnin:

Number of 2000  change
iterations:

Thinning: 1 change

Parallel cores 6
for predictions:

change

about

Here we start with selecting the response, eqincome and Normal distribution and then we chose the
Box-Cox transform. Here we select that the Lambda parameter will be Modelled which means that it
will be treated as a parameter in the MCMC algorithm and thus be updated at each MCMC iteration.
We see the long list of predictor variables that we have chosen (from gender down to tax_adj) as
well as that we have requested to calculate both poverty related and inequality related quantities.
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You will also see that a threshold value is asked for with choices of Automatic or Manual. This
threshold is used in the poverty related measures to represent a poverty line and work out statistics
based around this. If Automatic is chosen then for this dataset the value 10885.33 is used which is
60% of the median equivalised income as is used in Kreutzmann et al. (2018). The MCMC inputs are
finally asked for which we have been left at their defaults.

Having completed all the inputs and clicked on Submit we have to wait a little longer than example 1
as the dataset is bigger, has more predictor variables and modelling the lambda value and Box-Cox
transformation adds to the computation.

If we now look at the outputs on page 4 we can scroll past the model equations and next see the
model parameters:
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beta_4 self_empl 0.4424271 0.02162462 657.
Select the data
Exploring the response beta_5 unempl_ben 03729903 0.05979985 4952,
Exploring the predictors
Estimating the model beta_6 age_ben 0.5381672 0.01772383 3095.
with MCMC
Estimating the model beta 7 surv_ben 0.5536164 0.1170426 5353,
with EMDI
beta 8 sick_ben 0.4771154 0.1540549 5589.
beta_9 dis_ben 0.6026384 0.03818287 5497.
beta_10 rent 0.335943 0.03448366 38.
beta 11 fam_allow 0.03668461 0.04263935 5338.
beta_12 house_allow 0.8509525 0.3250821 5596.
beta_13 cap_inv 0.3713359 0.04021155 2352,
beta 14 tax_adj -0.2411086 0.06542828 5881.
sigma2 Level-1 variance 22727250. 1273696. 1285.
sigma_u Level-2 variance 6096521, 1304630. 2756.
lamb Box-Cox Lambda 0.4160069 0.1207464 2

about

Here you will see after the 15 beta coefficients for the intercept and predictors and the 2 variances
then we have also the estimated lambda (lamb) which takes value of 0.42 but note that here we are
looking at the best value when accounting for the predictor variables. One thing to watch is the
effective sample size (ESS) for this parameter is rather low at only 8 as is the ESS for the intercept
and so we should really run the MCMC for more iterations. Here we therefore click on the blue
change next to Number of iterations and change the 2000 to 20000 before pressing the Submit
button and waiting again this time slightly longer for estimation.

The estimates now should refresh and look as follows:
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beta_4 self_empl 0.4647642 0.0178588 8459.
Select the data
Exploring the response beta 5 unempl_ben 0.3920562 0.05746135 44366,
Exploring the predictors
Estimating the model beta 6 age_ben 0.5503508 0.01642028 9745.
with MCMC
Estimating the model beta 7 surv_ben 0.584027 0.114855 50782,
with EMDI .
beta_8 sick_ben 0.4924603 0.1503358 56522,
beta 9 dis_ben 0.6082253 0.03702702 51163.
beta_10 rent 03773787 0.02605691 285.
beta 11 fam_allow 0.0305386 0.04151562 54229,
beta_12 house_allow 0.8691035 0.3172981 55855.
beta_13 cap_inv 0.4038095 0.03507246 12629.
beta 14 tax_adj -0.2604875 0.06284644 49197.
sigma2 Level-1 variance 21707770. 855081.6 17257.
sigma_u Level-2 variance 5880221, 1244259, 26391,
lamb Box-Cox Lambda 0.5792535 0.07403507 47

about

Here we see that in the sample the predictors egsize, cash, self_empl, unempl_ben, age_ben, surv_ben, sick_ben, dis_ben, rent,

house_allow, cap_inv, and tax_ad] have significant effects on the response variable. bout
abou

