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Introduction 
This document describes two approaches to handling missing data in multilevel generalised linear 

models. The first described procedure uses ‘multiple imputation’ which is a widely used procedure 

that will handle a large number of models. A 2-level and N-level version are described with full 

running details. The second (one pass) approach is a more recent generalisation that will handle a 

wider range of models and is considerably faster with a more robust theoretical justification. See 

Table 1 for a summary of the main features of each of Stat-JR’s principal templates which handle 

missing data. 

The procedures are implemented in Stat-JR which is a software package that allows users, through 

its menu interface, to produce appropriate code and to run statistical models in a variety of 

packages. In addition it will fit models that are not readily available elsewhere. It operates through a 

series of ‘templates’ that communicate with the user and run models. In this document we describe 

three different templates for dealing efficiently with missing data in statistical models. These 

templates differ in terms of their relative speed of execution and the flexibility and generality of 

models that can be fitted. In due course they will be integrated into a single template that will be 

quite general. We will also refer to super-templates that are in effect templates that make 

considerable use of other templates for some of their procedures. 

All procedures use what is known as a ‘joint modelling approach’ as opposed to a conditional 

modelling or ‘chained equation’ approach. This has certain methodological advantages but it also 

tends to be computationally slower. The principal advantages lie in the ability to handle multilevel 

data, including variables defined at level 2 that have missing values, and (in the 

2LevelMissingOnePass template) the ability properly to handle interactions and polynomial terms in 

the user’s substantive model of interest (MOI). Readers are encouraged to consult Carpenter and 

Kenward (2013) and Goldstein, Carpenter and Browne (2014) for further details. 

  

http://www.bristol.ac.uk/cmm/software/statjr/
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Template 2LevelImpute NLevelImpute 2LevelMissingOnePass 

Methodology Multiple imputation (joint 
modelling approach) 

Multiple imputation (joint 
modelling approach) 

Fully Bayesian ‘one 
pass’ procedure† 

Multilevel 
structure 

Up to 2 levels Up to N levels (nested and/or 
cross-classified) 

Up to 2 levels 

Model of 
interest (MOI) 
response 
types 

Normal, binary, Poisson, 
multivariate Normal* 

Normal, binary, Poisson, 
multivariate mixed (Normal, 
binary, ordered, unordered; 
at any level / classification)* 

Normal, binomial, 
Poisson, negative 
binomial ¥ 

Imputation 
model 
response 
types 

Normal, binary, ordered, 
unordered 

Normal, binary, ordered, 
unordered 

Normal, binary 

Handles 
polynomial / 
interaction 
terms in MOI? 

No No Yes 

Allows for 
random 
slopes / 
coefficients in 
MOI? 

Yes, but for univariate 
response models only 

Yes, but for univariate 
response models only 

Yes 

Template 
dependencies 

1LevelMod 
1LevelMVMixedResponsecc 
1LevelMVNormal 
2LevelMod 
2LevelMVNormal 
2LevelRS 
CompleteCases 
Generate 
Merge 
Resp2LevelMVMixedResponsemvu 
Take 

1LevelMod 
1LevelMVMixedResponsecc 
1LevelMVNormal 
CompleteCases 
Merge 
NLevelMod 
NLevelMVNormal 
NLevelRS 
RespNLevelMVMixedResponsemvu 
Take 

N/A 

Table 1. Summary of the main features of Stat-JR’s three principal templates which handle missing data. 
† see: Goldstein, Carpenter & Browne (2014) for further details. 
* Poisson or binomial (cf. binary) can only be used if no missing data in these variables; see the ‘Imputation model 
response types’ row in the table for variable types for which missing data is allowed. 
¥ In the case of the 2LevelMissingOnePass template, if there are any missing values in the MOI response variable then that 
case will be automatically dropped. 

 

It is assumed that the user has a knowledge of the basics of methods for missing data using a joint 

modelling approach. If not, and for a general background overview visit the missing data web site 

http://missingdata.lshtm.ac.uk/ that has references to papers and recent developments. 

Some users will be familiar with the existing REALCOM procedures which fit essentially the same 

models as 2levelImpute (below) but Stat-JR provides a very much faster implementation.  

For details of how to install Stat-JR see http://www.bristol.ac.uk/cmm/software/statjr/order-statjr/ 

The Stat-JR interface we shall be using is known as TREE. Each of the three templates will be 

described in turn. For the first template, 2levelImpute, we shall go through the setting up in detail 

with an example dataset. The same dataset will be used for the following two templates where the 

description will be limited to those aspects where the setting up of the model differs.  

http://dx.doi.org/10.1111/rssa.12022
http://missingdata.lshtm.ac.uk/
http://www.bristol.ac.uk/cmm/software/realcom/
http://www.bristol.ac.uk/cmm/software/statjr/order-statjr/
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2LevelImpute 
This template will fit 2-level models where the model of interest (MOI) may be multivariate and the 

responses can be normal or categorical. It will produce a specified set of ‘completed’ datasets, with 

no missing values. Each of these completed datasets will contain randomly ‘imputed’ values where 

the original data were missing and for each of these the MOI is fitted and the separate results 

combined according to simple rules to produce a final set of parameters estimates together with 

estimated standard errors.  

