A Beginner’s Guide to
Stat-JR’s TREE Interface
version 1.0.4

Programming and Documentation by

William J. Browne*, Christopher M.J. Charlton*, Danius T.
Michaelides**, Richard M.A. Parker*, Bruce Cameron¥*,
Camille Szmaragd®*, Huanjia Yang**, Zhengzheng Zhang*,
Harvey Goldstein*, Kelvyn Jones*, George Leckie* and Luc
Moreau**

*Centre for Multilevel Modelling,
University of Bristol, UK.
**Electronics and Computer Science,

University of Southampton, UK.

June 2016

A Beginner’s Guide to Stat-JR’s TREE interface version 1.0.4

© 2016. William J. Browne, Christopher M.J. Charlton, Danius T. Michaelides, Richard M.A.
Parker, Bruce Cameron, Camille Szmaragd, Huanjia Yang, Zhengzheng Zhang, Harvey
Goldstein, Kelvyn Jones, George Leckie and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, for any
purpose other than the owner’ s personal use, without the prior written
permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

1.

ADOUL SEAT-JR. .ttt e e s e e e s b e e bt e e s be e e nn e e s reesreeesareeenne 4
1.1 Stat-JR: software for scaling statistical heights........cccccoveiiiiiiiiii i, 4
1.2 AbOoUt the BEGINNEI'S BUIAE ..ueiiiciiiee ittt ettt e e et e e e ette e e e ebte e e s ebaeeeseabaaeeenanes 6

Installing and Starting Stat-JRccviiiiiiieie et e e et e e et e e e st e e e e nreeeean 6
2.1 Lo T = T =] =Y 1 USSR 6
2.2 The use of third party software and [ICENSES......c.ueiiviciiiiiiciee e 6
2.3 STArTING UP TREE ...ttt ettt ettt e e e ettt e e e e e s st e e e e e e e s e e s sanbeteeeeeesesasnseaaeeens 6
2.4 The structure and layout of the TREE iNterface......coccveeiieciiii et 7

Application 1: Analysis of the tutorial dataset using the eStat engine.......cccccceeecvveeecciveeeeccineenn. 19
3.1 Summarising the dataset and graphsccueeieeiiie e e 19
3.2 SINGIE-1EVEI REEIESSION.......viiii ittt ettt et e e et e e e e e bt e e e s ebte e e e ebeeeeeebteeeessraeeesnnes 24
3.3 MUILIPIE Ch@iNS .t s 30
3.4 Adding gender to the MOdelcociiiiiiiiiieieee et 31
3.5 [[aTo [Te [Ta Y Yol s Vo To] =] i =Tt £ USSP 33
3.6 (07110 o1 =T] o} A USSP 35

Interoperability — a brief iINtrodUCtiONcociiii i e e 37
4.1 So why are we offering interoperability?cceeiivciiii i 37
4.2 Regression in @Stat reViSItEdciuiiii i 38
4.3 Interoperability With WINBUGS.........cooiiiiiiiiiiecece ettt esree e e vee e s abee e s 40
4.4 Interoperability With OPENBUGSccoeiiiieeee e e e et e e 43
4.5 Interoperability With JAGSooo e e e e e e b e e e areeas 45
4.6 Interoperability With MLWINcccouiiiieecee e e e e e e e 47
4.7 Interoperability With R......coo e bee e e e 50
4.8 Interoperability With AML.........ooi e e e e sree e s e e e s aaeeas 54

Application 2: Analysis of the Bangladeshi Fertility Survey dataset........cccccceevviiieiiiieeeciiieenn, 55
5.1 The Bangladeshi Fertility Survey dataset........cccccuvieiiciiiie et e 55
5.2 Modelling the data using l0giStiC re@EreSSIONccccuueieeciiie e e e e 56
5.3 Multilevel modelling of the data.........cccuueieeiiiie e e e 60
5.4 Comparison between software Packages.......ccvviiciieiiiciiee e 64
5.5 Orthogonal ParameteriSatioNcccuueii i e e e s e rbae e e e aaeeas 68
5.6 Predictions from the MOdelcoiiiiiiiiiiee e 72

Miscellaneous other topics e.g. Data INPUL/EXPOrt........coovieiceeeeiieeeeee et et e 75
6.1 If your dataset is already in .dta fOrmatccueeeeiiie i e e 75
6.2 If your dataset is in Xt fOrmatc.uveiieiieeec s 75

7
8
9

6.3 Converting your dataset to .dta format........cccceeeieecciiiee e

RETFEIENCES ..ottt e e e e e ettt s e e e ee et e s b s e seeseeasaaaseseesesesssaasnsesseenenes

Acknowledgements

The Stat-JR software is very much a team effort and is the result of work funded initially under three
ESRC grants: the LEMMA 2 and LEMMA 3 programme nodes (Grant: RES-576-25-0003 & Grant:RES-
576-25-0032) as part of the National Centre for Research Methods programme, and the e-STAT node
(Grant: RES-149-25-1084) as part of the Digital Social Research programme. The work has continued
with the ESRC grant ES/K007246/1.

We are therefore grateful to the ESRC for financial support to allow us to produce this software.

All nodes have many staff that, for brevity, we have not included in the list on the cover. We
acknowledge therefore the contributions of:

Fiona Steele, Rebecca Pillinger, Paul Clarke, Mark Lyons-Amos, Liz Washbrook, Sophie Pollard,
Robert French, Nikki Hicks, Mary Takahama and Hilary Browne from the LEMMA nodes at the Centre
for Multilevel Modelling.

David De Roure, Tao Guan, Alex Fraser, Toni Price, Mac McDonald, lan Plewis, Mark Tranmer, Pierre
Walthery, Paul Lambert, Emma Housley, Kristina Lupton and Antonina Timofejeva from the e-STAT
node.

A final acknowledgement to Jon Rasbash who was instrumental in the concept and initial work of
this project. We miss you and hope that the finished product is worthy of your initials.

WIB June 2016.

1. About Stat-JR

1.1 Stat-JR: software for scaling statistical heights.
The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an
increase in the availability and complexity of data sources, and an increase in the sophistication of
statistical methods that can be used. For the novice practitioner of statistical modelling it can seem
like you are stuck at the bottom of a mountain, and current statistical software allows you to
progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR
package is to assist practitioners in making their initial steps up the mountain, but also to cater for
more advanced practitioners who have already journeyed high up the path, but want to assist their
novice colleagues in making their ascent as well.

One issue with complex statistical modelling is that using the latest techniques can involve having to
learn new pieces of software. This is a little like taking a particular path up a mountain with one
piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of
statistical model), and then having to descend again and take another path, with another piece of
software, all the way up again to eventually get there, when ideally you’d just jump across! In Stat-
JR we aim to circumvent this problem via our interoperability features so that the same user
interface can sit on top of several software packages thus removing the need to learn multiple
packages. To aid understanding, the interface will allow the curious user to look at the syntax files
for each package to learn directly how each package fits their specific problem.

To complete the picture, the final group of users to be targeted by Stat-IR are the statistical
algorithm writers. These individuals are experts at creating new algorithms for fitting new models, or
better algorithms for existing models, and can be viewed as sitting high on the peaks with limited
links to the applied researchers who might benefit from their expertise. Stat-JR will build links by
incorporating tools to allow this group to connect their algorithmic code to the interface through
template-writing, and hence allow it to be exposed to practitioners. They can also share their code
with other algorithm developers, and compare their algorithms with other algorithms for the same
problem. A template is a pre-specified form that has to be completed for each task: some run
models, others plot graphs, or provide summary statistics; we supply a number of commonly-used
templates and advanced users can use their own — see the Advanced User’s Guide. It is the use of
templates that allows a “building block” or modular approach to analysis and model specification.

At the outset it is worth stressing that there a number of other features of the software that should
persuade you to adopt it, in addition to interoperability. The first is flexibility — it is possible to fit a
very large and growing number of different types of model. Second, we have paid particular
attention to speed of estimation and therefore in comparison tests, we have found that the package
compares well with alternatives. Third it is possible to embed the software’s templates inside an e-
book which is exceedingly helpful for training and learning, and also for replication. Fourth, it
provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain
Monte Carlo procedures for calculating model estimates and functions of model estimates, via its
eStat engine. The eStat engine is a newly-developed estimation engine with the advantage of being
transparent in that all the algebra, and even the program code, is available for inspection.

While this is a beginner’s guide, we presume that you have a good understanding of statistical
models which can be gained from, for example, the LEMMA online course

(http://www.bristol.ac.uk/cmm/learning/online-course/index.html). It also pre-supposes familiarity
with MCMC estimation and Bayesian modelling — the early chapters of Browne’s (2016) MCMC

Estimation in MLwiN (which can be downloaded from
http://www.bristol.ac.uk/cmm/software/mlwin/download/manuals.html) provide a practical
introduction to this material.

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in
Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this
software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of
the Stat-JR community: either through the creation of your own templates that can be shared with
others, or simply by providing feedback on existing templates.

Happy Modelling,

The Stat-JR team.

http://www.bristol.ac.uk/cmm/learning/online-course/index.html
http://www.bristol.ac.uk/cmm/software/mlwin/download/manuals.html

1.2 About the Beginner’s guide
We have written several guides to go with the software: this Beginner’s Guide will cover how to start
up and run the software, with a particular focus on the TREE (Template Reading and Execution
Environment) interface. It will provide some simple examples and is designed for the researcher who
wishes to be able to use the software package without worrying too much about how the
mathematics behind the modelling works. As such, it does not go into detail on how users can
contribute to extending the software themselves: that is covered in the second, Advanced User’s,
guide, designed for those who want to understand in greater detail how the system works (a Quick-
start guide is also available providing a very brief overview). There is also an E-book User’s guide
which deals with the software’s DEEP (Documents with Embedded Execution and Provenance) E-
book interface. Finally, a guide has been released alongside Stat-JR 1.0.4 to support the beta version
of the workflow system, LEAF (Logging and Execution of Analysis Flows).

As well as these Guides, we also publish support, such as answers to frequently asked questions, on
our website (http://www.bristol.ac.uk/cmm/software/statjr), where you can also find our forum in

which users can discuss the software.

In this Beginner’s Guide we look at an example application taken from education research, fitting a
Normal response model for a continuous outcome. Here our aim is more to illustrate how to use the
software than primarily how to do the best analysis of the dataset in question, and we will
demonstrate the interoperability features with some of the other software packages that link to
Stat-JR as well. We will then look at a second example from demography that illustrates binomial
response models for a discrete outcome.

2 Installing and Starting Stat-JR

2.1 Installing Stat-JR

Stat-JR has a dedicated website (http://www.bristol.ac.uk/cmm/software/statjr) from which you can

request a copy of the software, and which contains instructions for installation.

2.2 The use of third party software and licenses
Stat-JR is written primarily in the Python (see https://www.python.org/) package but also makes use

of many other third party software packages. We are grateful to the developers of these programs
for allowing us to use their products within our package. When you have installed Stat-JR you will
find a directory entitled licences in which you can find subdirectories for each package detailing the
licensing agreement for each. The list of software packages that we are using can be found in the
Appendix to this document.

2.3 Starting up TREE
Stat-JR’s interface is viewed and operated via a web browser, but it is started by running an
executable file.

To start Stat-JR select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the
start up menu. This action opens a command prompt window in the background to which
commands are printed out. This window is useful for viewing what the system is doing: for example,
on the machine on which we have run TREE, you can see commands like the following:

http://www.bristol.ac.uk/cmm/software/statjr
http://www.bristol.ac.uk/cmm/software/statjr
https://www.python.org/

WARNING:root:Failed to load package GenStat_model (GenStat not found)

WARNING:root:Failed to load package Minitab_model (Minitab not found)

WARNING:root:Failed to load package Minitab_script (Minitab not found)

WARNING:root:Failed to load package SABRE (Sabre not found)

INFO:root:Trying to locate and open default web browser

The last line quoted here (although more lines will appear beneath it on start-up) indicates that Stat-
JR is locating the default web browser on your machine; once it has done so it will open that web
browser and display TREE’s welcome page. The lines such as “WARNING:root:Failed to load package
GenStat model (GenStat not found)” are not necessarily problematic but are warning you that the
Genstat statistical package — one of the third-party statistical packages with which Stat-JR can

machine.

Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is
Internet Explorer it is best to open a different browser and copy the html path to it; this will be
something like localhost:52228 (although the number will likely differ each time you run Stat-JR).
You can change your default browser via Settings in the Chrome menu, or via Options > General in
the Firefox menu (both menus are found in top-right of their respective browser windows).

2.4 The structure and layout of the TREE interface
Stat-JR can be thought of as a system that manages the use of a set of templates written either by
the developers, and supplied with the software, or by users themselves. Each template will perform
a specific function: for example, fitting a specific family of models, summarising a dataset, plotting a
graph, and so on. The Stat-JR system therefore allows the user to select and use specific templates
with their datasets, and to capture and display the outputs that result.

When operating Stat-JR through TREE, you generally proceed through the following five stages:

Stage 1. Firstly, choose the
dataset you want to analyse / plot
/ summarise / etc., and the
template you want to use to do
so. Each template contains
commands to perform certain
functions: some run models,
others plot graphs, or provide
summary statistics, and so on...

Stage 3. Once you’ve answered
all the input queries, Stat-JR
generates all the commands,
scripts, macros, equations, and
instructions necessary to
perform, or describe, the
function you’ve requested. You
can view these within TREE, and
can download them too...

4L

4L

Stage 5. Finally, the results are returned;
depending on the template these can
include model estimates, graphs,
summary tables, and so on. Again, these
can be viewed within TREE, and are also
downloadable. The output may also
include datasets (e.g. MCMC chains),
which you can then feed back into the
system by matching them up with a
template back in Stage 1.

1L

(If applicable) results outputted as dataset...

Template

i

Dataset

(N

Stat-JR
prompts user
for input
needed by
template to
perform
function

%

1T

Stage 2. You will be asked for
further template-specific input:
e.g. which variables from your
dataset you would like to include
in your model / which variables
you would like to plot /
summarise / etc.

I EEE NN N NN NN EEEE SN EEEEE NN EEEE NN EEEEENEEEEEEEEEER

Stat-JR writes commands,
etc., to perform
requested function on
dataset (displayed in
browser window /
available for download)

Point & click Macros
instructions

Equations

Scripts (LaTeX)

-
iSelect Open Worksheet
1Select datafile.dta

Function .
Results of function

PERETTEC produced (displayed

in browser window /

formula <- normexam ~
myModel<- glm(formula,
summary (myModel)

normexam; ~ N{p;, o)
#; = fgcons;
Byl
7~ I'(0.001, 0.001)

available for

download)
(lfappllcable) :Illllllmlllllllllllll:
external D Results Charts &
software g tables
opened, run, P e e L EES - o
then closed, g E ::::Iet:
withresults | = | DIC:9766.506 {
etumedta | (| mens
Stat-JR. Pl T]

1 T

Stage 4. Stat-JR then runs
these commands / scripts /
macros, employing
externally-authored
software (e.g. R, MLwiN,
WinBUGS, SPSS, Stata, etc.),
or in-house software (such
as the eStat engine), as
appropriate.