If we scroll further we can see the sample (direct) estimates and population (model-based) estimates
as shown below for a selection of districts:
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6 Neusiedl am See 19692.53 5462.45 19176.06 635449
Select the data
Exploring the response 7 Oberpullendorf - - 17739.68 6752.88
Exploring the predictors
Estimating the model 8 Oberwart 13833.36 683092 13715.92 5109.56
with MCMC
Estimating the model 9 Rust (Stadt) - - 15787.82 5580.97
with EMDI
10 Amstetten 15201.15 6458.63 14409.18 5431.80
11 Baden 22921.69 6293.34 22436.12 7512.84
12 Bruck an der Leitha 23753.31 6160.26 24150.02 8215.14
13 Ganserndorf 20279.97 5833.86 20574.66 702235
14 Gmiind - - 14525.71 5621.84
15 Hollabrunn 17368.43 5374.87 16736.09 5814.52
16 Horn - - 15843.12 6188.11
17 Korneuburg 28920.37 9890.20 25507.82 9388.77
18 Krems (Land) 14928.84 5760.12 15130.68 5551.45
19 Krems an der Donau (Stadt) - - 17848.45 6577.64

It is worth observing that there are sometimes large discrepancies between the 2 estimates for a
district of the order of thousands of Euro but in general the pattern across districts is similar for the
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2 estimates i.e. those districts with larger sample estimates (eg. Korneuburg) have larger population
estimates and one advantage of the model-based approach is we gain estimates for districts with no
sample data.

The page contains many tables and graphs and these are explained in the text accompanying them
so we will here simply show the final table which includes both the inequality and poverty indices:

Stat-JR:DEEP  Upload Resources About Debug~

Small Area Estimation

Finished n
<« 1 2 3 5 =

Finally we can summarise all of these indices in tabular form so that it is easier to see values for individual small areas. We do this in the table
Select the data below.
Exploring the response
Exploring the predictors

‘ Go to page

. ; Code Area Gini Ginirank QSR QSRrank HCR HCRrank PGI PGI rank
Estimating the model
with MCMC 1 Eisenstadt-Umgebung 023 84.00 325 82.00 0.03 14.00 001 1500
Estimating the model
with EMDI 2 Eisenstadt (Stadt) 0.29 94.00 470 93.00 0.03 132.00 0.01 14.00
3 Glssing 0.20 46.00 2.89 52.00 0.16 50.00 0.03 52.00
4 Jennersdorf 0.22 78.00 317 78.00 0.33 84.00 0.09 83.00
5 Mattersburg 0.22 73.00 3.07 72.00 0.08 29.00 0.02 31.00
6 Neusiedl am See 0.18 10.00 2.58 17.00 0.08 30.00 0.01 29.00
7 Oberpullendorf 0.21 56.00 2.96 62.00 0.14 45.00 0.03 46.00
8 Oberwart 0.21 57.00 3.00 65.00 0.32 80.00 0.08 80.00
92 Rust (Stadt) 0.19 24.00 inf 94.00 0.24 68.00 0.06 68.00
10 Amstetten 0.21 60.00 293 58.00 0.28 71.00 0.07 71.00
11 Baden 0.18 9.00 2.55 11.00 0.03 15.00 0.01 13.00
12 Bruck an der Leitha 0.18 11.00 2.56 13.00 0.02 12.00 0.00 12.00

Here we see each of the four indices (which are presented graphically earlier on the page) along with
their rank (with rank 1 being the smallest value and rank 94 the largest). The first two indices are the
Gini coefficient (Gini) and the income quintile share ratio (QSR) which are more general inequality
measures that do not rely on a predefined poverty threshold but instead look at the shape of the
income distribution. The Gini takes values from 0 to 1 where the larger the value the greater the
income inequality and so a Gini value of 0 would mean all individuals earning equal income and a
Gini value of 1 would mean 1 individual earning all the income in the area. For the 12 areas we see
above the Gini estimates range from 0.18 to 0.29 with in fact the largest value in an area (Eisenstadt
(Stadt)) with very little poverty but presumably a few very high earning individuals. The QSR
compares the average earnings of the top 20% of earners with the bottom 20% of earners within a
district as a ratio. Here we see this ranges for these 12 areas from 2.55 to 4.70 (with Rust (Stadt) not
estimating) in other words in the area with the largest value (again Eisenstadt (Stadt)) the top 20%
earn nearly 5 times as much on average as the bottom 20%.