1. Using the TREE interface 

2. Overview of inputs 

3. Worked example 

Using the TREE interface 
Below we have a screenshot from TREE, in which we have selected the template 2LevelImpute and 

the dataset tutmiss (as used in this example), and have started to specify our inputs. For details of 

how to select templates and datasets when using Stat-JR’s TREE interface, see A Beginner’s Guide to 

Stat-JR’s TREE interface (see http://www.bristol.ac.uk/cmm/software/statjr/manuals/). 

 

You can, of course, upload your own dataset in TREE as well. If it is already saved as a .dta (STATA) 

file, then you can do so via the black menu bar at the top of the screen. Choose (i) Dataset > Upload, 

which will upload it into the temporary memory cache, or by (ii) saving your dataset in the 

StatJR/datasets folder, and then selecting Debug > Reload datasets (see top-right of the screen). If, 

instead, you have it (iii) saved as a .txt file, you can use Stat-JR's LoadTextFile template to save it into 

the temporary memory cache. In the case of option (i) and (iii) the dataset will be available for use in 

the current session, but you then need to download it (as a .dta file) via Dataset > Download (e.g. 

saving it into the StatJR/datasets folder) for use in the future sessions too. 

In the next screenshot, we have specified all the inputs, and after pressing the Next button a final 

time the Run button will appear, along with some other outputs in the pane at the bottom of the 

browser window (not shown here). 

http://www.bristol.ac.uk/cmm/software/statjr/manuals/
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Overview of inputs 

Here we give a brief overview of the inputs that have led to the above screen display.  Stat-JR 

requires these in order to run the 2LevelImpute super-template: 

Multilevel or not? 

• You are first asked if either the model of interest (MOI) and/or imputation model has two 

levels (or just one). In general, you would want to fit the same number of levels in your 

imputation model as in the MOI, but there may be some situations where for simplicity, for 

example where the level 2 random effects are small, the MOI might be a single level model, 
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but you would still wish to fit a 2-level imputation model. In such a case you will still need to 

specify the level 2 ID. 

About your MOI 

• You are then asked a few questions about the structure of your MOI, including whether it is 

a 2-level model or not (see note, above), the distribution you would like to use for the 

response variable, whether you would like to fit a random slope (or coefficient) model or not 

(if applicable), and your response and explanatory variables. The variables are referred to by 

their names. 

About your imputation model 

• After that, you are prompted for the level 1 variables to be used as responses in the 

imputation model, and to specify their distribution and explanatory variables for each one. 

Then, if applicable, you are asked about the variables at level 2 in the imputation model as 

well. 

• Typically these response variables are any that have missing values. Those variables without 

missing values, if they are to be used in the MOI, can be declared as either response or 

explanatory variables in the imputation model. In addition you may wish to include 

'auxiliary' variables (not in the MOI) in the imputation model if these are associated with the 

propensity to be missing, but not relevant to the MOI. 

• You may have a different set of explanatory variables for each response. This may be useful 

where you wish to have auxiliary variables relevant to certain responses only. 

Estimation options 

• Finally, you are asked various questions about the estimation procedures, including the 

number of imputed datasets to use, the number of iterations before the first imputation 

(this is setting the interval between adaptation ending and the first imputation, i.e. it 

effectively sets the burn-in but is nevertheless included in diagnostics returned to aid model-

checking), the interval between subsequent iterations (if parallel chains are run, then only 

the 1st imputation is used; if not parallel chains (i.e. if fewer processors than imputed 

datasets requested), then this input question pertains to the interval at which iterations are 

subsequently sampled from the chain) and, for the MOI, the burn in and number of 

iterations. The choice of number of completed datasets is a topic on which much has been 

written. It is commonly not less than 5, and may be as high as 20 or more, especially for 

multilevel data, depending on the amount and pattern of missing values. See Carpenter and 

Kenward (2013) for further discussion. 

Note that all variables are stored as vectors of the same length as those in the full data set. Where 

these are declared as level 2 variables the first one in each level 2 unit is chosen. In fact the 

template checks to determine whether such values are actually constant within each level 2 unit 

and the user will be notified if not. 
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A worked example 

Dataset 

In the following example we will consider the tutorial dataset that has been used many times as an 

example of a 2-level educational dataset. See the MLwiN manual (Rasbash et al, 2014) 

The dataset consists of a sample of records of school achievement for 4059 pupils within 65 schools - 

some missing values have been randomly introduced.  