Returning to our start-up of the software, when the line http://0.0.0.0:50215/ appears, and after
refreshing the web browser, the browser window should appear as follows:

Stat-JR:TREE Settings

Welcome to Stat-JR 1.0.4

Thank you for using our software. Stat-JR has been developed by a team of programmers based at the Universities of Bristol and Southampton and funded
by several grants from the UK Economics and Social Science Research council (ESRC). For more information on the software, including downloadable
manuals, please visit our webpages.

If you use this software for your research, then please cite it as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J., Goldstein, H., Jones, K., Leckie, G.,
Moreau, L. and Browne, W.J. (2016) Stat-JR version 1.0.4. Centre for Multilevel Modelling, University of Bristol & Electronics and Computer Science,
University of Southampton.

This is the start screen for the TREE interface to Stat-JR, and contains information on funders,
authors, and a link to the Stat-JR website which contains further guidance, such as answers to
frequently asked questions, and a user forum.

Pressing Begin returns the following screen:

Stat-JR:-TREE s n tutorial Template - Regression1

© Response: -

(-] Explanatory variables: school
student
normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

@ Current input string: {}

© Command: RunStatJR(template='Regression1’, dataset="tutorial’, invars = {}, estoptions = {})

At the top you'll see a black title bar. From left to right, this contains:

e alink (Stat-JR:TREE) back to the welcome page;

e an option (Start again) to clear all inputs the user has chosen for the current template;

e a Dataset menu allowing the user to Choose, Drop (from temporary memory cache), View
the dataset (as well as summary statistics, the option to add / delete variables, edit data
values, edit descriptive labels, duplicate the current dataset, etc.), return a List of datasets,
and Upload / Download (see Section 6) datasets. For example, selecting Dataset > Choose
returns a scrollable list of all the datasets that the system is aware of: i.e. those which are in
the user’s data folder (by default under Users\user_name\.statjr\datasets) and those
globally available (in the datasets subdirectory of this installation of Stat-JR). This pane can

be used to change the selected dataset via the Use button; for inputting your own data set
you can use the Upload button;

the name of the currently-selected dataset (in the grey box) — if you hover your cursor over
this name, it returns a textual description of the dataset;

a Template menu allowing the user to Choose, List (described below), Upload individual
templates not already uploaded in the current session or Set Inputs for the current template
(as an input string, rather than pointing-and-clicking through the inputs; this option also
allows you to retrieve and re-use input values from previous template executions). If you
select Template > Choose, a box appears which contains a scrollable list of all the templates
that the system is aware of: i.e. those which are in the user’s template folder (by default
under Users\user_name\.statjr\templates) and those globally available (in the templates
subdirectory of this installation of Stat-JR). This can be used to change the selected template
via the Use button. Each template has defined ‘tags’ which are terms to describe what it
does: these appear as blue phrases in the ‘cloud’ above the list of templates, whereas the
estimation engines supported by each template appear in the cloud in red. When you select
a template, its name and description appear to the right of the list. Clicking on the symbol
that looks like a baggage label returns the tags for that template, whereas clicking on the
‘cog’ symbol returns a list of engines that particular template supports;

the name of the currently-selected template (in the grey box) — again, if you hover your
cursor over this name, it also returns a description of the template;

a progress gauge indicating whether Stat-JR is “Idle” (before it has run anything), “Ready”

(once it has run something, and is ready for further user input), “Initialising”, “Working” or
whether it has encountered an “Error”;

a link to a page containing options to change a variety of Settings. This allows the user to
specify the path to their datasets, templates, workflows, and the eBook information store
(where eBooks loaded into Stat-JR’s DEEP interface are saved, although it is unlikely users
would wish to edit this folder directly: amendments to it can be made via the DEEP interface
itself). These paths refer to user-specific folders (by default under Users\user_name\.statjr\)
whilst those datasets, templates and workflows which are globally available (to all users) are
saved in their respective subdirectories in this installation of Stat-JR. The Settings window
also displays a number of settings that the program uses with each possible software
package: some of these are relatively straightforward, such as where the executables for
each package are found, and some are relatively advanced, such as for the eStat engine,
optimisation, starting values and standalone code options;

a Debug button; this produces a drop-down list from which one can choose to Reload
templates, Reload datasets or Reload packages, allowing users upload changes to files they
make outside the TREE interface, without having to start-up Stat-JR again. For example, a
user could paste a new dataset into the (global or user-specific) datasets directory, or modify
a template in the (global or user-specific) templates directory, and reload them so that they
appear in their lists in the browser window. In addition, if the user changes the path to a

10

third-party software package (via Settings), then Reload packages will implement this
change in the current session.

We will now look at The View dataset window:

Select Dataset > Choose from the menu in the black title bar.

Scroll down the dataset list, towards the bottom, and click on rats; its name and description will
appear to the right of the list.

Click on the Use button, and the name of the current dataset (in the grey box in the black title bar at
the top) should have changed accordingly.

Select Dataset > View; this will open a new tab in your browser: if you click on this you will be able

to see the dataset we have just selected, as follows:

o[stat-JR 1.0 4:TREE x : iJJ} stat-JR1.0.4:TREE x : +

localhost:50158/ data/ rats Search "B 9 ¥ A& S @ -

Stat-JR:TREE

Dataset name: rats E Unload Duplicate Download
Data Summary Add variable Delete variable Edit data label Edit value labels
(] vB v15 v22 v2% v36 cons rat

1 O 151 199 246 283 320 1 | =

: O 145 199 249 293 354 1 2

3] 147 14 263 32 328 1 3

4+ O 155 200 237 272 297 1 4

5 | 135 188 230 280 323 1 5

s O 159 210 252 298 331 1 6

7 O 141 189 231 275 305 1 7

8] 159 201 248 297 338 1 B

s O 177 236 285 350 376 1 9

w | 134 182 220 260 29 1 10

1 O 160 208 261 313 352 1 1

1z O 143 188 220 273 314 1 12

13 (@ 154 200 244 289 325 1 13| 3

14 O 171 2 270 326 358 1 14

15 | 163 216 242 281 312 1 15

16 O 160 207 248 288 324 1 16

17 (@ 142 187 234 280 316 1 17

18 O 156 203 243 283 7 1 18

19 O 157 212 259 307 33 1 19

20 @ 152 203 246 286 321 1 20

»n O 154 205 253 298 334 1 2

n 0 139 190 225 267 302 1 n

yx s 146 19 229 iyl 302 1 23

u O 157 211 250 285 323 1 24

s @ 132 185 237 286 331 1 x|

% O 160 207 257 303 345 1 26

w A 169 216 261 295 333 1 |
Columns View 1 - 30 of 39&

The rats dataset is a small, longitudinal animal growth dataset which contains the weights of 30
laboratory rats on 5 weekly occasions from 8 days of age (see Gelfand et al (1990) for more details).
The five measurements are labelled y8, y15, y22, y29 and y36, respectively, and the dataset also
contains a constant column — a vector of ones, named cons, and a rat identifier column, rat. Initially,
we are going to perform a regression analysis of the initial weight (y8) on the final weight (y36),

11

including an intercept (cons). The tabs above the dataset allow the user to quickly add a new
variable or delete an existing variable from the dataset. We can also view a summary of the dataset:
To view a summary of the dataset, click on the Summary tab above the data and the screen will look
as follows:

Stat-JR:TREE

Dataset name: rats 4l Unload Duplicate Download

Data Summary Add vanable Delete vanable Edit data label Edit value labels
Name Count | Missing Min Max Mean Std Description Value Label:
w8 30 0 132 177 152166666667 10.975983884
yi5 30 0 180 236 201786666667 12.4597574437
y22 30 0 219 285 245.033333333 151117687765
y29 30 Q 258 350 289.5 18.8356930675
y36 30 0 291 376 324.8 19.1318234015
cons 30 0 1 1 1.0 0.0
rat 30 0 1 30 15.5 B8.6554414484
Page 1 of 1 View 1 -7 of L

Here we get a very short summary of the dataset, giving, for each variable, the minimum value,
maximum value, mean and standard deviation. If the dataset has had descriptions added or has
categorical variables then they will appear in the last two columns. More extensive summaries are
available by using specific templates to summarise datasets, as we will see later.

Let’s now look at the Template menu:

Back on the main page, if you click on Template > List the following screen will appear in a new tab:

Stat-JR.TREE

Template Information:

Name Description Contains Tags Engines
1LevelBlock Fits 1-level Normal models, with an option of [latexMLwiNextra', [Model', "1-Level', [eStat’, "WinBUGS',
a multivariate step for the fixed effects ‘inputs’, '__module__", ‘Normal', 'R_nimble’,
'__code__', 'uuid’, 'MLwiN:point & click] 'OpenBUGS’,
‘engines’, 'latex’, "MLwiN_MCMC']

‘preccode’, 'tags’,
‘latexMLwiN', ‘model’,

'_version__',"__doc__,
‘minscript]
1LevelBlockecc Fits 1-level Normal models, with a [inputs’,"__module__", [Model', "1-Level’, ['CustomC’]
multivariate step for the fixed effects. '__code_ ', 'Normal]

‘customccode’, 'uuid’,
‘engines’, 'latex’, 'tags’,
'__version__', 'diccode’,

'_doc_]
1LevelBlockccresp Fits 1-level Normal models, with a [inputs’,"__module__", [Model', "1-Level’, ['CustomC’]
multivariate step for the fixed effects. '__code_ ', 'Normal]

This rather busy screen (we don’t reproduce it all here, due to its length) contains, in the two
columns on the left, a tabular list of all the templates that are available with a short description of
what each template does. The next column is of more interest to advanced users, and contains a list
of functions in the template code, whilst the final two columns contain the tags that identify the
template type, and the engines that are supported by the template.

12

We will next demonstrate running a template, using the default Regressionl template that fits a 1-
level Normal response regression model: this is appropriate as the response, the weights of the rats,
is a continuous measure.

Return to the main menu screen, which should look as follows:

Stat-JR:.TREE Startagain D - - Regression1
© Response: -
] Explanatory variables: y8

y15
y22
y29
y36
cons
rat

© Current input string” {}

© Command RunStatJR(template="Regression1’, dataset="rats', invars = {}, estoptions = {})

In the middle of the screen you can see the inputs required for this template (these are template-
specific, and so will likely change when you use a different template). Since some inputs are
conditional (i.e. are only required when earlier inputs take specific values), the opportunity to
specify inputs proceeds through sequential steps. Here we see the two initially-required inputs for
the Regressionl template are the Response variable and Explanatory variables. Since this template
only allows for one response variable to be specified, a pull-down list is displayed, but since it allows
for several explanatory variables to be specified, a multiple selection list is displayed for that input
value. In the case of the latter, variables are selected by clicking on their name in the left-hand list;
to de-select them, click on their name in the right-hand list.

The Start again link (in the top black bar) will clear any inputs the user has already selected and
return you to the first template input screen (i.e. the current screen, in this case), whilst the Next
button will allow the user to move on and specify further inputs once those on the current screen

have all been chosen.

Use the input controls and the Next button(s) to fill in the screen as follows:

13

Stat-JR:TREE Start again Dataset - Ter - Regression1

© Response: y36 remove

© Explanatory variables: cons,y8 remove
Number of chains: 1 remove
Random Seed: 1 remove
Length of burnin: 1000 remove

© Number of iterations: 5000 remove

Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
© Name of output results: out

© Current input string: {burnin’; 1000, 'defaultsv': 'Yes', 'thinning". '1', 'nchains’: '1', 'defaultalg” 'Yes', ‘iterations': '5000", 'y": 'y36', ' ‘cons,y8', 'seed": '1', 'makepred". 'No'}

© Command RunStatJR(template="Regression1’, dataset="rats', invars = {'y" 'y36'", 'X’: 'cons y8'}, estoptions = {'burnin’: "1000", 'defaultsv': "Yes', 'thinning™ '1", 'nchains’: '1", "defaultalg’
“Yes', iterations” '5000", 'seed™: 1", 'makepred”: 'No'})

So here we have entered Response: y36; Explanatory variables: cons,y8; Number of chains: 1;
Random Seed: 1; Length of burnin: 1000; Number of iterations: 5000; Thinning: 1; Use default
algorithm settings: Yes; Generate prediction dataset: No; Use default starting values: Yes; Name of
output results: out.

Note that an option to remove appears next to each input previously submitted; this will remove the
current input, but keep the other inputs you have specified (as far as it can; if they are conditional on
the input you have removed, then they will be, out of necessity, removed too).

So, here we are performing a regression of the initial weight (y8) on the final weight (y36), including
an intercept (cons). The other inputs refer to the Monte Carlo Markov chain (MCMC) estimation
procedures in Stat-JR. MCMC estimation methods are simulation-based, and so require certain
parameters to be set. The methods involve taking a series of random (dependent) draws from the
posterior distribution of the model parameters in order to summarise each parameter. The inputs
required here are as follows:

e Number of chains: this is the number of starting points from which we will take random
draws;

e Random Seed: the value from which random numbers are initially drawn. This allows
repeatability, as a run using the same starting values and random seed will give the same
answers. When multiple chains are used this seed is generally multiplied by the chain
number to give a unique seed for each chain;

e Length of burnin: the initial length of the chain (i.e. the number of iterations at the start)
which are excluded from the parameter summaries (the rationale for this is explained a little
further in the example, below, with the tutorial dataset);

14

e Number of iterations: the length of chain following the burnin, from which the parameter
summaries are drawn;
e Thinning: this determines how often the values are stored: i.e. store every nth iteration.

By answering Yes to the question Use default algorithm settings, we have used defaults for other
settings for which we will therefore not be prompted to complete. By answering No to generate
prediction dataset we have chosen not to generate a dataset of predictions from our model. By
answering Yes to Use default starting values we have chosen not to start the chain at values of our
choosing, instead accepting Stat-JR’s defaults. We will discuss MCMC estimation in slightly more
detail in the applications in the next section. The final input we’re asked for is the Name of output
results: this is the name (here we’ve chosen out) given to any dataset of parameter chains that
results from running the template.