The second pair of indices are the headcount ratio (HCR) and poverty gap index (PGl) which both
relate the data to the threshold input by the user. The HCR is simply the proportion of the
population in each small area that are is poverty so for example Eisenstadt-Umgebung is estimated
to have only 3% in poverty whilst Jennersdorf has 33% of its population in poverty. The PGl looks in
more detail at how far below the poverty line on average (as a percentage of the poverty line)
people’s incomes are and again larger values mean worse poverty problems.
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We have here only scratched the surface of the outputs that the eBook produces so please feel free
to look in more detail at the other plots and tables. You might also investigate what the impact of
fitting simpler models with less predictors on the outputs here.

We can finally turn to page 5 and fit the same models using emdi by filling in the inputs as follows:

Stat-JR:DEEP

L) . .
Small Area Estimation
Running R_script
« 1 2 3 4 D ‘ Go to page
Select the data - - .
fxploring e reeponee ESTIMating the model with EMDI
Exploring the predictors For comparison we can also fit models using interoperability with the R statistical software and the emdi package. The emdi package only fits
Estimating the model Normal response models to continuous data but does allow a selection of transformations — identity, log and Box-Cox. Below you are asked
with MCMC again to input options for the model.

Estimating the model

with EMDI
Response eqincome  change
variable:
Transformation: box.cox change
Commeon 2 ID: district change

Common gender,eqsize,cash,self_empl,unempl_ben,age_ben,surv_ben,sick_ben,dis_ben,rent,fam_allow,house_allow,cag
predictor change
variables:

Do you want to
calculate
poverty related
estimates, e.g.
Head count
ratio?:

Yes change

Threshold Automatic  change
value:

Do you want to
calculate
inequality
related
estimates, e.g.
GINI index?:

Yes  change

Parallel cores 6 change

for
bootstrapping:

about

Here we see that the inputs are generally the same as we use for the MCMC method. Upon choosing
all the inputs then we click Submit and as you see in the top left corner above the eBook runs the R
script.

If we consider the outputs there are first once again some outputs that look at the normality of the
residuals via comparative density plots and QQ plots and then this is followed by a plot regarding the
estimation of the lambda parameter for the Box Cox transform as shown below:
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Stat-JR:DEEP

Small Area Estimation

Finished
« 1 2 3 4 :;‘ ‘Gotopage

When we use a Box-Cox transferm we need to calculate values for the parameter A that describes the specific transfermation. For the MCMC

Select the data algorithms this forms part of the algorithm whilst emdi evaluates the likelihood at a grid of values. The below plot shows which values
Exploring the response maximise the (log) likelihood.

Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

Box-Cox - REML

19260 -

-18270-

Log-Likelihcod

19280 -

-18290-

about

As explained emdi tries a selection (grid) of values for lambda and finds the one that maximises the

likelihood. Here emdi estimates an optimal value of 0.6 which is slightly different to MCMC where it
took value 0.58.

As with MCMC we get model-based (population) estimates from emdi as shown below:
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Finished

Select the data
Exploring the response
Exploring the predictors
Estimating the model
with MCMC

Estimating the model
with EMDI

Here we see the emdi estimates compared to the sample (direct) estimates and observe that again
the model-based and direct approaches do vary at times in order of 1000s. For example we see that
the direct mean estimate for Korneuburg is 28920.37 whilst emdi estimates the mean income as
25,629.50. For further comparison the MCMC model-based estimate is 25,507.75 which is much
closer to emdi than the direct estimate. There are subtle differences between the two approaches