The dataset (saved as tutmiss) is summarised in the table below. 

Column name N Missing Min Max Description 

school 4059 0 1 65 Numeric school identifier 

student 4059 0 1 198 Numeric student identifier 

normexam 4059 0 -3.67 3.67 Students' exam score at age 16, normalised to have 
approximately a standard Normal distribution. 

cons 4059 0 1 1 A column of ones. If included as an explanatory 
variable in a regression model, its coefficient is the 
intercept. 

standlrt 4059 0 -2.93 3.02 Students' score at age 11 on the London Reading 
Test (LRT), standardised using Z-scores. 

girl 4059 0 0 1 Students' gender: 0=boy; 1=girl 

schgend 4059 0 1 3 School gender: 1=mixed; 2=boys' school; 3=girls' 
school 

avslrt 4059 0 -0.76 0.64 Average LRT score in school 

schav 4059 0 1 3 Average LRT score in school, coded into 3 
categories: 1=bottom 25%; 2=middle 50%; 3=top 
25% 

vrband 4059 0 1 3 Students' score in test of verbal reasoning at age 
11, coded into 3 categories: 1=top 25%; 2=middle 
50%; 3=bottom 25% 

schgendmiss 4059 439 0 2 As schgend (although 0=mixed; 1=boys’ school; 
2=girls’ school), but with missing values randomly 
introduced 

avslrtmiss 4059 431 -0.76 0.64 As avslrt, but with missing values randomly 
introduced. 

standlrtmiss 4059 400 -2.93 3.02 As standlrt, but with missing values randomly 
introduced. 

girlmiss 4059 435 0 1 As girl, but with missing values randomly 
introduced. 

nonmixedmiss 4059 439 0 1 As schgendmiss, but transformed such that 
0=mixed; 1=single sex school. 

Working through the inputs 

In this guided example, using the dataset described above, we will be fitting a 2-level model. 

1. Specifying the number of levels, and structure of MOI 

• First you will be asked if either the MOI or imputation model has two levels; we're going to 

fit a 2-level MOI, so will answer Yes. 

• Note that normally you will wish to have the same number of levels or classifications for the 

MOI and the imputation model. In some situations, however, for example if level 2 effects 

are very small, you may want to fit a 1 level MOI for simplicity, while still carrying out 
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imputation at 2 levels. If either the MOI or the imputation model is at 2 levels, you will be 

asked for the level 2 ID. 

• You will then be asked to enter the level 2 ID, which in this example is school; this will be 

used in the MOI and/or imputation model, as appropriate. 

 

• Next, you will be asked a series of questions about your MOI model: whether you want to 

model 1 or 2 levels (we're modelling 2 levels in this example), the distribution you would like 

to use to model the response variable in your MOI (Normal, in our example), and finally 

whether you would like to fit random slopes / coefficients or not (we'll answer No; note, as 

indicated in the hover-over help available for this input, if you would like to fit a random 

slope/coefficient(s) model, make sure that you include the response(s) in your MOI, and the 

variables whose coefficients you wish to randomly-vary at level 2, as responses in the 

imputation model). 

 

• The 2LevelImpute template takes this input, and uses it to choose the best Stat-JR template 

to fit your MOI. If you make the choices suggested above, it will choose a template called 

2LevelMod, which fits random intercept models for Normal, binomial and Poisson 

responses. 

2. Specifying the variables in the MOI  

You will then be asked for the response and explanatory variables for the MOI. In this worked 

example we suggest a simple 2 level variance components model with: 

• normexam as the response; 

 

• cons, schgendmiss, standlrtmiss and girlmiss as explanatory variables (as you click on these 

you'll see that they appear in the box beneath; to deselect any chosen in error, simply click 

on the variable name in the lower box); remember to specify that schgendmiss is categorical 

(you can do so by using the checkboxes which appear below the input box when you select 

your explanatory variables). 

3. Specifying the imputation model 

Once you have specified the MOI, you will then, for each level, be asked to enter the responses for 

the imputation model; we'll work through each of the two levels in the sections below. 

• Note that all explanatory variables in the imputation model must have no missing values - if 

any variable does, then include it as a response. The default missing value code is -

9.999*1029 
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Level 1 

• Given our MOI, we suggest the response variables normexam, standlrtmiss and girlmiss for 

level 1; you'll then need to specify their distributions, here as Normal, Normal, and Binary, 

respectively. 

• You will also be asked to enter the explanatory (predictor) variables for each of these as 

follows:  

o for normexam just use an intercept cons; 

 

o for standlrtmiss use cons and also vrband (making sure that you tick the box that 

asks whether vrband should be treated as categorical - this will then use appropriate 

dummy variables where the final category is taken as the reference) – see note 

below. This implies that vrband is being treated as an auxiliary variable that may be 

associated with the propensity for standlrtmiss values to be missing (it is measured 

around the same time at age 11 for the children).  