You will notice, towards the bottom of the window, a box with a rather long text string labelled
Current input string above it and another labelled as Command below it. The input string allows the
user to specify all the inputs directly, via the Set Inputs option in the Template pull down list,
without having to point-and-click through the list as we have done. If you click on Template > Set
Inputs you will see this input string reproduced in the Input string box; clicking on the Use button
populates the inputs with these values, which obviously will have no effect here, but it would if you
first changed a value, or indeed used the inputs from a previously-run template execution, as
selected from the History box above. The input string needs to be in a certain format, as illustrated
below, and note that the inputs will often not have exactly the same name as appears in the
prompts you answered earlier (e.g. Use default starting values: Yes corresponds to ‘defaultsv’:
‘Yes’). In this guide we will reproduce the input string for each example (and also specify the dataset
and template, in case it is unclear from the screenshot, etc.) so you can simply copy and paste it in if
you need to (although note that the appropriate template will need to be pre-selected — it won't
change the template for you). So the input string for the inputs we have just specified is as follows:

Dataset: rats; Template: Regression1; Input string: {'burnin': '1000', 'defaultsv': 'Yes', 'outdata’: 'out’,

‘thinning': '1', 'nchains': '1', 'defaultalg’: 'Yes', 'iterations': '5000', 'y': 'y36', 'x': 'cons,y8’, 'seed': '1’,
'makepred’: 'No'}

Select input

History

Current Input (Regression1 : rats)

Input string

{burnin® "1000', 'defaultsv': "Yes', 'outdata’: 'out’, 'thinning': 1", 'nchains": '1', 'defaultalg': 'Yes', 'iterations”: '2000', 'y": 'y36', 'x": 'cons,y8',
'seed" "1', 'makepred” 'No'}

15

Returning to the main window, the second text string (labelled Command) can be used by the
command-driven version of Stat-JR to perform the same operations.

Clicking on the Next button will now pre-process the template inputs; this will result in the following
new pane at the bottom of the window:

Stat-JR:TREE n v emplate ~ Regression1

© Name of output results: out remove

© Current input string: {'burnin': '1000", ‘defaultsv': 'Yes', 'outdata’: 'out', 'thinning": 1", 'nchains”: 1", 'defaultalg”: "Yes', ‘iterations': '5000", 'y 'y36', ‘X" 'cons,y8', 'seed". '1', 'makepred": 'No'}

© Command: RunStatJR(template='"Regression1’, dataset="rats', invars = {'y": 'y36', 'x': 'cons,y87, estoptions = {burnin’: 1000", ‘defaultsv" 'Yes', thinning": 1, 'nchains’: '1', 'defaultalg"
"Yes', ‘iterations”: '5000", ‘outdata” "out’, 'seed": '1', 'makepred": 'No'})

Edit equation tex

'| Popout

¥36, ~ N(j;, 0%)
i = Bocons; + Biy8;
Box1

Prox1
7~ I'(0.001,0.001)

o =1/7

The object currently specified in the pull-down list (equation.tex is selected by default here) appears
in the pane below it. These objects are any outputs constructed by Stat-JR before and during the
execution of the template, so here we see a nice mathematical description of the model. If we now
select the object model.txt from the list we see a description of the regression model that we wish to
fit in the language that is used by the eStat engine:

Stat-JR:TREE n ~ ex Regression1

m model.txt

v| Popout

model{
for (i in 1:length(y36)) {
y36[i] ~ dnorm(mu[i], tau)
mu[i] <- cons[i] * beta_@ + y8[i] * beta_1

}

Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(@.801880, 8.0681608)
sigma2 <- 1 / tau

sigma <- 1 / sgrt(tau)

At this point we haven’t actually run the template, and so the objects that can be selected from the
pull-down list are those present pre-model run, and include computer code to actually fit the model.

Click the Run button to run the template.

Once the progress gauge, towards the right of the black title bar, has changed from “Working” (blue)
to “Ready” (green), select ModelResults from the pull-down list.

16

The screen will then look as follows:

Regression1

© Current input string: {'burnin”- '1000', 'defaulisv" "Yes', ‘outdata™ 'out, 'thinning

Extra Iterations:

Downlead Add to ebook Make workflow

© Command: RunStatJR(template="Regression1’, dataset="rats’, invars = {'y": 'y36', 'x": ‘cons y87, estoptions = [burnin’: '1000", 'defaultsv" "Yes', ‘thinning- '1', 'nchains": '1’, ‘defaultalg’-

Yes', 'iterations”: '56000", 'outdata’: "out', "seed’: '1", 'makepred’: 'No'})

ModelResults *| Popout
Results
Parameters:
parameter mean sd variable
tau 0.00418080675558 0.00110904973838 4327
beta_0 169.180410959 31.4018966849 23 cons
beta_1 1.02242050055 0.205619681782 23 y8
sigma2 257.218314014 73.2560156192 4429
sigma 15.8879481878 2.18893042306 4397
deviance 250.689939715 2.28300617933 403
Model:
Statistic Value
Dbar 250.689939715
D(thetabar) 243.013138421
pD 2.67680129348
DIC 253.366741008

Here we see parameter estimates, along with standard deviations (SDs) as a measure of precision for
each parameter. We will explain these further in the next section. At the top of the screen shot
above (which is in fact the middle of the full window, vertically-speaking) we now have a few
additional buttons. The Extra Iterations box, along with the More button, will allow us to run for
longer (i.e. for a number of iterations additional to those we have already run for). The Download
button will produce a zipped file that contains a folder with files for many of the objects contained in
the two pull-down lists whilst the Add to ebook button can be used if one wants to construct an
ebook to be used with the DEEP eBook interface into Stat-JR. Finally, the Make workflow button
relates to functionality supporting the beta version of the workflow interface, LEAF (Logging and
Execution of Analysis Flows), released with Stat-JR v.1.0.4.

You'll recall that we earlier named the output results out, so if we choose this from the pull-down list
just above the output pane, we’ll be able to view it, as follows:

17

Regression1

© Command: RunStatJR(template='"Regression1’, dataset="rats’, invars = ['y": 'y36", ' ‘cons y&1, estoptions = {burnin’: '1000", ‘defaultsv" "Yes', ‘thinning
"Yes', 'iterations’: '5000", ‘outdata”: 'out', 'seed": '1', 'makepred": 'No'})

out j Popout

, 'nchains’: 1", 'defaultalg’

iteration chain tau beta 0 beta_1 sigma2 sigma deviance

1 1 1 0.00288518002951 205489839661 0.81981943115% 346.538822178 186171647191 253.491151791 =
2 2 1 0.0035502662778% 196.364972102 0.823041334367 281.665013456 167829977494 250.465223393
3 3 1 0.00337715317864 201.360440503 0.805661906673 296.107386044 17.2077710946 249.839227094
4 4 1 0.0048828281474% 205.747671086 0.784315702633 204.799343699 14.3108121258 249.587746728
5 5 1 0.00299592578601 203.383693904 0.793137713746. 333.786639398 18.2698286636 250.783047997
[[1 0.00394771670837 202148374143 0815630644772 253.310982999 15.9157463852 249.301144304
7 7| 1 0.00243484081172 196.1048808% 0.804675385154 410.704467%01 20.2658448603 255.768571423
8 8 1 0.00433076387497 199260547643 0.8304911055% 227.750803385 15.0914148901 248.959684971
9 9 1 0.00651709766023 198.173447585 0.792648488211 153.442537175 12.3871924654 259.508735637
10 10 1 0.002847664207 37 206.488667221 0.772200262327 351.164999515 18.7393969891 251.385649422
1 mn 1 0.00410410577617 209.647455254 0.794806635121 243.658437316 15.6095623678 253.280948695
12 12 1 0.00290512711805 208.12525737 0.802042431384 344.219016712 18.5531403464 253.47495657%
13 13 1 0.00298889148998 201.02361994% 0.822192714798 334572199544 18.2913148665 250.74923858
14 14 1 0.0033487089206 194.25861612% 0.853870178626 253.247332257 15.91374664 42 248.83256263%
15 15 1 0.00398014644491 195.373724985 0.87587350772 251.247036721 15.8507740102 250.410945395
16 16 1 0.00274330185388 195617064614 0.862741807536 364.524231479 19.0925176831 251.607779298
17 17| 1 0.00467992957874 194.845981125 0.86400446525% 213.678428%54 146177436342 249.056306502
18 18 1 0.00431451833524 190.916814268 0.865432729324 231.775582417 15.2241775613 249.22946546%
19 19| 1 0.0037582194272 200.328243082 0.805435982072 266.083452382 1631206462 66 249670869303
20 20 1 0.005250579604% 200.32538888% 0.80382956858 190.455164048 13.80054%4111 250.543489206
21 il 1 0.0033493042277% 199.926836813 0.846218456775 253.209158455 15.912547202 250.632325746
i 2 1 0.0050298645631% 198.31289941% 0.84038945177% 198.812510245 14.10008%0155 249.493896804
23 23 1 0.004%8151618344 201.277482336 0.81888328435 200.7420%6016 14.168348387 249.51587256
24 24 1 0.00432901193958 200.951152711 0.834241583374 230.999593893 15.1986707936 250.074462576
25 25 1 0.0056223867537% 198.163614546 0.81041016815% 177860407651 13.3364315936 252.17758698
26 26 1 0.00455976756075 202.871623973 0.8030615501 14 219.309424587 14.80909938 48 249.165280566
7 7 1 0.00510966170594 204.421761084 0.820922602561 195.707672553 13.9895558383 252621119088

View 1 - 30 of 5,000

7 o

Here we see columns containing the chains of values for each parameter in the model. As well as
being able to view this file here, it is also a dataset (stored in temporary memory) and so will appear
in the dataset list (at least for the duration of our current session using the software) accessible via
the Dataset menu in the top title bar (emboldened to indicate that it has been created in this run of
the software). This means that we can string template executions together, as we can select out as a
dataset and perform operations on it using another template.

This ends our whistle-stop tour of many of the windows in Stat-JR. We will next look at a practical
application.

18

3 Application 1: Analysis of the tutorial dataset using the eStat
engine
3.1 Summarising the dataset and graphs
In this section we will look at performing some analysis of an example dataset from education. The
dataset in question is known as the tutorial dataset, and is used as an example in the MLwiN

software manuals (see, for example, Browne 2012). In fact, much of the material here owes a lot to
Browne (2012), which employs similar analysis but using MLwiN.

Let us start by looking at the tutorial dataset.

Select tutorial via Dataset > Choose (see the title bar), then click Use.

If you then select Dataset > View, and click on the Summary tab the following should appear in a
new tab in the browser window containing summary information, as follows:

Stat-JR:TREE
Dataset name: tutorial |l Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels

Hame Count | Missing Min Max Mean Std Description Value Label:
school 4059 0 1 65 31.0066518847 18.9368110726 School ID
student 4069 0 1 198 38.6999260%02 30.2606%08%83 Student ID
normexam 4059 0 -3.66607 3.66609 -0.000113%0710271 0.998821 Age 16 exam score (normalised)
cons 405% 0 1 1 1.0 0.0 Constant
standlrt 4059 0 -2.93495 3.01595 0.00181025476195 0.993102 Age 11 exam score (standardised)
girl 4059 0 0 1 0.60014781966 0.489867751763 Girl
schgend 4059 0 1 3 1.80487804878 0.914079654538 School gender schgend
avslrt 405% 0 -0.755%6 0.637656 0.00181024719495 0.314831 School average LRT score
schav 405% 0 1 3 2127124930761 0.652926315528 School average LRT score (3 catepories) schav
vrband 405% 0 1 3 1.84300479428 0.630784592987 Age 11 verbal reasoning level wrband

Page of 1 Yiew 1-10 of 1%

The tutorial dataset contains data on exam scores of 4059 secondary school children from 65
schools at age 16. These exam scores have been normalised to have a mean of zero and a standard
deviation of one and are named normexam. There are several predictor variables, including a
(standardised) reading test (standirt) taken at age 11, the pupils gender (girl), and the school’s
gender (schgend) which takes values 1 for mixed, 2 for boys and 3 for girls. Each variable is described
in the Description column and if you hover over any of value label names that appear in the Value
Labels column, the category labels will be displayed.

We can explore the dataset in more detail, prior to fitting any models, by using the many data
manipulation templates available in Stat-JR. We will first look at some plots of the data:

Select Template > Choose and then select Histogram from the template list that appears and click
Use.

19

Fill in the inputs as shown below and click Next and then Run and select histogram.svg from the

output list.

Dataset: tutorial; Template: Histogram; Input string: {'vals': 'normexam’, 'bins': '20"}

Download Addto ebook Make workflow

@ Current input string: {'vals': ‘normexan, ‘bins": 203

Qc d: RunStatlR(l ‘Histogram', dataset="utorial', invars = {'vals" ‘normexam’, "bins" "207%, estoptions = {})

0
normexam

Here you will see, in the output pane, a histogram plot that shows that the response variable we will

model, normexam, appears Normally-distributed.

Select Template > Choose and this time select XYPlot from the template list, then click Use.

Fill in the inputs as shown below and click Next and then Run and select graphxy.svg from the list.

20

1,

yaxis': 'normexam'}

Dataset: tutorial; Template: XYPlot; Input string: {'xaxis": 'standirt’,

tutorial

Y values: normexam remove
X values: standlrt remove

Download Add to ebook ~ Make workflow
© Current input string: {xaxis": 'standirt’, ‘yaxis'- 'normexam'}

© Command: RunStatJR(template="XYPlot', dataset="tutorial’, invars = {'xaxis'- 'standlrt’, 'yaxis'- 'normexam’}, estoptions = {})

graphxy.svg E Popout

X normexam

) e B R
KR KKK KRR X
KX X O

X XK X X x x
-3 K XX X X X
X
-4 . L . L L
-3 -2 -1 0 1 2 3 4
standlirt

Here we see that there appears to be a positive relationship between normexam and standlrt, with
pupils that have higher intake scores performing better, on average, at age 16.

We can display the graph in a separate tab in the browser window by clicking on the Popout button
next to the pull down list:

21

X normexam

|
IS

3 -2 -1 0 1 2 3 2
standlirt

< m »

For the sake of brevity, for the remainder of this documentation we will assume you now know how
to change template/dataset, and also how to display output in separate tabs, so we’ll refrain from
repeating this information in detail again.

Next, we might like to examine how correlated the two variables, normexam and standirt, actually
are:

Select AverageandCorrelation as the template, and complete the inputs as follows before clicking on
Next and Run and selecting table from the outputs:

22

Dataset: tutorial; Template: AverageAndCorrelation; Input string: {'vars': ‘normexam,standirt’, 'op':
'correlation'}

Stat-JR:TREE S tutorial AverageAndCorrelation

Operation: correlation remove
Variables: normexam,standirt remove
Download Addto ebook Make workflow

© Current input string: {'vars': 'normexam,standirt’, "op’. ‘correlation’}

© Command: RunStatJR(template="AverageAndCorrelation’, dataset="tutorial’, invars = {'vars': 'normexam,standirt’, 'op". ‘correlation’}, estoptions = {})

table E

Popout

name normexam standirt
normexam 10 0591649557344
standirt 0.591649587344 10

Here we see that the correlation is 0.592, so fairly strong and positive. We might also like to look at
how exam score varies by gender:

Select Tabulate as the template, and complete the inputs as follows, before clicking on Next and
Run and selecting table from the output list:

Dataset: tutorial, Template: Tabulate; Input string: {'subset’: ‘No', 'varcol': 'normexam’, 'rows':

‘cons’, 'cols': 'girl’, 'op': 'means'}

Stat-JR:-TREE s n tutorial Ten Tabulate
@ Column values: girl remove
© Row values: cons remove

Operation means remove
© variate Column: normexam remove
Use subset of data? No remove
Download Addto ebook Make workflow

© Current input string: {'subset’: "No', ‘varcol': 'normexam’, ‘rows': ‘cons’, ‘cols" 'girl’, ‘op': 'means’}

© Command: RunStatJR(template="Tabulate', dataset="tutorial’, invars = {'subset": ‘No', 'varcol" ‘normexam’, 'rows" ‘cons’, ‘cols" 'girl’, 'op": 'means’}, estoptions = {})

table E

Popout

Variate: normexam girl==0 girl==1
cons ==1 1623.0 2436.0
mean -0.14035034437 0.0933194716422
sd 1.02571256052 0.969719141289

We have to enter variables for column values and row values, and so here we have specified column
values as girl (taking value 1 for girls and 0 for boys) and row values as cons (which is a constant),
and then we get 2 columns in the output labelled 0 and 1 for boys and girls, respectively . Looking at
the means, it appears that girls do slightly better than boys, and looking at the standard deviations

23

(sds) they are slightly less variable than boys in their scores. Let us now consider performing some

statistical modelling on the dataset.