Small Area Estimation

@

« 1 2 ‘ Go to page
district [Sample_mean|Sample_sd|Population_mean|Population_sd
1 Eisenstadt-Umgebung NA NA 27509.02 11351.24
2 Eisenstadt (Stadt) NA NA 53654.42 30210.79
3 Glissing NA NA 17189.34 5853.47
4 Jennersdorf NA NA 13402.65 5037.61
5 Mattersburg NA NA 21260.09 8083.77
6 Neusiedl am See 19692.53 5641.59 19004.31 6386.01
7 Oberpullendorf NA NA 17671.04 6249.94
8 Oberwart 13833.36 7070.67 13954.69 5186.03
9 Rust (Stadt) NA NA 15457.77 5534.78
10| Amstetten 15201.15 6558.77 14282.55 5368.61
11 Baden 22921.69 6373.51 22373.54 7426.38
12| Bruck an der Leitha 23753.31 6277.61 24257.51 8130.46
13 Ganserndorf 20279.97 5940.92 20631.04 6992.67
14 Gmiind NA NA 13675.94 5098.5
15 Hollabrunn 1736843 5563.52 172543 5805.11
16| Horn NA NA 16064.81 5877.73
17| Korneuburg 28920.37 10094.14 25629.5 9318.11
18| Krems (Land) 14928.84 5949.03 15065.72 5445.56
19| Krems an der Donau (Stadt) NA NA 18151.52 6239.09
20 Lilienfeld NA NA 16132.34 5565.92
21 Melk 12789.3 5201.32 11874.51 4809.86
22) Mistelbach 19718.95 6699.09 19455.02 6505.37

which may explain the estimate differences

As with the MCMC estimation there are many further equivalent outputs for emdi that can be
interrogated so for comparison here is the equivalent table of inequality and poverty indices as we

saw for MCMC.
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Small Area Estimation

Finished
« 1 2 3 4 :;‘ ‘Gotopage

Finally we can summarise all of these indices in tabular form so that it is easier to see values for individual small areas. We do this in the table

Select the data below.

Exploring the response

Exploring the predictors district ini/Gini_Rank|/QSR|QSR_Rank{HCRHCR_Rank|PGI|PGI_Rank

Estimating the model 1 Fisenstadt-Umgebung ~ [0.22| 83 |31 79 003 15 |01 16

with MCMC 2 Eisenstadt (Stadt) 020 94 [488] 94 |o.03] 13 |00l 17

Estimating the model 3 Giissing oas] 31 [272] 3 Jotg] so lpod| so

with EMDI 4 Jennersdorf 021 70 [300] 75 o3e] 85 [oa]| se
5 Mattersburg 021 67 [294 64 foos| 29 Joo2| 30
6 Neusied| am See 019 19 |262) 21 fooo| 33 o2 3
7 Oberpullendorf 02| 41 |273) 36 |04 45 po3| 46
8 Oberwart 021 63 |206) 67 o031 77 o7 74
9 Rust (Stadt) 017 3 |274 37 |o22] 64 joos| 66
10 Amstetten 021 66 |208) 69 Jo29| 72 o7
11 Baden ois| 7 |252] 5 |oo3| 14 0 13
12| Bruck an der Leitha 0.18 9 2.53 6 0.02 12 0 12
13 Géanserndorf 19 18 259 15 Joos| 22 o1l 23
14 Gmiind 021 72 |31 77 |o34] 8 |o1| 84
15 Hollabrunn 01| 24 |265 26 [014] 44 o3l 41
16 Horn 02| 46 |278) 45 |o2| 59 joos| 60
17 Karneuburg 019 33 |26 24 ooz 11 0 10
18 Krems (Land) 02| 54 |286 55 o024 66 |o.os| 65
19| Krems an der Donau (Stadt) |0.19 30 2.7 31 0.12 37 0.02] 38
20) Lilienfeld 019 39 |279) 48 Jo2| 60  pos| 61

Here the order has changed but we can see similar patterns for example the area Eisenstadt (Stadt)
again has the highest Gini score and QSR of all districts with valid values though the values are
slightly different with a Gini of 0.29 and a QSR of 4.88 compared with 0.29 and 4.70 respectively for
MCMC.