 

o for girlmiss use cons. 

• Since we have in fact selected values to be missing purely at random the use of a second 

predictor for standlrtmiss is not necessary, but you can include it to demonstrate that, as an 

auxiliary variable (not in the MOI) it can be used to help ensure missingness at random 

(MAR).  

• Finally, you'll be asked if there are any responses at level 2 for the imputation model; we'll 

answer Yes. 

Level 2 

• Next, you'll be asked to enter the responses for the imputation model at this level, that is for 

any variables defined at level 2 that have missing data.  We suggest using the variable 

schgendmiss which is coded 0 for mixed schools, 1 for boy's school and 2 for girl's school: i.e. 

when asked, indicate that it has an Unordered distribution, with 3 categories (note, as 

indicated in the hover-over help available for this input, your categories, as represented in 

your dataset, need to be numbered from zero, sequentially in steps of one (i.e. 0,1,2 if you 

had 3 categories); if they are not, an error message will be returned). 

• You will then be asked for explanatory variables for each category dummy - we suggest you 

use cons for each. 

• Note: If we have a response at level 2, it is not meaningful, in general, to have explanatory 

variables at level 1. So you should not specify these for any level 2 responses in the 

imputation model. You may, of course, specify level 2 explanatory variables for level 1 

responses in the imputation model: this may be particularly useful for auxiliary variables.  
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A note about the latent normal model 
 

Multiple imputation theory based upon the joint distribution of the variables with missing values, 
strictly applies only where these have a joint multivariate normal. Where we have categorical data 
this is clearly not the case and we therefore use a latent normal formulation (See: Goldstein, H., 
Carpenter, J., Kenward, M. and Levin, K. (2009). Multilevel models with multivariate mixed 
response types. Statistical Modelling, 9(3), 173-197). This works as follows: 
 

• For a binary response we utilise a probit model where we assume that the (0,1) response 
is derived from an underlying standard normal distribution with a mean value 
(determined by whatever explanatory variable predictors are in the imputation model for 
this response) that acts as a threshold - values above which are observed as a '1' and 
below which as a '0'. The MCMC algorithm incorporates a step that takes a random draw 
from the corresponding part of the standard normal distribution according to whether a 
'1' or '0' is observed. 

• For an ordered categorical response a similar procedure is used with additionally a set of 
thresholds defined on the standard normal scale that delineate the ordered categories. 
 

• For an unordered categorical variable with p categories a (p-1) dimensional multivariate 
normal distribution is generated. 
 

• For each of these normal draws we condition on the other responses (and any 
explanatory variables) so that a joint multivariate normal is finally generated. 
 

 

4. Specifying the number of iterations, etc., and fitting the model 

• Next, you will be asked if you want to use the conditional algorithm or not; we suggest 

answering Yes, since the conditional algorithm is faster. 

 

• You will then be asked to specify the number of imputed datasets to use, the number of 

iterations before the first imputation, and the number of iterations between subsequent 

iterations. For the MOI you will then be asked for the burn in and number of iterations. 

Obviously the numbers you enter here will depend on the characteristics of your data, etc. 

• After clicking on the last Next button, click the Run button if using the template via the Stat-

JR:TREE interface. The template will then run (the progress gauge in the black bar will 

change from Ready to Working to indicate it is busy). 

If your computer has more than one core processor, the imputation models and associated MOIs will 

in fact be run with parallel chains.  

Inspecting the results 

Once it has finished, and all the results have been returned, you can view the output files in the pane 

towards the bottom of the browser window, or press ‘Popout’ to view the selected output in 

another browser tab (see below for details of the various outputs returned). 

http://dx.doi.org/10.1177/1471082X0800900301
http://dx.doi.org/10.1177/1471082X0800900301
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For example, to view the imputed datasets, choose 

"Imputation_Model_impute_datafile_chain0_iter1000", 

"Imputation_Model_impute_datafile_chain1_iter1000", etc. Note that the nomenclature here will 

depend on both the inputs you have chosen, and the number of processors on your machine. For 

example, if you choose: 

• Number of imputed data sets: 5 

• Number of iterations before first imputation: 1000 

• Number of iterations between subsequent imputations: 500 

on a machine with four processors, you would see: 

• "...chain0_iter1000" 

• "...chain1_iter1000" 

• "...chain2_iter1000" 

• "...chain3_iter1000" 

• "...chain0_iter1500" 

• "...chain1_iter1500" 

• "...chain2_iter1500" 

• "...chain3_iter1500" 

Here it has ran a chain / thread on each of the four available processors, and derived a dataset from 

each after the 1000th iteration However, since this number is less than the requested 5 imputed 

datasets asked for, it has also constructed four more datasets following a further 500 iterations 

(since I specified Number of iterations between subsequent imputations: 500). However, it will only 

use the first of these ("...chain0_iter1500") to make up the five datasets it needs. 