3.2 Single-level Regression

As in the last chapter, with the rats dataset, we will start by fitting a simple linear regression model
to the tutorial dataset. Here we will regress normexam on standirt by using a modelling template.

Select Regressionl as the template and fill it in as follows:

Dataset: tutorial, Template: Regression1; Input string: {'burnin’: '1000', 'defaultsv': 'Yes', 'outdata’:

'out’, 'thinning": '1', 'nchains’: '1', 'defaultalg’: 'Yes', 'iterations': '5000', 'y":

‘cons,standirt’, 'seed": '1', 'makepred": 'No'}

Stat-JR:-TREE

tutorial

© Response:

@ Explanatory variables:

Number of chains:

Random Seed:

Length of burnin:

© Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

© Name of output results:

Regression1

no

normexam’, 'x':

Ready (1s)

normexam remove

cons standirt remove

1 remove

1 remove

1000 remove

5000 remave

1 remave

Yes remove

No remove

Yes remove

out

@ Current input string: {'burnin’: "1000", ‘defaultsv': "Yes', thinning': "1", 'nchains’: '1", 'defaultalg”: "Yes', 'iterations’: '5000", 'y": 'normexam’, 'x"- ‘cons,standIrt’, 'seed" '1", 'makepred": "No'}

© Command RunStatJR(template='Regression1’, dataset="tutorial’, invars = {'y": 'normexam’, 'x': ‘cons standIrt’}, estoptions = {'burnin': '1000", 'defaultsv': "Yes', ‘thinning" 1", 'nchains': '1",

‘defaultalg” "Yes', 'iterations”: '5000', 'seed" "1", 'makepred': 'No'})

Here we are fitting a linear regression, and so have standlrt as an explanatory variable, but also cons
(which is a column of ones) as we would like to include an intercept as well. For now we have set-up
the MCMC estimation options as we did for the rats dataset, and we will overwrite the output file

out.

Clicking on the Next button will populate a pull-down list of objects created by Stat-JR at the bottom
of the screen and by default we see the object equation.tex:

24

Stat-JR-TREE e ET Dataset - tutorial Template Regression1

Popout

Edit equation.tex F

normexam; N{.u”orz)
p; = Bocons; + fstandlrt;
Boox 1

1ol
 ~ ['(0.001, 0.001)

ol =1/7

In the pane we find a mathematical representation of the chosen model. Note that the file is a LaTeX
file that is being rendered in the browser by a piece of software called MathJaX (v2.3, 2013), so if
you are a LaTeX-user you can copy this file straight into a document. If we instead choose model.txt

from the list we see the following:

Stat-JR:-TREE Startagain Dataset~ tutorial Template - Regression1

Edit model. txt

v‘ Popout

model{
for (i in 1:length(normexam)) {
normexam[i] ~ dnorm{mu[i], tau)
mu[i] <- cons[i] * beta ® + standlrt[i] * beta_1

5

Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(©.801660, ©.801068)
sigmaz <- 1 / tau

sigma <- 1 / sgrt(tau)

Here we see the text file that represents the model we wish to fit in the language that the algebra
system used by the built-in eStat engine requires. The Regressionl template only uses the eStat
MCMC-based estimation engine, so as you can see in the mathematical formulae in equation.tex we
are fitting a Bayesian version of a linear regression, and the last four lines of the output are prior
distributions for the unknown parameters, Bo, B1 and the precision T (where 1=1/02).

Whilst we will keep our description of Bayesian statistics and MCMC estimation to a minimum, and
recommend Chapter 1 of Browne (2012) for more details, in brief we are interested in the joint
posterior distribution of all unknown parameters given the data (and the prior distributions
specified). In practice, in complex models, this distribution has many dimensions (in our simple
regression we have 3 dimensions) and is hard to evaluate analytically. Instead, MCMC algorithms
work by simulating random draws from a series of conditional posterior distributions (which can be
evaluated). It can then be shown (by some mathematics) that after a period of time (required for the
simulations to move from their possibly arbitrary starting point) that the draws will be a dependent

25

sample from the joint posterior distribution of interest. It is common, therefore, to throw away the
first n draws which are deemed a burn-in period.

For the simple linear regression, it is a mathematical exercise to show that the conditional posterior
distributions have standard forms and are Normal (for the fixed effect) and Gamma (for the
precision = 1 /variance). The eStat engine has a built in algebra system which takes the text file
(model.txt) in the left-hand pane and returns the conditional posterior distributions; you can view
these as follows:

Select algorithm.tex from the list and click on the Popout button and the algebra steps will appear in
a new tab as follows:

LaTeX version of algorithm
Conditional posterior for tau for Gibbs sampling

~length (normexam)
24

(normexam; — beta 0 x cons; — beta_1 x standlrt;)”
2

v~ (tl 001 + 0.5 x length (normexam), 0.001000 +

Deviance Function

- th (no lexam) 2
7 x (Elength (mOrmexam) (1 oxam; — beta 0 x cons; — beta 1 x standlrt;)”)
deviance = 2 x 5 +0.5 % (In(x) — In(r)) x length (normexam) + 0.346573500279973 x length (normexam)
Conditional posterior for beta_0 for Gibbs sampiing
7 x (ojength mormexam) .o (normexam; — beta 1 x standirt;)) length (normexam)
beta 0 ~ N T X S cons;”
length (normexam) __ 2.
rx (5 cons;?) ia
i1
Conditional posterior for beta_1 for Gibbs sampling
—length (normexam)
7 (3 E O standirt; x (normexam; — beta_0 x cons;)) length (normexam)
beta 1~ N e ,T X x standirt;’
<length (normexa)
rx (lenBth tormexam) gy 2) &
Lo
Deterministic formula for parameter sigma
1
sqrt (1)
Deterministic formula for parameter sigma2
1
oy =

=

The eStat engine then takes these posterior distributions and wraps them up into computer code
(C++) which it will compile and run for the model. By default this will be several pieces of code that
are linked together by Stat-JR, although the Settings screen (accessible via a link towards the top of
the main menu screen, as we saw earlier) has an option to output completely standalone code that
can be taken away and run separately from the Stat-JR system; this is, however, a topic for more
advanced users.

Returning to the tab, in the browser window, containing the model template, click on the Run
button and wait for the model to run.

Then select ModelResults from the pull down list and pop it out into a separate tab.

26

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1.54117678833 0.0336578211121 5103
beta_0 -0.00154647326083 0.0125434892887 5104 cons
beta_1 0.594931664702 0.0128203661607 5501 standirt
sigma2 0649164430948 0.0141830719538 5097
sigma 0.805659357513 0.0087994658192 5098
deviance 9763.47654373 2.38667420142 4635
Model:

Statistic Value
Dbar 9763.47654373
D(thetabar) 9760.51117614
pD 2.96536759252

DIC 9766.44191133

Here the model results can be split into two parts:

The first part of the results (under the heading ‘Parameters’) contains the actual parameter
estimates. Here, for each parameter, we get 3 numbers: a posterior mean estimate (mean), a
posterior standard deviation (sd), and an effective sample size (ESS).

Here we see that beta_0 has a mean estimate of approximately 0, which we would expect as both
the response and predictor have been normalised, or standardised. The slope beta_1 has mean
0.595 with standard deviation 0.013, and is highly significant, as its mean estimate is many times its
standard deviation (a Bayesian equivalent of a standard error). The value 0.595 represents the
average increase in the normexam score for a 1-point (1 sd, due to standardising) increase in
standirt. The residual variance, sigma2, has value 0.649 showing that, as the initial response variance
was 1.0, standlrt has explained 35.1% of the variability.

The ESS is a diagnostic which reflects the simulation-based (stochastic) nature of the MCMC
estimation procedure: we have based our results on the 5,000 iterations post burn-in, but we know
that the method produces dependent samples, and so the ESS gives an equivalent number of
independent samples for the parameters involved; in effect a measure of the information content of
the chain In this case, all parameters have ESS of > 4000, and so the chains are almost independent.

The second part (under the heading ‘Model’) refers to the model fit for this particular model and the
DIC diagnostic (Spiegelhalter et al. 2002). The DIC diagnostic is an information criterion which is a
measure of how good a specific model is, consisting of a combination of how well the model fits the
data (here defined by the model deviance) and how complex the model is (here defined by pD: the
effective number of parameters). Basically the better fitting the model is, the better the model is,
but it has to be penalised by how complex it is. The DIC statistic is defined as the deviance of the
mean + 2pD. In this example the deviance at the mean (D(thetabar)) is 9760.5 and pD is ~3
(reflecting the three parameters of the model that are being estimated) and so we have a DIC value
of 9766.4. This number is not particularly interesting in isolation but it is when we compare values
for several models.

27

We can also get more information from the diagnostic plots that are available in the list of objects

Return to the model run tab in the browser window, and select beta_1.svg from the pull-down list
above the output pane and pop it out into a separate tab.

Stat-JR:TREE

10

0.66 - ; : . 30
0.64 5. 25
= =
8 062 g 201
[] L]
£ 060 T 15
o]
=
[
o

@
S 058

0.56 5
054 0 { . .
0 1000 2000 3000 4000 5000 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
stored update parameter value
1.0 . T T T 1.0
0.8 1 0.8}
0.6 B w 0.6
g S
< 0.4 4 a 0.4}
0.2 1 0.2t
0.0 rain. R L 0.0 " . P
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.00030 T T T T 1.0 j\"/\"m
0.00025 H 1 0.8l |
0.00020 ¢ 1
w Qo 06
o
{ o0.00015 &
= o 0.4}
0.00010 | 1
0.00005 0.2
0.00000

. . . . 0.0 . . .
0 20000 40000 60000 80000 100000 0 500 1000 1500 2000 2500
updates start iteration

This “sixway” plot gives several graphs that are constructed from the chain of 5,000 values produced
for beta_1. The top-left graph shows the values plotted against iteration number, and is useful to
confirm that the chain is ‘mixing well’, meaning that it visits most of the posterior distribution in few
iterations. The top-right graph contains a kernel density plot which is like a smoothed histogram and
represents the posterior distribution for this parameter. Here the shape is symmetric and looks like a
Normal distribution which we expect given theory for fixed effects in a normal model.

The two graphs in the middle row are time series plots known as the autocorrelation (ACF) and
partial autocorrelation (PACF) functions. The ACF indicates the level of correlation within the chain;
this is calculated by moving the chain by a number of iterations (called the lag) and looking at the
correlation between this shifted chain and the original. In this case, the autocorrelation is very small
for all lags. The PACF picks up the degree of auto-regression in the chain. By definition a Markov
chain should act like an autoregressive process of order 1, as the Markov definition is that the future
state of the chain is independent of all the past states of the chain given the current value. If, for
example, in reality the chain had additional dependence on the past 2 values, then we would see a
significant PACF at lag 2. In this case all PACF values are negligible. All of this suggests that we have
good mixing and it would be appropriate to proceed to the interpretation of the parameters.

28

The bottom-left plot is the estimated Monte Carlo standard error (MCSE) plot for the posterior
estimate of the mean. As MCMC is a simulation-based approach this induces (Monte Carlo)
uncertainty due to the random numbers it uses. This uncertainty reduces with more iterations, and
is measured by the MCSE, and so this graph details how long the chain needs to be run to achieve a
specific MCSE. The sixth (bottom-right) plot is a multiple chains diagnostic and doesn’t make much
sense when we have run only one chain, and we will therefore consider running multiple chains in
the next section.

We can also get some other diagnostics and summary statistics for the model as follows:

Click on the Template pull-down list at the top of the screen and select Choose and SummaryStats
as the template.

Next click on the Dataset pull down list and select Choose and out as the dataset.
Run the SummaryStats template and select the inputs as follows before clicking on Run:

Dataset: out; Template: SummaryStats; Input string: {'cols': 'beta_0,beta_1,sigma2'}

Stat-JR:TREE ¢ n - e e SummaryStats

Columns to summarise: beta_0,beta_1,sigma2 remove

© Current input string: {'cols". 'beta_0,beta_1,sigma2'}

Press Run, and then select table from the drop-down list of outputs, and display it in a separate tab:

Stat-JR:TREE

name beta_0 beta_1 sigma2

N 5000 5000 5000

mean

-0.00154647326083

0.594931664702

0.649164430948

sd 0.0125434802887 0.0128203661607 0.0141830719538
median -0.00137256910389 0.595057913446 0.649016571249
min -0.0423723856943 0.54096895575 0.604003596165
max 0.0457521057663 0645871124458 0.70543401519
2.5% -0.0260586560258 0.668970859499 0622427120067
5% -0.0220177345695 0.57359082263 0.626297012023
50% -0.00137256910389 0.595057913446 0.649016571249
95% 0.0191401171679 0615577564578 0.672825396309
97.5% 0.0231234059113 061974651492 0.676982988991
IQR 0.0168228609912 0.0168564529234 0.019379812426
ESS 5104 5501 5097
BD 240935 27 32

Here we see a more extensive summary of the three parameters of interest. This summary table
includes various quantiles of the distribution which are calculated by sorting the chain and picking
the values that lie x% into the sorted chain (where x is 2.5, 5, 50 etc.). These allow for accurate

29

interval estimates that do not rely on a Normal distribution assumption. The inter-quartile range
(IQR) is similarly calculated by picking the values that lie 25% and 75% through the sorted list and
calculating the distance between them.

The final statistic is an MCMC diagnostic designed to suggest a length of chain to be run. The Brooks-
Draper diagnostic is based on measuring the mean estimate to a particular accuracy (number of
significant figures set to 2 by default). For example, it states that to quote sigma2 as 0.65 with some
desired accuracy only requires 32 iterations. The anomaly here is beta_0, however, since the true
value is 0 we have difficulty quoting such a value to 2 significant figures!