We will finish this example here and move on to a third example that illustrates the use of Small area
estimation in the situation where the variable of interest is binary.

Example 3 — Voting Leave in the UK Brexit debate.

One of the most common binary or categorical variable uses of small area estimation is within
politics when we consider voting intentions and try to predict the outcome of elections based on
polls. Here the idea is that prior to an election polling companies canvass the voting intentions of a
sample of the population and then use this information along with a model relating the voting
intentions to demographic factors to predict how all of the voters not in the sample will vote.

We have for the purposes of this practical created a simulated (but realistic) dataset for voting
intentions in the 2015 UK referendum on leaving the EU. Here the voting choice is a simple binary to
leave or remain within the EU. For our simulated dataset we have a population dataset
(voteleave_pop.dta) of 2,000 voters split into 50 equally populated (each with 40 voters) areas. From
this we have taken a random sample (voteleave_sam.dta) of roughly 10% which in fact is 213
individuals with each area having between 1 and 7 voters in the sample. Note here it wouldn’t
matter if areas had no individuals in the sample (as we have seen for the tutorial example) as the
small area estimation will still work in this scenario.

We will investigate this example using Stat-JR TREE rather than the eBook in DEEP as we can only use
the MCMC algorithms for fitting these models as emdi only deals with Normal response models.

So if we first fire up Stat-JR TREE and Choose the dataset voteleave_sam and click Use then select to
View the Dataset it should look as follows:
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Stat-JR:TREE

Dataset name: voteleave_sam E Unload Duplicate  Download

Data Summary Add variable Delete variable Edit data label Edit value labels

voteleave_sam (Sample from simulated data illustrating the 2016 EU referendum in the UK) (-]

[ voteleave Age Gender | Education cons id area
1+ O 0 AgeStods female  Degree 1 11 1[a
2 O 0 Ageldtozs male GC3Eandbelc 1 18 1
3 O 0 Age2Stods female  Alevels 1 20 1[=
4 O 0 AgeS0to54 male Degree 1 32 1
O 0 Ageoverss female Degree: 1 36 1
e O 0 Agelstozs female  Degree 1 # 2
7 O 1 Age2sioss male GCSEandbelc 1 a3 2
s O 1 Age2sioss mile  Alevels 1 73 2
s O 0 Age2Sioss mile  Alevels 1 75 2
w O 1 Ageoverss male Degree: 1 87 3
w0 0 Age2Sioss male GCSEandbelc 1 o7 3
12 O 0 Ageoverss male  Degree 1 108 3
13 O 0 Agelstozs mile  Alevels 1 106 3
1 O 0 Agelstozs female GCSEandbelc 1 124 4
15 O 0 Ageoverss female GCSEandbelc 1 129 4
6 O 0 Ageoverss female GCSEandbelc 1 132 4
7 O 0 Agsoverss female GC3Eandbelc 1 135 4
e O 0 Age2Stods female  Alevels 1 140 4
19 [ 1 Age2Stods female GC3Eandbelc 1 144 4
2 [ 1 Age2Stods male GC3Eandbelc 1 165 5
21 [ 1 Agsoverss male  Alevels 1 176
2 [ 1 Age2Stods male  Degree 1 179
2 [ 1 Agesdtoss male GC3Eandbelc 1 184
24 [ 1 Agesdtoss male GC3Eandbelc 1 218 5
s [ 0 Age2Stods female  Alevels 1 255 7
% [ 0 Age2Stods male  Alevels 1 265 7
7 O 1 Age2Stods female GC3Eandbelc 1 291 8
+ T D P S & Columns View 1-30 07213

Here we see the response variable voteleave which takes values 0 for voting remain and 1 for voting
leave. There are then 3 categorical demographic variables that we will use to predict the probability
of voting leave. Firstly we have Age which takes 4 categories, 0 for 25-49, 1 for 18-24, 2 for 50-64
and finally 3 for 65+ years old. We have used this unusual category order as we intend to use 25-49
as a base category capturing a large proportion of the population and expect to then see negative
effects for the 18-24 category and positive effects for the older (50-64 and 65+) categories. Similarly
we have Education with categories, 0 for A levels (which we will use as a baseline), 1 for GCSE and
lower qualifications and 2 for Degree and higher qualifications. Again we expect the GCSE and lower
group to have a positive effect and Degree and higher qualifications to have a negative effect. Finally
gender is a binary with O for male and 1 for female with males slightly more likely to vote leave.