The imputed datasets are available in the list of datasets accessible via Dataset > Choose in the black 

bar at the top. You can download these (as Stata format *.dta files) by first selecting the relevant 

dataset from the list, pressing the neighbouring Use button, and then downloading via Dataset > 

Download (again via the black bar at the top; note that both 

Imputation_Model_impute_datafile_chain0_iter1000, etc. and impute_datafile_chain0_iter1000, 

etc. will appear in this list, but there's no need to download both (they're the same, but simply saved 

twice, with and without the Imputation_Model prefix; also, don't confuse these with the level 2 

datasets (e.g. impute__L2Data_chain0_iter1000 or 

Imputation_Model_impute__L2Data_chain0_iter1500). 

Alternatively, one can press the green Download button to download all these outputted files (now 

supported for the 2LevelImpute template from Stat-JR version 1.0.3 onwards). Note that this may 

take some time, as Stat-JR prepares all the outputs for downloading; you may see a flurry of activity 

in the corresponding command prompt window as it does so. Note also that the downloaded 

dataset files lack the .dta file extension, so this will need to be added manually. 

Note that if you wish to rerun the model, perhaps with some changes, then you can repopulate your 

input values with those you used from a previous run as shown in the grey boy titled “Current input 
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string”.  To access this string, select Template > Set inputs (via the black bar at the top) and then 

select the particular template execution you wish to revisit from the list under “History”, and then 

press the Use button; you will then see the input values repopulated with your earlier choices (note 

that it is advisable to first clear your current input values by pressing Start again via the black bar at 

the top). You can edit the selected input string in the Set inputs dialogue box – e.g. to change a 

particular input value – prior to pressing Use. 

What is returned in the results pane? 

ResultsTable:Imputation 

Estimates generated using Rubin's rules 

ResultsTable:CompleteCases 

Estimates from a complete cases model which is simply run for comparison. Since, in the worked 

example above, the data were set missing at random we would not expect the estimates to differ 

much from the estimates returned in ResultsTable:Imputation, although the standard errors tend to 

be increased for the complete case analysis where 30% of the records have at least one variable in 

the MOI missing and have been deleted. 

Imputation_Model_ModelParameters; Imputation_Model_ModelResults 

For this template these outputs return the same information (because there's no DIC) 

Objects with prefix CompleteCasesModel 

Everything with prefix CompleteCasesModel refers to the complete cases model which is simply run 

for comparison. Most of these files won't be of much interest, although estimates from the 

complete cases model can be found in CompleteCasesModel_ModelParameters, 

CompleteCasesModel_ModelFit and CompleteCasesModel_ModelResults. 

Imputation_Model_impute_datafile_chainA_iterB 

Imputed level 1 datasets. As discussed above, the nomenclature here (i.e. for 'A' and 'B') will depend 

on both the inputs you have chosen, and the number of processors on your machine. 

Imputation_Model_impute__L2Data_chainA_iterB 

As above, but at level 2. 

Imputation_Model_out 

Chain dataset for the imputation model, length of which will depend on the estimation options 

chosen (replicated as out in the list of datasets). 

CombinedResults 

Chains for each imputation model, we 'pretend' that each MOI from each imputed dataset is a chain 

from a multiple chain model, which allows us to combine them to derive diagnostic graphs. 

Objects with the prefix Model1, Model2, etc. 

Everything with the prefix Model1, Model2, etc. (up to the number of imputed datasets requested), 

relates to the fitted MOI models (they are the outputs from the Stat-JR template called by 

2LevelImpute when it fits the MOI towards the end of the execution). 
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*.svg 

MCMC diagnostic plots. The top-left graph shows the values plotted against iteration number, and is 

useful to confirm that the chain is mixing well, meaning that it visits most of the posterior 

distribution in few iterations. The top-right graph contains a kernel density plot representing the 

posterior distribution for this parameter. The two graphs in the middle row are time series plots 

known as the autocorrelation (ACF) and partial autocorrelation (PACF) functions. The ACF indicates 

the level of correlation within the chain; this is calculated by moving the chain by a number of 

iterations (called the lag) and looking at the correlation between this shifted chain and the original. 

The PACF picks up the degree of auto-regression in the chain. Ideally the Markov chain should act 

like an autoregressive process of order 1. If, for example, in reality the chain had additional 

dependence on the past 2 values, then we would see a significant PACF at lag 2. The bottom-left plot 

is the estimated Monte Carlo standard error (MCSE) plot for the posterior estimate of the mean. As 

MCMC is a simulation-based approach this induces (Monte Carlo) uncertainty due to the random 

numbers it uses. This uncertainty reduces with more iterations, and is measured by the MCSE, and 

so this graph details how long the chain needs to be run to achieve a specific MCSE. The sixth 

(bottom-right) plot is a multiple chains diagnostic: a Brooks-Gelman-Rubin diagnostic plot (BGRD; 

Brooks and Gelman, 1998). This plot looks at mixing across the chains: the green and blue lines 

measure variability between and within the chains, and the red is their ratio. For good convergence 

the red line should be close to 1.0. 