3.3 Multiple chains
MCMC methods are more complicated to deal with than classical methods as we have to specify
many estimation parameters, including how long to run the MCMC chains for. The idea of running
chains for a longer period is to counteract the fact that the chains are serially-correlated, and
therefore are not independent samples from the distribution. Another issue that might cause
problems is that the posterior distribution of interest may have several possible maxima (i.e. may be
multimodal). This is not usually an issue in the models we cover in this book, but it is still a good idea
to start off the estimation procedure from several places, or with several runs with different random
number seeds, to confirm we get the same answers.

From the top bar change Template and Dataset using the respective pull down lists and Choose so
you have Regressionl as the template and tutorial as the dataset.

This time fill in the screen as follows:

Dataset: tutorial; Template: Regressionl; Input string: {'burnin': '500', 'defaultsv': 'Yes', 'outdata’:

[

‘out3’, 'thinning': '1', 'nchains': '3', 'defaultalg’: 'Yes', 'iterations': '2000', 'y': 'normexam’, 'x':

‘cons,standirt’, 'seed’: '1', 'makepred': 'No'}

Stat-JR:TREE S D, - tutorial Template ~ Regression1
© Response: normexam remave
© Explanatory variables: cons,standirt remove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove

© Number of iterations: 2000 remove

Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
© Name of output results: out3

Click on the Next and Run buttons.

30

When the model has run select beta_1.svg from the outputs list and pop it out to view it in a new
tab.

Stat-JR:TREE

beta_1
30
.25
= =
g 2 20|
@ [}
£ T 15
: 2
© 10}
o @
* 5
0.54 L . 0 : L
0 500 1000 1500 2000 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
stored update parameter value
1.0 ; - T T 1.0
0.8 g 0.8}
0.6 w 06
g 4
<L 04 a o4f
0.2 g 0.2}
0.0 he st s b e s 1w . 0.0 e _
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.00025 : . T T 10—~ —
0.00020 0.8}
w 0.00015 | o 06
W o
= [G]
= 0.00010 | @ 0.4
0.00005 0.2}
0.00000 L - L L 0.0 ! - .
0 2000040000 60000 8000010000A 20000 0 200 400 600 800 1000
updates start iteration

Here we see the three chains superimposed on each other in the top-left pane — note the chain looks
primarily red simply because this chain (chain 3) has been plotted on top of the other two, and due
to good mixing obscures them. Each chain has its own kernel plot in the top-right pane and this also
suggests that, by the similarity of shape and position, the chains are mixing well.

We have previously described what all the graphs here mean in Section 3.2, apart from the Brooks-
Gelman-Rubin diagnostic plot (BGRD; Brooks and Gelman, 1998) in the bottom-right corner. This
plot looks at mixing across the chains: the green and blue lines measure variability between and
within the chains, and the red is their ratio. For good convergence this red line should be close to
1.0, and here the values get close to 1.0 fairly quickly. We can have a lot of faith in the estimates of
our model.

3.4 Adding gender to the model
We have so far been more focused on understanding the MCMC methods but now we will return to
modelling. We next wish to look at whether gender has an additional effect on normexam on top of
that we have observed for intake score (standirt).

To do this, click on the remove link next to explanatory variables in the browser window, and fill-in
the template as follows:

31

Dataset: tutorial; Template: Regression1; Input string: {'burnin’: '500', 'defaultsv': 'Yes', 'outdata’:

[N

‘outgend’, 'thinning': '1', 'nchains': '3, 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam’, 'x':

‘cons,standirt,girl’, 'seed": '1', 'makepred’: 'No'}

Stat-JR:-TREE s n tutorial e - Regression1
© Response: normexam remove
o Explanatory variables: cons,standlrt,girl remaove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove

© Number of iterations: 2000 remove

Thinning: 1 remove

Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove

© Name of output results: outgend

Click on Next and then Run to run the model.

After the model finishes running select ModelResults from the drop-down list of outputs, and display
in a new tab.

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1.55781039569 0.03453914301 6069
beta_0 -0.103463853944 0.0196323128096 1615 cons
beta_1 0.590424943086 0.0125784600564 5438 standirt
beta_2 0.170255680478 0.0254307765774 1623 girl
sigma2 0.642241972026 0.0142289667969 6064
sigma 0.801350831396 0.00887739655944 6065
deviance 9720.95322315 279195762248 4053
Model:

Statistic Value
Dbar 9720.95322315
D{thetabar) 9717.00863805
pD 3.94458509373
DIC 9724.89730824

This new model has one additional fixed effect parameter (beta_2) associated with gender, and we
see it has a positive effect (0.170) which appears highly-significant (at least twice its standard
deviation, which is 0.025). Note that in our earlier tabulation we saw that the difference in gender
means was 0.093- (-0.140) = 0.233 and so the effect here is somewhat smaller, probably due to
correlation between gender and intake score.

32

Looking at the DIC diagnostic to assess whether this model is better we see this has dropped from
9766.4 to 9724.9, which is a big drop, and so the model with gender is indeed much better.

Finally we see that the ESS for two of the parameters is lower (beta_0 and beta_2), at around 1600,
so the model doesn’t mix quite as well; however, these ESS are still large enough not to require
further iterations. Here is the graph for beta_2.svg, displayed in a new tab:

Stat-JR:TREE

beta_2

parameter

kernel density
[
SO N B OO N B

0 500 1000 1500 2000 010 0.15 020 025 0.30

.05
stored update parameter value
1.0 1.0
0.8 0.8
0.6 L
g 2
< 04 g
0.2
0.0 -~ -
0 20 40 60 80 100 120
Lag

0.0008
0.0007 -
0.0006 -
0.0005 |-
0.0004 -
0.0003 |-
0.0002 |-
0.0001

0.0010 T T T T 1.0 T
0.0009 |] 7\;‘?\/_’_/»4—
0.8

0.6

MCSE
BGRD

04l

0.2

. . . : 0.0
0 2000040000 60000 8000010000Q20000 0 200 400 600 800 1000
updates start iteration

We see reasonable mixing, and can clearly see the significance of the effect as well (as the kernel
density plot in the top-right corner indicates that 0 is nowhere near the posterior distribution). From
a modelling perspective we have thus far ignored the fact that our data is a two-stage sample and
that we should account for the clustering of the pupils within secondary schools. To do this we need
to fit a 2-level model, and use a different template.

3.5 Including school effects
Stat-JR contains many different model-fitting templates some of which can fit whole families of
models and some of which can fit just one or two specific models. We have thus far looked at the
rather restrictive Regressionl template that only fits single level normal response models. To include
school effects we will now look at the 2LevelMod template, which not only includes a set of random
effects but also supports different response types and estimation engines, features that we will look
at later.

On the Template pull-down list at the top of the screen select Choose and select 2LevelMod as the
template and stick with tutorial for the dataset.

Set-up the inputs as shown below:
Dataset: tutorial; Template: 2LevelMod; Input string: {'Engine’: 'eStat’, 'L2ID'": 'school’, 'burnin’: '500',

'D": 'Normal', 'outdata’: 'out2level’, 'storeresid': 'Yes', 'thinning': '1', 'nchains': '3, 'defaultalg': 'Yes',

33

'iterations’: '2000', 'y'": 'normexam’, 'x': 'cons,standirt,girl’, 'makepred’: 'No', 'seed’: '1', 'defaultsv':

'Yes'}

Stat-JR:TREE

tutorial

2L evelMod

© Response:

© Level 21D:

Specify distribution:

@ Explanatory variables:

Store level 2 residuals?

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

© Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

© Name of output results:

normexam remove

school remove

Normal remove

cons,standlrt,girl remove

Yes remove

eStat remove

3 remove

1 remove

500 remove

2000 remove

1 remove

Yes remove

No remove

Yes remove

out2level

Press Next and then Run to fit the model. Note that running may take a while as we are storing all

65 school effects and so for each one the software needs to construct diagnostic plots.

When the model finishes select ModelResults, from the output list, and show the results in a

separate tab.

34

Stat-JR:TREE

Results

Parameters:

parameter
sigma2_u
tau
deviance
beta_0
beta_1
beta_2

u_0

u_10

u_12

u_13

mean

0.0927580841793

1.77808634602

9184.86189301

-0.0909418181226

0.559532031983

0.170213502116

0.398604325735

0.430788328464

0.518891434178

0.0376716646194

0.241875134368

0.469549038534

0.30512934547

-0.0997709439726

-0.11362155163

-0.311431538694

0.266481255227

-0.0558801364388

-0.1565371463148

-0.161928176094

sd

0.019214800522

0.0398110038171

11.9608582571

0.0429473833425

0.012593774994

0.0329991198223

0.0921121960575

0.105398279624

0.104343689937

0.0883074505889

0.121985255709

0.0907376260424

0.0871035400229

0.0825388991247

0.12136834076

0.106620310371

0.100343401637

0.108899186418

0.096835512047

0.0650231067667

3418

6072

5978

319

4951

775

2286

2899

2873

2328

3779

2064

1998

1862

3965

3132

2510

3085

2894

943

ESS

cons

standlrt

girl
school
school
school
school
school
school
school
school
school
school
school
school
school

school

variable

Here if you scroll down we see that the DIC value for the two-level model is 9245, compared with

9725 for the simpler model, showing that it is important to account for the two levels in the data. If

you scroll down to the beta fixed effect parameters, as shown in the table below, you will find that

their mean estimates have changed little.

Parameter Single level Single level 2level 2level
Mean(sd) ESS Mean(sd) ESS
beta_0 -0.103 (0.0196) 1615 -0.091 (0.0429) 319
beta_1 0.590 (0.0126) 5488 0.560 (0.0126) 4951
beta_2 0.170 (0.0254) 1623 0.170 (0.0330) 775

The standard deviations for beta_0 and beta_2 have increased due to taking account of the

clustering, and the ESS values have reduced due to correlation in estimating the fixed effects and

level 2 residuals.

3.6

Caterpillar plot

The random effects in the 2-level model are also interesting to look at, and one graph that is often

used is a caterpillar plot. This can be produced in Stat-JR using a template specifically designed for

producing this plot. This template requires the user to select all the ‘u’s to be displayed in the plot,

which can be time-consuming if there are many of them:

From the top bar we need to select Choose for Template and Dataset.

35

Choose CaterpillarPlot95 as the template and out2level as the dataset.

You need now to select all the ‘u’s from u0 to u64 which is best done by clicking on u0 and holding
down the mouse and scrolling down to multiselect all the ‘u’s together

Once all are selected press the Next and Run buttons.
Select caterpillar.svg in the pull down list and view in a new tab as follows:

Dataset: out2/evel; Template: CaterpillarPlot95; Input string: {'residuals':

‘v 1L,u 2,u 3,u 4,u 5u 6,u 7Zu 8u 9u 10,u 11,u 12,u 13,u 14,u 15u 16,u 17,u _18,u_19,u 20
Lu 21,u 22,u 23,u 24,u_25,u_26,u_27,u_28,u_29,u_30,u_31,u_32,u_33,u_34,u_35u_36,u_37,u_38
,Uu_39,u_40,u_41,u_42,u_43,u_44,u_45,u_46,u_47,u_48,u_49,u_50,u_51,u _52,u_53,u_54,u_55u_56
,u 57,u 58,u 59,u 60,u 61,u 62,u O,u_63,u_64'}

1.0

05F

0.0f

=0.5}

-1.0
0

10 20 30 40 50 60 70

This graph shows the schools in order of ascending mean whilst the bars give a 95% confidence
interval around each mean. The school in the middle with the wide confidence interval (i.e. very
large bars) has only 2 pupils and so there is much greater uncertainty in the estimate.

In this chapter we have explored fitting three models to the tutorial dataset. This has illustrated how
the Stat-JR system works, how to interpret the output from MCMC and eStat, and how to compare
models via the DIC diagnostic. There are better models that can be fitted to the dataset: for
example, we could look at treating the effect of intake score (standirt) as random, and fit a random
slopes model using the template 2LevelRS; in the future we may add material on this subject to this
manual, but for now we leave this as an exercise for the reader. Next we turn to the interoperability
features of Stat-JR.

36

4 Interoperability - a brief introduction
In this section we look at interoperability with other software packages.

In order for Stat-JR to interoperate with a third-party package, the user needs to check that the Stat-
IR template he/she wishes to use with it supports interoperability with that third-party software
package (this can be checked via Template > Choose in the black bar at the top of the TREE
interface, and then either using the red cloud terms or by clicking on the ‘cog’ symbol next to the
name of the currently-selected template), that that third-party package is installed, and that Stat-JR
knows where to find it (see the paths specified in Settings via the black bar at the top of the TREE
interface; note that if you change a path, then make sure you press the Set button at the bottom of
the Settings screen and then select Debug > Reload packages (via the black bar at the top) to
implement this change in the current session).

So, whilst all the templates used in this section support interoperability with the packages we
explore, in order to run this section successfully, the user will need to have these packages installed
and to have told Stat-JR where to find them.

Stat-JR can interoperate with a variety of third-party statistical packages (see
http://www.bristol.ac.uk/cmm/software/statjr/downloads/additionalsoft.html for more details),

including the following:

e aML

e GenStat

o gretl

e JAGS

e MATLAB
e Minitab

e MIXREGLS
e MLwiN

e Octave

e OpenBUGS
e PSPP

e R

e SABRE

e SAS

e SPSS

e Stata

e SuperMix
e WinBUGS

..as well as, as we’ve seen, being able to use its own in-house model estimation engine (eStat), and a
variety of Python (which is the main language in which Stat-JR is written) functions.

In this section we demonstrate interoperation by selecting a few of these third-party packages.

4.1 So why are we offering interoperability?

37

http://www.bristol.ac.uk/cmm/software/statjr/downloads/additionalsoft.html

There are many motivations that could be given for the benefits of having an interoperability
interface. First and foremost it opens up functionality in other software packages through a common
interface.

One important feature that the template, Regression1AML (which we cover at the end of this
chapter), shows is that not all model templates need to use the built-in eStat engine. It would be
perfectly reasonable for a user to construct a template that fitted a specific family of models in the
WinBUGS software and then novice users would have access to a user-friendly interface to such
models without having to understand the subtleties of writing WinBUGS code; it can thus play an
important role introducing packages, such as WinBUGS, to new users. This follows earlier work: for
example the MLwiN-WinBUGS interface that we developed 10 years ago.

It also offers an easy way of comparing different software packages for a multitude of examples, and
we will return to this in Section 5.4. Finally it can be thought of as a teaching tool, so that a user
familiar with one package can use Stat-JR and directly compare the script files, etc., required for the
package with which they are familiar to those required for an alternative package.

4.2 Regression in eStat revisited
In Section 3 we looked at fitting a few models to the tutorial dataset using the built-in eStat engine:
a newly-developed estimation engine with the advantage of being transparent in that all the algebra,
and even the program code, is available for inspection. It is an MCMC-based estimation method, but
is also rather quick. In this chapter we will stick with one simple example, the initial linear regression
model that we fitted to the ‘tutorial’ dataset that we considered in Section 3. We will need to use a
new template, Regression2, as the Regressionl template only supports the eStat engine.