We will move straight to the SAEModel template and we set up the inputs as follows:
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Stat-JR:TREE

Population dataset: voteleave_pop  remove
Response variable: voteleave remove
Specify distribution: Binomial remove
@Denominator: cons E
Specify link function: logit E‘
Common ID variable: area E‘
~
Common predictor variables voteleave
cons
id
area -
Age =
Gender
Education o

[treat Age as categorical
[treat Gender as categarical
[¥ltreat Education as categorical

OYes

Do you want to calculate poverty related estimates, e.g. Head count ratio?:
@®No

Next

@Current input string: {popdata’: ‘voteleave_pop’, ‘D" ‘Binomial’, ‘resp”: ‘voteleave’}

Here you will see that when we choose Binomial for our model we have 2 additional inputs:
Denominator for which we input cons which is a column of 1s and simply shows that our individual
data points are individual people rather than groups and so the response is 0/1 rather than a
proportion. We also specify a logit link function as we are planning to fit a (multilevel) logistic
regression model. The final thing to note is that under the predictor variables we have ticked the
treat as categorical options for all three predictors and here the first category will be treated as a
base category (hence our unusual categorisation earlier) and the model to be fitted will have dummy
variables for each other category. The poverty and inequality indexes don’t make much sense for
binary data so we will say No here. If we complete the inputs the screen will look as follows:
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Do you want to calculate poverty related estimates, e.g. Head count ratio?: No  remove
Do you want to calculate inequality related estimates, e.g. GINI index?: No  remove
Random Seed: 1 remove
Number of chains: 3 remove
Length of burnin: 500 remove
Number of iterations: 2000 remove
Thinning: 1 remove
Parallel cores for predictions: 6 remove

@Current input string: {'povind': 'No’, 'niter': '2000", 'popdata’: 'voteleave_pop', 'burnin’: ‘500", 'D": 'Binomial’, 'pred": 'Age:cat,Gender:cat,Education:cat’, 'resp":
‘voteleave’, ‘nchain® 3", 'n: ‘cons’, 'seed”: 1", ‘link": logit’, ‘inegind": ‘No’, ‘idcol": "area’, ‘nproc” ‘6", ‘thin "1}

©@Command: RunStat/R(template="SAEModel’, dataset="voteleave_sam’, invars = {'povind" 'No', 'niter": '2000", ‘popdata": 'voteleave_pop', ‘burnin® ‘500", 'D":

‘thin’: *1'}, estoptions = {})

If we click on Run we can now wait for the model to fit and the rest of the SAE outputs to be
generated. When this happens the timer will say Ready in the top right and if we look at
equation.tex from the object pull down list and perhaps pop it out we will see the following:

Stat-JR:TREE

voteleave; ~ Binomial(cons;, ;)
logit(m;) = B, intercept, + B Age 1, + f,Age 2, + f Age 3, + ff,Gender_1; + f_Education_1; + § Education_2; + uareapy
Uarean) ™ N(o, Uﬁ)
Bor Bl
7, ~ T(0.001,0.001)
i =1/,

Here we see a logistic regression with an intercept and 6 predictors made up of the categories of the
3 categorical predictors along with random effects for the different areas. Looking further down the
list of objects we can pop out the sae_modelresults object which looks as follows:

Stat-JR:TREE

Parameter Variable Mean SD ESS
beta 0 Intercept -0.219253118524 0.518921560533 131.0
beta_1 Age_1 -1.443441742494 0.742915314314 501.0
beta_2 Age_2 0.651741584793 0.53411482793 656.0
beta 3 Age_3 1.0398675574293 0.474556994189 403.0
beta_4 Gender_1 -0.826214302641 0.404464418107 464.0
beta 5 Education_1 1.455537526731 0.503599914574 217.0
beta 6 Education_2 -0.863032787135 0.513071286441 275.0

sigma_u Level-2 variance 2.0785266767767 1.124583002103 216.0
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Here we see as predicted the younger age group has a negative coefficient (-1.443) whilst the older
age gropus have positive coefficients (0.652 and 1.040 respectively) although in terms of statistical
significance only the beta_3 term looks significant perhaps due to the rather small sample size of
213. We observe the predicted direction of effects also for education and gender and we see a very
large (2.079) between area variance suggesting there are large differences in how areas voted not
explained simply by the demographics of the indiivudals. Ideally we would like area level predictors

to explain these differences but here we do not have such information.

Looking at the SAE objects we can first look at prediction_summary which looks as follows:

Stat-JR:TREE

Code Name Sample mean Sample sd Population mean Population sd
1 area==1 0.0 0.0 0.24245833333333333 0.3895095180871594
2 area== 0.5 0.5 0.5208125 0.4698800381570432
3 area==3 0.25 0.4330127018922193 0.3519041666666667 0.4496967129755863
4 area==4 0.16666666666666666 0.372677996249965 02761125 0.4185215452297154
5 area==5 1.0 0.0 0.6970666666666666 0.4196953191949786
6 area==6 1.0 0.0 0.5095083333333333 0.44290599868119873
7 area==7 0.0 0.0 0.33728749999999996 0.42796459756914207
8 area==8 0.3333333333333333 0.4714045207910317 0.5158208333333334 0.4653865805560875
9 area==9 0.5714285714285714 0.4948716593053935 0.5030708333333334 0.4784907042067487
10 area==10 0.7142857142857143 0.4517539514526257 0.573 0.46710975129089016
11 area==11 0.6666666666666666 0.4714045207910317 0.41322083333333337 0.4599518148279321
12 area==12 0.75 0.4330127018922193 0.6538708333333334 0.4411118768448208
13 area==13 1.0 0.0 0.5544166666666667 0.45309119534474834
14 area==14 0.6 0.48989794855663565 0.55285 0.46892861180223333
15 area==15 0.8 0.4 0.6163291666666667 0.4531046999892587
16 area==16 0.8571428571428571 0.3499271061118826 0.7622916666666667 0.3961666410059993
17 area==17 0.2 0.4 0.3976166666666666 0.456305570371935
18 area==18 0.0 0.0 0.22832083333333336 0.3829825069683864
19 area==19 1.0 0.0 0.6877208333333333 0.4270015025897263

Here we get to the left the estimates simply from the sample dataset — so for example for the first
area we get an estimate of 0 i.e. meaning everyone votes remain which is because the 5 people in
the sample voted remain. We see that the population estimate which takes into account
demographics suggests that in fact we might expect 24.2% of the population voting leave. In fact we
are in the fortunate position of having the actual voting decisions of all people in the population in
the population dataset and we can use this to see that in fact 22.5% voted leave so in this case the
estimate from the modelling is much better than the sample estimate. Similarly for area 2 we get
probability of voting leave of 0.5 from the sample (2 out of 4) with a higher model estimate of 0.521
(and in fact the truth was 0.675).

We can look at other outputs like the quantiles which looks as follows:
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1.0

— 10% quantile
— 25% quantile
— 50% quantile

75% quantile

0.8¢ —  90% quantile

voteleave
o
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o
S

0.2}

0.0

What we see here is in fact we have quite wide quantiles which are a little hard to interpret as the
underlying data is 0 and 1! It is probably easiest to think of these in terms of underlying probabilities
so for example for the median the first area appears to have an estimate below 0.1 and so we would
expect that the median person in the area here would most likely vote remain with only a small
probability of them voting leave.

We will leave this example now and in fact this ends this introductory practical on using Stat-JR for
small area estimation.
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