 

Note that the diagnostics the 2LevelImpute template automatically returns are derived in different 

ways: it returns separate trace plots (on the same graph) for each chain, separate kernel density 

plots (on same graph) for each chain, it joins together the chains for the ACF, PACF and MCSE, but 

treats the chains separately for the BGRD (which is a multiple chains diagnostic); it also adds 

together the ESS value for each chain to derive the ESS value returned in the results. 

script.py 

This is the internal script, written in Python, which runs the execution you have requested. 

*.cpp 

C++ code fragments used to fit the model. 

Inputs 

A list of inputs for internal purposes. 

Imputation_Model_equation.tex 

Currently not implemented for this template, but in some other templates this returns a LaTeX 

rendering of the model equation. 

Imputation_Model_algorithm.tex 

Since this template executes via custom C code, this isn't terribly informative here, but in some 

other templates it returns the algebra for the conditional posterior distributions. 

Imputation_Model_Chains 

An object used for internal purposes, doesn't actually render anything if selected in the output pane. 
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NLevelImpute 
This template is a direct generalisation of 2LevelImpute. However, we further allow, in the model of 

interest, a multivariate response with mixed types (Normal, binary, ordered and unordered 

categorical) at any higher-level classification that has been specified. If a response only at level 1 is 

specified, then the following choices are available: multivariate Normal, univariate Normal, binomial 

and Poisson. It is planned to remove this restriction on the response types in a later release. 

The data input and output follow the same pattern, but now the user will be asked for the number 

of levels (classifications) and a set of questions about the variables to be imputed for each level. 

Note that we use the term classification to include cross classified units as well as higher levels, so 

that these can also be fitted in this template.  

We shall not therefore discuss this template in detail. Note, however, that it has not been as widely 

tested as 2LevelImpute, and the STAT-JR team will be very happy to receive comments and 

questions, which can be posted to the Stat-JR forum (accessible via 

https://www.cmm.bristol.ac.uk/forum/) or using the bug report form, if appropriate 

(https://www.cmm.bris.ac.uk/clients/bugreport/). 

2LevelMissingOnePass 
We now describe a template that will deal with 2-level data having missing values, and will also 

handle interaction and power terms properly.  Rather than producing a set of completed, imputed 

value, datasets to which the MOI is fitted, at each iteration of the MCMC algorithm it estimates both 

the imputation model and the MOI, resulting in both a chain of imputed values and a chain for the 

parameters of the MOI. The latter are what the user requires for inference, and the former may also 

be used if, for example, some secondary data analysts require a set of imputed datasets.  

In what follows we will describe the use of this where there is missing data in level 1 variables. The 

template will also handle level 2 variables with missing values and an outline example is given in the 

Appendix, along with a brief technical description of the algorithmic steps used by the estimation 

algorithm. 

We shall illustrate the use of 2LevelMissingOnePass by going through fitting an example which 

includes an interaction thus: 

 

First of all select the 2LevelMissingOnePass template and the tutmiss dataset. 

The following screen will appear: 

https://www.cmm.bristol.ac.uk/forum/
https://www.cmm.bris.ac.uk/clients/bugreport/
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We shall not go through all the set up process (although you can see all the responses we have made 

in the screenshot further below); we will fit the same model as before with the addition of an 

interaction term between girlmiss and standlrtmiss. We now explain how the MOI is specified and 

how polynomials and interactions are included. 

Specifying the variables in the MOI 

You will be asked a series of questions about which explanatory variables you would like to include 

in your MOI. 

When choosing your explanatory variables for your MOI, note that the imputation model currently 

only supports normal and binary variables as responses; therefore only models of interest which 

have missing data in normal and binary variables (i.e. not in other categorical variables) are suitable 

for use with this template. You can fit other variable types (categorical) in the MOI but: 

a. these should appear as covariates (not responses) in the imputation component of the 

model; 

b. they must have no missing values; 

c. you will need to generate dummy variables for them yourself prior to their use with this 

template. 

Polynomials 

You will first be asked if there are any covariates with polynomial terms. 

• Note that, for a given variable (e.g. MyVar), if you wish to fit MyVar^2 and MyVar^3 (i.e. 

quadratic and cubic terms) you would need to request 2 polynomial terms here, and then 

separately specify each below (i.e. to maximise user control, lower-order powers are not 

automatically fitted on your behalf).1 

Interactions 

Having specified any polynomial terms, you're then asked how many interaction terms you would 

like. 