We will begin by setting-up the model and running it in eStat:

From the top bar select Regression2 as the template, and tutorial as the dataset using the Choose
options on the pull-down lists for templates and datasets and set-up the inputs as follows:

38

Dataset: tutorial; Template: Regression2; Input string: {'Engine": 'eStat’, 'burnin': '500', 'defaultsv':

0o,

'Yes', 'outdata’: 'outestat’, 'thinning': '1', 'nchains': '3, 'defaultalg’: 'Yes', 'iterations': '2000°', 'y

I

makepred': 'No'}

'normexam’, 'x': 'cons,standirt’, 'seed": '1',

tat-JR:-TREE S n - tutorial Tem - Regression2
© Response: normexam remove
@ Explanatory variables: cons,standlrt remove
Choose estimation engine: eStat remove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove

@ Number of iterations: 2000 remove

Thinning: 1 remove

Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove

© Name of output results: outestat

Click on Next and Run to fit the model.

Select ModelResults from the pull down list, and show this output in a new tab which should look as
follows:

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1.54160995074 0.0340065114631 5799
beta_0 -0.00127835184871 0.0125770014327 5960 cons
beta_1 0.594959154334 0.012745358164 6129 standlrt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.488483832 243302399601 6061
Model:

Statistic Value
Dbar 9763.48848832
D(thetabar) 9760.50973897
pD 297869934714

DIC 976646718766

39

These results are identical to those we obtained using Regressionl earlier, although we only looked
at the plot for beta_1 in Section 3.3. We will use this as a benchmark, contrasting these results with
those we obtain from the other packages, although it is worth noting that all packages will have
good mixing and converge quickly for this simple linear regression model. You might like to explore
differences between engines / packages for other models yourself after reading this chapter.

4.3 Interoperability with WinBUGS
WinBUGS (Lunn et al., 2000) is an MCMC-based package developed (as BUGS — Bayesian inference
Using Gibbs Sampling) originally in the early 1990s by a team of researchers at the MRC Biostatistics
Unit in Cambridge. It is a very flexible package and can fit, in a Bayesian framework, most statistical
models, provided you can describe them in its model specification language. In Stat-JR we have
borrowed much of this language for our own algebra system, and so many templates feature
interoperability with WinBUGS.

To fit the current model using WinBUGS we can click on remove next to the Choose estimation
engine input and set up the template inputs as follows:

Dataset: tutorial; Template: Regression2; Input string: {'Engine': 'WinBUGS', 'burnin’: '500",
'defaultsv': 'Yes', 'outdata': 'outwinbugs', 'thinning': '1', 'nchains’: '3', 'iterations': '2000°', 'y":

'normexam’, 'x': 'cons,standirt’, 'seed": '1'}

Stat-JR:TREE Start again Dataset ~ tutorial Template ~ Regression2
© Response: normexam remove
@ Explanatory variables: cons,standlrt remove
Choose estimation engine: WinBUGS remove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove

Number of iterations: 2000 remove
Thinning: 1 remove
Name of output results: outwinbugs remaove

@Yes
No

Use default starting values:

When we press Next the Stat-JR software will construct all the files required to run WinBUGS so for
example we can choose model.txt from the list:

40

tutorial Temp - Regression2

Edit model.txt > | Popout

#This file contains the model specification based on the eSTAT system or newly defined

model {
for (i in 1:4059) {
normexam[i] ~ dnorm{mu[i], tau)
mu[i] <- cons[i] * beta_@ + standlrt[i] * beta_1
B
Priors
beta_@ ~ dflat()
beta_1 ~ dflat()
tau ~ dgamma(@.601060, ©.001000)

sigma2 <- 1/tau
sigma <- 1/sqri(tau)

Here we see the model defined in the WinBUGS model specification language in the output pane.
This file is almost identical to that used by eStat aside from the expression length(normexam) being
replaced here by its value 4059.

Selecting script.txt from the list and popping out to a new tab gives the following:

Stat-JR:TREE

Script to run model

display('log")

check('c: fusers/lvrmap/appdata/local/temp/tmpzkp5sic/model . txt")
data('c:/users/lvrmap/appdata/local/temp/tmpzkpsic/data.txt")
compile(3)

inits(1, ‘c:/users/lvrmap/appdata/local/temp/tmpzkpSic/initsl.txt")
inits(2, ‘c:/users/lvrmap/appdata/local/temp/tmpzkpSic/inits2.txt")
inits(3, ‘c:/users/lvrmap/appdata/local/temp/tmpzkp5sic/inits3.txt")
gen.inits()

set.seed(1)

update(560)

set('tau’)

set('deviance’)

set('beta”)

set('beta_8")

set('beta_1")

set('sigma”)

set('sigma2”)

dic.set()

thin.updater(1)

update(2600)

coda('*", "c:/users/lvrmap/appdata/local/temp/tmpzkp5ic/results’)
stats("*")

dic.stats()

history(=", 'c:/users/lvrmap/appdata/local/temp/tmpzkp5ic’)
save('c:/users/lvrmap/appdata/local/temp/tmpzkp5ic/log.odc’)
save('c:/users/lvrmap/appdata/local/temp/tmpzkpsic/log.txt")

quit()

Here we see a list of the commands to be run in the WinBUGS language to fit the model. Note that
this is done using a temporary directory and so this pathname appears in many commands.

Return to the tab containing the main page and click on the Run button.

The WinBUGS package then pops up in its own window, runs the above script, and returns control to
Stat-JR when it has finished estimating the model.

41

If we look at the ModelResults output from the list and pop it out to its own tab we will see the
following:

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
beta_0 -0.0010441346655 0.0126334002778 5728
beta_1 0.5947166 0.0127051159423 6665
deviance 9763.501 246481892506 6146
sigma 0.805588383333 0.00890760237399 5758
sigma2 0.649051833333 0.0143578582423 5761
tau 1.5414645 0.0340784693477 5748
Model:

Statistic Value
Dbar_normexam 97635
Dhat_normexam 9760.51
pD_normexam 2.986
DIC_normexam 9766.48
Dbar_total 97635
Dhat_total 9760 .51
pD_total 2986

DIC_total 9766.48

These estimates, as one might expect, are very close to those from eStat, and again all ESS values are
around 5,000-6,000. We can also look at the log file from WinBUGS:

Return to the template tab and choose log.txt in the outputs list.

Scroll the log.txt file down to the bottom, and the screen should look as follows:

42

tutorial Te Regression2

update(2060)
coda(*,c:/users/lvrmap/appdata/local/temp/tmpzkpSic/results)
stats(*)

Mode statistics

node mean sd MC error 2.5% median 97.5% start sample

beta_© -0.001044 8.81263 1.641E-4 -8.82522 -8.881a77 8.82372 !
beta_1 ©.5947 6.81271 1.472E-4 8.57 B.5046 6.6196 581 6808

deviance 9763.0 2.451 ©.83236 9761.0 9763.0 09776.0 501 6680

sigma B.8856 ©.803988 1.88E-4 8.7885 ©.8854 0.8232 5681 6eee

sigma2 ©.6491 6.01436 1.74E-4 ©.6218 ©.6487 ©.6777 501 6eae

tau 1.541 ©.83487 4.138E-4 1.476 1.542 1.688 5e1 6608

dic.stats()

DIC

Dbar = post.mean of -2loglL; Dhat = -2LoglL at post.mean of stochastic nodes
Dbar Dhat pD DIC

normexam 9763.580 97668.510 2.986 9766.480

total 9763 .568 976@8.518@ 2.986 9766.480

history(*,c:/users/lvrmap/appdata/local/temp/tmpzkpSic)
History

save(c:/users/lvrmap/appdata/local/temp/tmpzkpSic/log.odc)
save(c:/users/lvrmap/appdata/local/temp/tmpzkpSic/log.txt)

Here we see that the estimates and the DIC diagnostic are embedded in the log file, and take a
similar value to eStat. WinBUGS required initial value files for each run (and these are stored in three
text files beginning with inits and the chain number), together with a data file as well as the model
and script files already shown. All of these are available to view and to use again, thus Stat-JR is
useful for learning how these other packages, such as WinBUGS, work.

4.4 Interoperability with OpenBUGS
Our next package to consider is OpenBUGS (Lunn et al., 2009). OpenBUGS was developed by
members of the same team who developed WinBUGS, but differs in that it is open source so other
coders may get access to the source code, and in theory develop new features in the software.

To run OpenBUGS via Stat-JR click on the word remove next to the Choose Estimation engine input,
set up the template as follows, and then click on Next :

43

Dataset: tutorial; Template: Regression2; Input string: {'‘Engine’: 'OpenBUGS’, 'burnin': '500',

'defaultsv': 'Yes', 'outdata': 'outopenbugs’, 'thinning': '1', 'nchains': '3', 'iterations': '2000', 'y

P,

'normexam’, 'x': 'cons,standirt’, 'seed": '1'}

tutorial

Regression2

[N

© Response:

© Explanatory variables:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

Number of iterations:

Thinning:

Name of output results:

Use default starting values:

normexam remave

cons,standlrt remove

OpenBUGS remove

3 remave

1 remove

500 remove

2000 remove

1 remove

outopenbugs remave

9Yes
“No

This will have set-up the files required for OpenBUGS; these are similar, but not identical, to

WinBUGS: the script file, in particular, is somewhat different and is split into three parts called

initscript.txt, runscript.txt (shown below) and resultsscript.txt (you can access these from the objects

list):

tutorial

Regression?

runscript txt F| Popout

modelDisplay(log")

modelsetuD(' c:/users/lvrmap/appdata/local/temp/tmpfunkhx’)
modelInternalize('modelstate.bug’)
samplesSet(tau')

samplesSet('deviance’)
samplesSet('beta’)

samplesSet('beta_@")

samplesSet('beta_1")

samplesSet(sigma’)
samplesSet('sigma2’)

dicSet()

modelUpdate(2000, 1)
modelExternalize(‘modelstate.bug’)
modelSavelog(runlog.txt"’)
modelQuit(yes")

OpenBUGS allows us to change the working directory, and so there is no need for other commands

to include the temporary directory path. Unlike WinBUGS, OpenBUGS will run in the background,

and so will not appear when we click run.

Clicking on Run and selecting ModelResults in its own tab gives the following:

44

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
beta_0 -0.001294676807 0.0126309741479 6018
beta_1 0.5950477 0.0128666030758 5858
deviance 9763.582 2.46413121945 5785
sigma 0.805422516667 0.00916667249695 5054
sigma2 0.648788483333 0.0147680896654 5961
tau 1.54212083333 0.0351074252826 5957
Model:

Statistic Value

Dbar_normexam 9764.0
Dhat_normexam 9761.0

pD_normexam 3.071
DIC_normexam 9767.0
Dbar_total 9764.0
Dhat_total 9761.0

pD_total 3.07M

DIC_total 9767.0

Again, these results are very similar in terms of parameter estimates and ESS values to the other
software packages.

4.5 Interoperability with JAGS
The third standalone MCMC estimation engine available, via Stat-JR, is JAGS (“Just Another Gibbs
Sampler”), developed by Martyn Plummer (Plummer, 2003). JAGS also uses WinBUGS model
language, but has a few differences in terms of script files and data files.

To run JAGS via Stat-JR click on the remove text next to Choose estimation engine and set-up the
template as follows, before clicking on Next:

45

Dataset: tutorial; Template: Regression2; Input string: {'‘Engine’: 'JAGS', 'burnin': '500', 'defaultsv':

] [N 1o,

'Yes', 'outdata’: 'outjags’, 'thinning': '1', 'nchains’: '3’, 'iterations': '2000', 'y': 'normexam’, 'x':

‘cons,standirt’, 'seed’: '1'}

Stat-JR:TREE s n - tutorial Tem - Regression2
© Response: normexam remove
@ Explanatory variables: cons,standlrt remove
Choose estimation engine: JAGS remove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove

Number of iterations: 2000 remove

Thinning: 1 remove

Name of output results: outjags remove

9Yes
No

Use default starting values:

This will set-up the files required for JAGS; for example, here you can see the script file (script.txt)
which show some differences to those for WinBUGS (as to the initial value file formats):

tat-JR:-TREE S n - tutorial Ten - Regression2

Edit script.txt ~| Popout

load dic

model in 'model.txt’

data in ‘data.txt’

compile, nchains(3)

parameters in 'initsl.txt’, chain(1)
parameters in ‘inits2.txt’, chain(2)
parameters in ‘inits3.txt’, chain(3)
initialize

update 5@e

monitor tau, thin(1)

monitor deviance, thin(1)

monitor beta, thin(1)

monitor beta_@, thin(1)

monitor beta 1, thin(1)

monitor sigma, thin(1)

monitor sigma2, thin(1)

monitor pD

update 2888

coda *, stem('results’)

parameters to ‘chainstatel.txt’, chain(1)
parameters to ‘chainstate2.txt’, chain(2)
parameters to ‘chainstate3.txt', chain(3)
samplers to 'samplers.txt®

exit

Like OpenBUGS, JAGS will run in the background (i.e. it will not open as a window on your screen).

Clicking on Run, and placing ModelResults in a new tab, gives the following:

46

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
tau 1.54012451 0.0342787197398 6394
deviance 9763542655 2.43854432008 6244
beta 0 -000117839169824 0 0126588559856 5678
beta_1 0.5950958215 0.0128898036118 5862
sigma 0.805940119332 0.00897073162701 6376
sigma2 0.649619960333 0.0144642448387 6370
pD 3.00319666425 1.70985253533 1734
Model:

Statistic Value
Dbar 9763.542655
pD 3.00319666425

D

C 9766.54585166

As you can see, we have similar estimates and effective sample sizes to the other estimation
methods we’ve used. Whilst JAGS can be faster than WinBUGS and OpenBUGS, it fits a slightly
smaller number of models.

4.6 Interoperability with MLwiN
MLwiN (Rasbash et al. 2009) is a software package specifically written to fit multilevel statistical
models. It features two estimation engines (for MCMC and likelihood-based (IGLS) methods,
respectively) with a menu-driven, point-and-click user interface. It also has an underlying macro
language, however, and this is what we use to interoperate with Stat-JR. We will first consider the
MCMC engine. As it is limited in the scope of models it fits, this means it is generally quicker than the
other MCMC packages. MLwiN is a single chain program, but can be made into a multiple chain
engine with Stat-JR, since the latter can start-up three separate instances of MLwiN. At present
these are given different random number seeds, but the same starting values, however we will try
and change this in future.

To run MCMC in MLwiN, via Stat-JR, click on the remove text by Choose estimation engine input and
set-up the template as follows before clicking on Next :

47

Dataset: tutorial; Template: Regression2; Input string: {'Engine": 'MLwiN_MCMC', 'burnin': '500',

[N

'outdata’: 'outmlwin’, 'thinning': '1', 'nchains’: '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y

(BT

'normexam’, 'x': 'cons,standirt’, 'seed": '1'}

Stat-JR:TREE n v tutorial Template Regression2
© Response: normexam remove
© Explanatory variables: cons, standlrt remove

Choose estimation engine: MLWIN_MCMC remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove

Name of output results: outmliwin

You can see, in the pull-down list, the dataset (in .dta format) that is used by MLwiN. There are also
several MLwiN script files for the multiple chains and the several stages of model fitting.