• Note that again, you need to specify all interaction terms separately. E.g. if you had a three-

way interaction (between MyVar1, MyVar2, MyVar3), and wished to respect marginality 

                                                           
1 E.g. if we wished to investigate a nonlinear effect of standlrtmiss by including its square then we would 
answer 1 for Number of polynomial terms, then choose standlrtmiss as Variable A, and enter 2 when asked 
for the Power for variable A. 
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and fit the lower-order two-way interactions as well (between: MyVar1 and MyVar2; 

MyVar1 and MyVar3; MyVar2 and MyVar3) you would need to request 4 interaction terms, 

and specify each separately when prompted by the subsequent input questions. 

• In the example of the tutmiss dataset, we might be interested in the interaction of 

standlrtmiss and girlmiss, for instance. In that case we would enter 1 for the Number of 

interaction terms and then choose standlrtmiss and girlmiss as the Variables to include in 

interaction term 1. 

Explanatory variables 

You will next be asked for the explanatory variables for the MOI. If you had earlier specified any 

polynomial and interaction variables they will be available for inclusion in the model. Also, if 

applicable (i.e. if earlier indicated that there is a higher level in the MOI) you will be asked for 

random coefficients at level 2 (you will need to include the intercept term if the intercept is to 

randomly vary). 

Specifying the responses for imputation 

Once you have specified the MOI, you will then be asked to choose your responses for the 

imputation component, and indicate their distribution and explanatory variables. Note that 

explanatory variables in the imputation component should have no missing values and should not 

include variables that are already specified for the model of interest. 

Note the following: 

1. The imputation component allows level 1 and level 2 variables as responses. If you indicate 

that you do have higher-level responses in the imputation model you will then be asked for a 

level 2 dataset (see note earlier in this section); 

2. Variables having missing values can only be normal or binary variables; 

3. You should not include the MOI response variable in the imputation model since it already 

appears as part of the model in the MOI component – if there are any missing values in the 

MOI response variable then that case will be automatically dropped; 

4. Note that if you have earlier specified polynomial and/or interaction terms then they won't 

be available for you to choose as part of the imputation model.  

For our example, the final screen with the model set up is as follows (with the input string quoted 

first): 

{'D': 'Normal', 'makepred': 'No', 'storeresid': 'No', 'x2vars': 'cons', 'priors2': 'Uniform', 'nchains': '3', 

'defaultalg': 'Yes', 'iterations': '2000', 'outdata': 'out', 'ximp2': 'cons', 'ximp1': 'cons', 'bin1': 'Normal', 

'seed': '1', 'numpoly': '0', 'defaultsv': 'Yes', 'imputeiters': '0', 'L2ID': 'school', 'burnin': '500', 'xinter0': 

'standlrtmiss,girlmiss', 'numinter': '1', 'L1resp': 'Yes', 'xvars': 

'cons,standlrtmiss,girlmiss,standlrtmiss*girlmiss', 'L2imp': 'Yes', 'L2resp': 'No', 'thinning': '1', 'yimp': 

'standlrtmiss,girlmiss', 'y': 'normexam', 'priorsint': 'Uniform', 'L2int': 'Yes', 'L2IDimp': 'school', 'bin2': 

'Binary'} 
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After clicking Run the output estimates (via ModelResults in the results output pane) are as follows: 

 

We see that these are essentially the same as we had before, allowing for the fact that we have also 

fitted an interaction (which is not statistically significant at the 5% level). Note omega_uint_0 is the 

level 2 variance (i.e. 𝜎𝑢
2; the ‘int’ refers to the model of interest). Again, we have diagnostics 

available in the form of MCMC chains. Note that should you wish to see the estimates of any of the 

coefficients in the imputation component, then these are accessible via modelparameters.dta. 

In the current version, DIC statistics are not available. 

You may find that the program crashes. We are interested to know about such occurrences (see 

above) but please first of all check that your model is a sensible one! 
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Appendix 

Example 
Suppose now that we have one or more level 2 variables in our model of interest that have missing 

values. As with level one variables with missing values these should either be normal or binary. If 

you specify that you wish to have higher level responses in the imputation model then you will be 

asked for a ‘level 2’ dataset where each record is at level 2 and contains any relevant level 2 

explanatory variables and also those level 2 variables having missing data. 

To illustrate we use the dataset tutmiss_lev2; a summary is as follows 

Name Count Missing Min Max Mean SD 

school 65 0 1.00 65.00 33.00 18.76 

cons 65 0 1.00 1.00 1.00 0.00 

schgend 65 0 0.00 2.00 0.62 0.74 

avslrt 65 0 -0.76 0.64 -0.03 0.34 

schav 65 0 0.00 2.00 0.71 0.80 

schgendmiss 65 7 0.00 2.00 0.74 0.88 

avslrtmiss 65 7 -0.76 0.64 -0.03 0.35 

nonmixedmiss 65 7 0.00 1.00 0.45 0.50 

 

We see that there are three variables with missing data: the average school LRT score (avslrtmiss), 

and two variables relating to whether schools are single sex or not (schgendmiss and 

nonmixedmiss). The former categorises schools as either mixed, boys’ schools or girls’ schools, 

whilst the latter is simply a binary transformation of that (indicating whether or not the school is 

mixed or single sex) and is included in the dataset should the user wish to explore fitting models to 

categorical level 2 variables (since we can only utilise binary variables with missing values). Note that 

we also have these same variables (or variables from which they are otherwise derived) in their non-

missing versions; missing values have been introduced completely at random. 