Clicking on the Run button will set off three instances of MLwiN (in the background) and Stat-JR will
then collate the results together. Choosing ModelResults, and displaying them in a new tab, gives the
following:

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
deviance 9763.52135498 2.4524165969 5558
beta2 -0.00106361221436 0.0125106907785 5798 cons
beta3 0.585001279732 0.0127556806575 5937 standrt
sigmail_1 0.649178506315 0.0146208911389 5242 var(_levres)
Model:
Statistic Value
Dbar 9763.52148438
D(thetabar) 9760.51302083
pD 3.00819102923
Dic 9766.5296224

Once again here we have similar estimates, although the naming convention is slightly different for
MLwiN. To show that we have multiple chains we can examine the chains for the slope (beta3), as
shown below:

48

beta3

30 v T T T
.. 25
- =
2 @201]
@ UJ
£ 0.60 T 15
I T
g 058 g 10+ g
> gl
0.54 . L 1 n .
0 500 1000 1500 2000 0.54 0.56 0.58 060 062 0.64 066
stored update parameter value
1.0 T T T T 1.0 T T T T
0.8 E 0.8f R
0.6 1 w 0.6f g
g S
< 0.4 — a 04l]
0.2 E 0.2t R
0.0 beaca 0.0 o —
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.00025 T T T T L
0.00020 | 1 0.8
W 0.00015 - oosf
o Q
= 0.00010| @ 04l R
0.00005 |- 1 0.2+ g
0.00000

L L . L 0.0 . . L
0 2000040000 60000 80000100000 20000 0 200 400 600 800 1000
updates start iteration

Stat-JR also offers the option of using the likelihood-based IGLS estimation engine in MLwiN.

To do this in MLwiN, via Stat-JR, click once again on the remove text next to the Choose estimation
engine input and set-up the template as follows, before clicking on Next:

Dataset: tutorial, Template: Regression2; Input string: {'y": ‘'normexam’, 'x": 'cons,standirt’, 'Engine":
'MLwWIN_IGLS', 'defaultalg’: 'Yes'}

Stat-JR:TREE n - tutorial T - Regression2
a RESPO"SG: normexam remove
© Explanatory variables: cons,standlrt remave
Choose estimation engine: MLwiN_IGLS remove
Use default algorithm settings: » :es
o

Again the dataset will appears in the output pane, and this time pressing Run will give the following
in the ModelResults output:

49

Stat-JR:TREE

Results
Parameters:
parameter variable mean se
beta2 cons -0.00119112 0.0126392
beta3 standirt 0.595057 0.012727
sigmai_1 var(_levres) 0.642419 0.0143933
Model:
Statistic Value
converged 1.0
iterations 2.0
2*LogLikelihood 9760.51

Here we get the Deviance (-2*Loglikelihood) value, together with parameter estimates with standard
errors. The likelihood-based methods are far faster to run than the MCMC-based methods.

4.7 Interoperability with R
R (R Core Team, 2016) is another more general purpose package that can be used to fit many
statistical models. R has many parallels with Stat-JR in that users can supply functions (like Stat-JR
templates) which are then added to the library of R packages. Here we will demonstrate fitting a
model using the R package MCMCglmm (Hadfield, 2010), which is MCMC-based, and also using the
glm function (from R’s stats “base package”), which is a standard regression modelling function®. We
will firstly demonstrate fitting a model using R’s MCMCglmm package.

To run MCMC in R, via Stat-JR, click on the remove text by the Choose estimation engine input and

set-up the template as follows, and click on Next:

L Interoperability is also offered via R’s nimble package (de Valpine et al, 2016), although note that this in turn
has a dependency on Rtools (https://cran.r-project.org/bin/windows/Rtools/) since it compiles code
dynamically.

50

Dataset: tutorial; Template: Regression2; Input string: {'‘Engine’: 'R_MCMCglmm’, 'burnin': '1000",
‘outdata’: 'outR’, 'thinning': '1', 'iterations': '5000', 'y": 'normexam’, 'x": 'cons,standirt’, 'seed': '1'}

tutorial Regression2

© Response: normexam remove
© Explanatory variables: cons,standlrt remove
Choose estimation engine: R_MCMCglmm remove
Random Seed: 1 remove

Length of burnin: 1000 remove
Number of iterations: 5000 remaove
Thinning: 1 remove

Name of output results: outR

After pressing Next, if we look at the script file, script.R, which we can select from the outputs list,
we see the following:

Script to run model

local({r <- getOption("repos”); r["CRAN"] <- "http://cran.r-project.org"; options(repos = r)})
FHHEAFH AR AR AR A AR AR RH

Note that when Stat-JR interoperates with R, it sets the working

directory to wherever the user’s temporary files are stored, i.e.

workdir = tempdir(). The data to be modelled, this script, and the

files exported from R, are all saved there.

FHHEAFH AR AR AR A AR AR RH

#* o H H H W

test to see if foreign package is already installed, if not, then install it
if (!require(foreign)) {
install.packages("foreign™)
library(foreign)
}
use foreign package to read *.dta file (Stata format) into R data frame ('mydata’)
mydata<-read.dta("datafile.dta")
print summary of the data
summary(mydata)
test to see if MCMCglmm package is already installed, if not, then install it
if (!require(MCMCglmm)) {
install.packages("MCHMCglmm")
library(MCMCgLlmm}
¥
specify starting seed for random number generator
set.seed(1)

#HEAFFFH AR FS ARSI ARSI SRS RH
Below we specify the model formula, formatted as y ~ %1 + %2 + ...
Since Stat-JR assumes users have included the intercept in their list
of explanatory variables, -1 removes the intercept which the glm
function otherwise adds by default.

#HEAFFFH AR FS ARSI ARSI SRS RH

R

formula <- normexam ~ cons + standlrt - 1

#HEAFFFH AR FS ARSI ARSI SRS RH
Here we define the prior. B refers to the fixed effects, a list
consisting of the (co)variance matrix, V, and expected value, mu.

As such the expected value for each fixed effect has a mean of zero,
and the diagonal variance matrix has large variances (le+6). R (the
R-structure: expected (co)variances of the residuals) is an inverse
Wishart with expected variance (V) of 1, and degree of belief
parameter (nu) of ©.802 (equivalent to inverse Gamma{@.801, 8.801)).

oH H oH H M W

51

MCMCglmm can fit all forms of generalised linear mixed models, of which a linear regression is a
rather trivial case. You will see that the script file contains some setup code which will actually
download and install the MCMCglmm library the first time you execute the script (so ensure your
machine is connected to the internet) before calling the MCMCglmm command and then producing
summaries.

Clicking on Run in the main window will create several outputs.

The ModelResults are similar to other software but we can also look at diagnostics plots that are
specific to R by selecting DiagPlots1.png:

Stat-JR:TREE

Trace of cons Density of cons

0.00 002 004
1
10 15 20 25 30

5
1

0.04
0
1

T T T T T T T T T T

0 1000 2000 3000 4000 5000 -0.04 -0.02 0.00 0.02 0.04
Iterations. N =5000 Bandwidth = 0.002395
Trace of standirt Density of standirt

10 15 20 25 30

056 058 060 062 064
1
5
1

0
1

T T T T T T T T T T
1000 2000 3000 4000 5000 0.56 058 0.60 0.62 0.64

o

Iterations N =5000 Bandwidth = 0.002459

Here R gives trace plots and kernel density plots for both the intercept and the slope parameter.

Turning next to the glm function we can click on the remove text by Choose estimation engine and
set-up the template as follows, before clicking on Next :

[N

Dataset: tutorial, Template: Regression2; Input string: {'y': 'normexam’, 'x": 'cons,standlrt’, 'Engine’:

‘R _glm'}

Stat-JR:-TREE

tutorial

Regression2? -

© Response: normexam remove
© Explanatory variables: cons,standlrt remove
Choose estimation engine: R_glm =

Clicking on Run will return results in ModelResults as usual. There are additional graphical plots that
come back from R; for example, below is a plot of residuals of the model fit against fitted values
(ResivsFitted.svg).

52

Stat-JR:.TREE

Residuals vs Fitted

Residuals

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Predicted values
glm(formula)

Before finishing with R, we will also demonstrate a non-model Stat-JR template which interoperates
with R called PlotsViaR; this gives the Stat-JR user access to R’s lattice (Sarkar, 2008) graphics
package through the Stat-JR interface.

Click on Choose from the Template pull-down list at the top of the screen to get a list of all the
templates. Note that the search cloud is useful with interoperability as it can be used to show which
templates offer interoperability with a particular package (the engines are in red).

Click on Plots and also R_script in the blue tag cloud. You’ll see that the list of templates,
underneath, is accordingly reduced to just those that draw plots using R.

Select PlotsViaR from the list, and click Use.

Set up the template inputs as shown below:

53

Dataset: tutorial; Template: PlotsViaR; Input string: {'var1': 'normexam’, 'Gp': 'Yes', 'group': 'girl’,
‘trellis1': 'schgend', 'howmany': 'One’, 'plottypeGUI': 'Density Plot', 'striptitle': 'Yes'}

tutorial PlotsViaR

Start again

Type of plot:

X values:

Do you want a (within-plot) grouping variable:

Grouping variable:

How many panelling variables do you want:

Which panelling variable would you like to use:

© Do you want the variable name included in panel bar (if answer No,
just the level appears):

Density Plot remove

normexam remaove

Yes remove

girl remave

One remove

schgend remove

@Yes
No

These options will display kernel plots for the exam scores of pupils grouped by gender, with
separate (panelled or trellised) plots for each school gender type. We can now press Run and show

the plot (Plot1.svg) in a separate tab:

tat-JR:-TREE

1 | 1 1 1
factor(schgend) : girlsch
B Ia) - 0.4
- ‘.I - 0.3
- - 0.2
N - 0.1
z - 0o qirl
g factor(schgend) : boysch 0
o 1T —
0.4 -
A
0.3 /o l
.‘/ ‘I'
0.2 o I;" \ -
0.1 /: I‘.‘"«.‘ L
/ \
00 —Su——— -
T T T T T T T T T T
-4 2 0 2 4
normexam

4.8

Interoperability with AML

We will next look at another software package that can fit many statistical models via likelihood-
based estimation. AML (Lillard & Panis, 2003) is very useful for fitting multi-process models, but as
with other software packages can fit a simple regression as a special case. In our development work

on Stat-JR we have written special templates for interoperability with AML as opposed to

incorporating interoperability in the standard templates. We therefore need to do the following:

54

Click on the Choose option from the Template pull-down list.
Select Regression1AML from the template list and click on Use, and stick with the tutorial dataset.

Note that if you have earlier clicked on Plots and R_script in the cloud of terms you will need to
either unselect them or click on [reset] to see the required template.

Fill in the inputs as follows, and press Next:

Dataset: tutorial, Template: Regression1AML, Input string: {'y": 'normexam’, 'x': 'cons,standlrt'}

Stat-JR:TREE Start again Dataset ~ Template ~ Regression1AML
© Response: normexam remove
© Explanatory variables: cons,standlrt remove

Now click on Run to run the model in AML and select ModelResults from the list:

Stat-JR:TREE

Results
Parameters:
parameter mean se

betal -0.0011 0.0126

betat 0.5951 0.0125

sigma 0.8052 0.0087
Model:

Statistic Value

Log-Likelihood -4380.25

Here we see the model results are similar to other packages. AML has three input datasets:
amlfit.raw, amlfit.aml and amlfit.r2a. There are also three additional output files from AML:
amlfit.out, amlfit.tab and amlfit.sum. For more information on how AML works we recommend
looking at the reference manual for the software.

5 Application 2: Analysis of the Bangladeshi Fertility Survey
dataset

5.1 The Bangladeshi Fertility Survey dataset

55

The Bangladeshi dataset (bangl) is an example dataset from the 1988 Bangladeshi Fertility Survey. It
contains records from 1934 women based in 60 districts in Bangladesh, and we are planning to
investigate variables that predict whether the women were using contraception or not at the time of
the survey. Let us first look at the data and the variables we will consider.

Select Choose and pick bangl from the Dataset list and click on Use.
Click on View from the Dataset list to view the data as follows:

Stat-

Dataset name: bang1 |~ | UIIIETC R DI IT: 1 CRN s) [0 =10]

Data Summary Add variable Delete variable Edit data label Edit value labels
woman district use le age urban educ hindu d_illit d_pray cons

1 1 1 0 three+kids 18.44 1 1 0 0.58 0.64]|

z (. 2 1 0 nokids -5.56 1 1 1 0.58 0.64 1

3 3 1 0 twokids 1.44 1 2 0 0.58 0.64 1

4 4 1 0 threeskids 8.44 1 1 0 0.58 0.64 1

5 5 1 0 nokids -13.56 1 1 0 0.58 0.64 1

6 6 1 0 nokids -11.56 1 1 0 0.58 0.64 1

7 . Y 1 0 three+kids 18.44 1 1 0 0.58 0.64 1

8 8 1 0 three+kids -3.56 1 1 0 0.58 0.64 1

9 9 1 0 onekid -5.56 1 1 0 0.58 0.64 1

10 10 1 0 threeskids 1.44 1 1 0 0.58 0.64 1

1 1" 1 1 nokids -11.56 1 1 0 0.58 0.64 1

12 |18 12 1 0 nokids -2.56 1 1 0 0.58 0.64 1

13 13 1 0 onekid -4.56 1 1 0 0.58 0.64 1

14 14 1 0 three+kids 5.44 1 1 0 0.58 0.64 1

15 15 1 0 three+kids -0.559999 1 1 0 0.58 0.64 1

16 16 1 1 threeskids 4.44 1 1 0 0.58 0.64 1

7 [0 17 1 0 nokids -.56 1 1 0 0.58 0.64 1

18 18 1 1 three+kids -0.559999 1 2 0 0.58 0.64 1

19 " 1 1 onekid -6.56 1 4 0 0.58 0.64 1

20 20 1 0 twokids -3.56 1 1 0 0.58 0.64 1

21 | 1 0 nokids -4.56 1 3 0 0.58 0.64 1

2 |B8 22 1 0 nokids -9.56 1 1 0 0.58 0.64 1

23 23 1 0 three+kids 2.44 1 2 0 0.58 0.64 1

24 24 1 1 twokids 2.44 1 4 0 0.58 0.64 1

25 25 1 1 onekid -4.56 1 4 0 0.58 0.64 1

26 26 1 0 three+kids 14.44 1 4 0 0.58 0.64 1

27 | B 7 1 1 nokids -6.56 1 4 0 0.58 0.64 1 i
Columns View 1 - 30 of I.‘EH‘

Here we see records for the first 27 women in district 1 displayed. The response variable use takes
value 1 if the woman was using contraceptives during the time of the survey, and 0 if she was not.
There are then several predictor variables, both woman-level and district-level. Here we will focus
on just two: the number of living children (/c), which is a categorical variable with four categories (no
kids, one kid, two kids, three+kids), and the respondents’ age, which is measured to the nearest year
and has been centred around its grand mean. We will now consider modelling the dataset.