We fit a simple model with normexam as response and girlmiss, standlrt and avslrtmiss as 

predictors, i.e. with just one variable at level 1 and one variable at level 2 having missing values. 

Note that we could have fitted standlrtmiss (standlrt with missing values) to give two variables with 

missing data at level 1. However, while this model can be estimated, we find that the results are 

somewhat unstable since the level 2 variable is in fact calculated as the average of the level 1 values 

yet we separately estimate imputed values for the level 2 where missing, rather than averaging from 

the imputed level 1 values. In future versions of the software such a possibility will be allowed. The 

input string (see earlier), and MOI parameter estimates are as follows: 

{'imputeiters': '0', 'L2int': 'Yes', 'D': 'Normal', 'storeresid': 'No', 'L2IDimp': 'school', 'x2vars': 'cons', 'y': 

'normexam', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'ximp2_1': 'cons', 'outdata': 'out', 

'burnin': '500', 'ximp1': 'cons', 'seed': '1', 'numpoly': '0', 'defaultsv': 'Yes', 'L2Data': 'tutmiss_lev2', 

'L2ID': 'school', 'yimp2': 'avslrtmiss', 'numinter': '0', 'L1resp': 'Yes', 'makepred': 'No', 'L2imp': 'Yes', 
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'L2resp': 'Yes', 'thinning': '1', 'yimp': 'girlmiss', 'priors2': 'Uniform', 'priorsint': 'Uniform', 'bin1': 

'Binary', 'bin2_1': 'Normal', 'xvars': 'cons,standlrt,girlmiss,avslrtmiss'} 

parameter mean sd ESS   

beta_0 -0.08442 0.042128 441 cons 

beta_1 0.557172 0.012613 5589 standlrt 

beta_2 0.169034 0.033923 2046 girlmiss 

beta_3 0.273155 0.119529 295 avlrtmiss 

omega_uint_0 0.086238 0.018993 2783   

sigma2 0.562936 0.012586 5634   

 

You can verify these values correspond closely to those that are obtained from the non-missing 

dataset. 

An outline of algorithm steps 
We set out here the steps involved with imputing missing values and estimating the parameters of 

the imputation models. At each MCMC iteration, given the imputed values the steps for the 2-level 

model of interest are standard. 

To illustrate the steps we shall use a simple model as follows: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑗 + 𝑢0𝑗 + 𝑒0𝑖𝑗     A1 

Where both explanatory variables are normally distributed and have missing values, so that the 

imputation components are: 

𝑥1𝑖𝑗 = 𝛼0 + 𝑢1𝑗 + 𝑒1𝑖𝑗             𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2)     A2 

𝑥2𝑗 = 𝛼1 + 𝑢2𝑗         A3 

(

𝑢𝑜𝑗

𝑢1𝑗

𝑢2𝑗

) ~ 𝑁 (

𝜎𝑢0
2

0 𝜎𝑢1
2

0 𝜎𝑢12 𝜎𝑢2
2

)       A4 

We note that the level 2 random effect in the MOI is independent of those in the imputation 

components – this is essentially the standard assumption of endogeneity. 

When the template displays the estimated model parameters, the 𝑢𝑜𝑗 are designated as ‘uint0_n’ 

where n indexes the 65 level 2 units numbered in this case 0,….,64. The 𝑢1𝑗 are designated ‘u0_n’ 

where n again indexes the 65 level 2 units numbered in this case 0,….,64. The estimate for 𝛼0 is 

designated ‘beta2imp_0’. The parameter 𝜎𝑢0
2  is designated as ‘omega_uint_0’ and the (2 x 2) 

covariance matrix elements  𝜎𝑢1
2 , 𝜎𝑢12, 𝜎𝑢2

2  are designated as ‘omega_u_0’,  ‘omega_u_1’ , and 

‘omega_u_2’  respectively. The estimate of 𝜎𝑒
2 is designated as ‘sigma2’.  

 The sampling steps involve updating the level 2 covariance matrix for the imputation components, 

updating the level 1 and level 2 variances from the MOI, and updating the fixed coefficients in A1-A3 

utilising the appropriate variance and covariance elements, and sampling level 2 effects. All of these 
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can use Gibbs steps, and there are metropolis steps for each of the missing values in turn, using A1-

A2 and A1-A3. 

 

 