5.2 Modelling the data using logistic regression
We will firstly consider a simple linear regression model relating contraception use to the age of the
woman.

Choose the template 1LevelMod from the Template list and click on Use.
Then setup the model with inputs as below.

56

Dataset: bang1; Template: 1LevelMod; Input string: {'"Engine’: 'eStat’, 'burnin’: '500', 'D': 'Binomial’,
'outdata': 'out’, 'n": 'cons’, 'nchains': '3', 'thinning': '1', 'link': 'logit’, 'defaultalg’: 'Yes', 'iterations':
'2000', 'y": 'use’, 'x": 'cons,age’, 'makepred': 'No', 'seed": '1', 'defaultsv': 'Yes'}

1LevelMod

© Response:

Specify distribution:

© Denominator:

Specify link function:

© Explanatory variables:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

© Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

© Name of output results:

use remove

Binomial remove

€ons remove

logit remove

cons,age remaove

eStat remove

3 remove

1 remove

500 remove

2000 remove

1 remove

Yes remove

No remove

Yes remove

© Current input string: {Engine’- 'eStat’, 'bumin’- '500', 'D': 'Binomial', 'n": ‘cons’, 'nchains’: '3, 'thinning"- 1", 'link’: 'logit', ‘defaultalg” "Yes', ‘iterations’ '2000', 'y" 'use’, 'x': 'cons, age’,

Clicking on Next and choosing equation.tex in the pull down list and we see the following:

Stat-JR:-TREE

1LevelMod

Edit equation.tex I: Popout

use; ~ Binomial(cons;, m;)
logit(m;) = Bocons; + Prage;

Booxl
Aol

Here we the logistic regression model, in LaTeX, in the output pane. If we select model.txt we can
then see the model code that the algebra system will interpret:

57

Stat-JR:TREE n Te e~ 1LevelMod

Edit model txt F| Popout

model{
for (i in 1:length(use)) {
use[i] ~ dbin(p[i], cons[i])
logit(p[i]) <- cons[i] * beta_@ + age[i] * beta_1

I3

Priors
beta_@ ~ dflat()
beta_1 ~ dflat()

Now choosing algorithm.tex from the output pane, and placing it in its own tab in the browser

window, gives the following:

length use)

D
 coms; 1 beta_L x sge; — (1 + exp(ucia.D x coms; | beta 1 x sgg))) + 3 (eoms —wsey) Vm(n .

3 gt (comsy MJ)

. length use) length use
+expibe -]), .)7 logfact (cons;) .)1 logfact (use;)

nsey) \(l“v["mi « age) x explooms; x beta 0)),'“““‘“5“'

+ exp{owta i » 2 iy x bta_B) (—mse;) x In(1 + exp(beta_l x age;) x cxp(eons, x beta_0))

. M‘)‘m(‘ exp(beta_0 x cons;) x exp(age; x beta_1))'w\h“

(plage x beta_1)

T+ exp{oei (—usey) x In(1 + exp(beta_0 x cons;) x exp(age; * beta_1))

Whilst it is a little difficult to see in this screenshot, you will see better on your own screen that the
eStat engine uses a different MCMC method, random walk Metropolis, for the steps for the fixed
effects (beta0 and betal) when fitting logistic regression models. We will come back to this
modelling decision in Section 5.4 when we compare different software packages.

Returning to the main pane and clicking on Run will now run the model.
Once it has finished, if we select ModelResults from the list, and look at it in a new tab, we get the
following:

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
beta_0 -0.438900302614 0.0464820782198 1552 cons
beta_1 0.00641195705115 0.00506444056927 1380 age
deviance 2591.24987395 1.86946370926 1433
Model:

Statistic Value
Dbar 2591.24987395
D(thetabar) 2589.29226267
pD 1.95761128423

DIC 2593.20748524

58

Age doesn’t appear to have a significant effect (its estimate (0.0064) is similar in magnitude to its
standard error (0.0051)). To see this more clearly we can look at the graph beta_1.svg in its own

Stat-JR:-TREE

browser tab:

beta_1
0.030 80 — —
0.025 70} 1
_ o020 Zeo|]
3 oo]
' =
% 0.005 - 40
T 30} i
T 0.000 £
—0.005 L 200 1
-0.010 10
—0.015 , L 0 A L
0 500 1000 1500 2000 —0.016.030.005000.008.010.016.020.026.030
stored update parameter value
1.0 T T T T 1.0 T T T T
0.8 1 0.8} 1
0.6 1 0.6} 1
& g
< 04 - o o4l -
0.2 1 02} 1
0.0 0.0 - —
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.00020] e s ———
0.00018 - MA_—B_
0.00016 o8l]
0.00014 -
th 0.00012 | Q06|]
Y o.00010 Q
= o 0.4
0.00008 -
0.00006 |- 0z} 1
0.00004 |-
0.00002

.) . ! 0.0 . \ . .
0 2000040000 60000 §000010000Q 20000 0 200 400 600 800 1000
updates start iteration

Here, whilst the values on the x-axis overlap and therefore aren’t particularly clear, we can see that
all three chains show strong support for the value 0.00 in the kernel density plot (i.e. it's comfortably
within the distribution). It might be the case, however, that contraceptive use has a non-linear
relationship with age (possibly quadratic) and this could also be confounded by how far through
their own family-formation process the woman is, which we will model via the variable Ic. We might
also be interested in accounting for any clustering effects of having women nested within districts.

In order to fit a quadratic function to age we will need to construct the variable age? which we can
easily do via Dataset > View and using the variable creation tool.

Return to the main screen and select View from the Dataset pull-down list at the top of the page
Click on the Add Variable tab and type the following (New Variable name: age2; Expression:
age*age):

Stat-JR:TREE

Dataset name: bang1 v| Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
New Variable name: age2

Expression: age*age

59

Here we are going to overwrite the existing dataset (at least in temporary memory) with a version to
which we have appended an additional column. Clicking on Create and looking at the data by
(clicking on the Data tab) below gives the following:

Stat-JR:TREE

Dataset name: bang1

£d

Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
woman district use lc age urban educ hindu d_illit d_pray cons age2

1 1 1 0 three+kids 18.44 1 1 0 0.58 0.64 1 340.033630371 =

2 L} z 1 o nokids -5.56 1 1 1 0.58 0.64 1 30.9135932922

3 Y 1 o twokids 1.44 1 2 0 0.58 0.64 1 2.0736014842

4 4 1 0 threeskids 8.44 1 1] 0.58 0.64 1 712336120605

5 5 1 0 nokids -13.56 1 1] 0.58 0.64 1 183.873580933

6 6 1 1] nokids, -11.56 1 1 0 0.58 0.64 1 133.6335%0698

7 L} 7 1 0 three+kids 18.44 1 1 0 0.58 0.64 1 340.033630371

8] 1 0 three+kids -3.56 1 1 0 0.58 0.64 1 12.6735963821

9 9 1 0 onekid -5.56 1 1] 0.58 0.64 1 30.9135932922

10 10 1 0 threeskids 1.44 1 1] 0.58 0.64 1 2.0736014843

" " 1 1 nokids -11.56 1 1] 0.58 0.64 1 133.6335%0698

12 L} 12 1 1] nokids, -2.56 1 1 0 0.58 0.64 1 6.55359745026

13 13 1 1] onekid -4.56 1 1 0 0.58 0.64 1 20.7935943604

14 14 1 0 threeskids 5.44 1 1] 0.58 0.64 1 29.5936050415

15 15 1 0 threeskids -0.559999 1 1] 0.58 0.64 1 0.313599407673

16 16 1 1 threeskids 4.44 1 1] 0.58 0.64 1 19.7136039734

17 |18 17 1 0 nokids -5.56 1 1] 0.58 0.64 1 30.9135932922

1 18 1 1 threeskids -0.559999 1 2] 0.58 0.64 1 0.31359%407673

19 19 1 1 onekid -6.56 1 4] 0.58 0.64 1 43.0335922241

20 20 1 0 twokids. -3.56 1 1] 0.58 0.64 1 126735963821

A | 1 0 nokids -4.56 1 3] 0.58 0.64 1 207935943604

2 0 22 1 0 nokids -9.56 1 1] 0.58 0.64 1 91.3935928345

23 23 1 0 threeskids 2.44 1 2] 0.58 0.64 1 5.95360279083

24 24 1 1 twokids 2.44 1 4 0 0.58 0.64 1 5.95360279083

25 25 1 1 onekid -4.56 1 4] 0.58 0.64 1 207935943604

26 26 1 0 threeskids 14.44 1 4] 0.58 0.64 1 208.51361084

7 |8 7 1 1 nokids -6.56 1 4] 0.58 0.64 1 43.0335922241 il
Columns View 1 - 30 of 1&34‘

Here you see age2 (age?) appearing in the column on the far right. Whilst we could explore adding
further explanatory variables to this 1-level model, we are going to move straight into fitting a 2-
level model to account for districts in which we will also investigate the effect of a quadratic function
of age.

5.3 Multilevel modelling of the data
We will now require a template that will fit a 2-level logistic regression model to our dataset. In the
earlier sections we looked at the template 2LevelMod and we will once again use it here and also
illustrate how to fit categorical predictor variables.

On the main tab, click on Choose in the Template pull-down list and select 2LevelMod and click on
Use button to run this template.
Fill in the template inputs as follows:

60

2LevelMod

© Response: use remaove
© Level 21D: district remove
Specify distribution: Binomial remove
© Denominator: cons remaove
Specify link function: logit remove

© Explanatory variables: woman

district

use

urban

educ

hindu

d_iliit

d_pray

cons

age

age2

Ic il
Ttreat cons as categorical

treat age as categorical

treat age2 as categorical
Yltreat Ic as categorical

Store level 2 residuals? No remove

Here we need to specify several extra inputs, including an input for the level 2 identifiers and also to
let the software know which predictor variables are categorical (by ticking the box indicating that the
variable /c is categorical). Continue with the inputs as follows:

Dataset: bang1; Template: 2LevelMod; Input string: {'D': '‘Binomial’, 'storeresid': 'No', 'nchains': '3’,
'link': 'logit’, 'defaultalg": 'Yes', 'iterations': ‘2500, 'outdata’: 'out’, 'seed": '1', 'defaultsv': 'Yes',
'Engine': 'eStat’, 'L2ID': 'district’, 'burnin': '2500', 'n': 'cons’, 'thinning': '1', 'y': 'use’, 'x':
‘cons,age,age2,lc:cat’, 'makepred': 'No'}

61

Stat-JR:TREE

© Response:

© Level 21D:

Specify distribution:

9 Denominator:

Specify link function:

@ Explanatory variables:

Store level 2 residuals?

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@ Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

© Name of output results:

use remave

district remove

Binomial remaove

cons remove

logit remove

cons,age.age2, lc.cat remove

No remove

eStat remove

3 remove

1 remave

2500 remove

2500 remove

1 remove

Yes remove

NO remove

Yes remove

out

Clicking on Next will run the algebra system and set up code to fit the model. If we select model.txt

in the output list we will see the following:

Stat-JR:TREE

2LevelMod

model txt ~| Popout

model {
for (i in 1:length(use)) {
use[i] ~ dbin(p[i], cons[i]}

logit(p[i]) <- cons[i] * beta_® + age[i] * beta_1 + age2[i] * beta 2 + 1c_1[i] * beta_3 + lc_2[i] * beta_4 + lc_3[i] * beta_5 + u[district[i]]

}

for (j in 1:length(u)) {
u[j] ~ dnorm(@, tau_u)
}

Priors

beta 8 ~ dflat()
beta_1 ~ dflat()
beta 2 ~ dflat()
beta_3 ~ dflat()
beta 4 ~ dflat()
beta_5 ~ dflat()

tau_u ~ dgamma(e.ee10ee, 6.ee1eee)
sigma2_u <- 1 f tau_u

Here we see the more complicated model code for this 2-level model in the output pane. Note that

the Ic predictor is treated as categorical and thus appears as three dummy variables (Ic_1, Ic_2, Ic_3)

If we select tau_u.xml in the output list we will see the following:

2LevelMod Ready (2s)

Stat-JR:TREE

]

bang1

tau_u.xml FPcocut

Use Gibbs sampling from conditional posterior for tau_u:

E!engi:h U uj,

tau_u~ T | 0.001 + 0.5 x length (u),0.001000 + 3~

tau_u ~ I (30.001,0.001 + (3, 0;°) x 0.5)

Here we see the algorithm step for the parameter tau_u. Although most parameters in this model
are updated by Random Walk Metropolis sampling, this parameter is updated by Gibbs Sampling as
its conditional posterior distribution has a standard form.

If we now click on Run then after 52s (on a machine with Intel Core i7-3770S; this includes time for
compiling and adapting) the model will have run and if we select sigma2_u.svg we will see the
following:

. 4.5 : :
o .
T 0. X |
el
v . N B
S
o 0. N
c
o . N N
(=%
0.0 . . 0.0 . . h .
0 500 1000 1500 2000 2500 0.0 0.2 0.4 0.6 0.8 1.0
stored update parameter value
1.0 T T 1.0 T

0.8

ACF
PACF

0.0035 T T T T T

0.0030 H
0.0025 |
w fa)
¢ 0.0020 | %
[l - B
0.0015 | 0.4
0.0010 | 0.2 1
0.0005 e — 0.0 - - - :
0 200080006000800D00AE002800260000 0 200 400 600 800 1000 1200 1400
updates start iteration

Here we can see that convergence and mixing, for this parameter at least, are reasonable. In fact, if
we look at the diagnostic plots for the other parameters, we see similar convergence there as well.
Next we can look at ModelResults in its own tab to see the parameter estimates:

63

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
sigma2_u 0.320003655857 0.099343397633 807
beta_0 -0.761482066363 0.183607015726 92 cons
beta_1 0.00758569398534 0.00974610865938 183 age
beta_2 -0.00488119664141 0.000743128200041 319 age2
beta_3 0.760961328671 0.164095856619 227 Ic_1
beta_4 0.808508671551 0.191526987545 169 lc_2
beta_5 0.805088116084 0.191860340621 114 Ic 3
tau_u 3.42956763896 1.07988494419 760
deviance 2351.0823043 11.2344889316 1242
Model:

Statistic Value
Dbar 2351.0823043
D(thetabar) 2308.12575411
pD 42 9565501939

D

C 2394.03885449

Here we see that beta_2 (the coefficient estimate for age2) is significant and negative (and larger
than beta_1 (age)) suggesting a quadratic fit to the age predictor. As the data is centred around its
mean, this implies that contraceptive use is reduced the further from the mean age the woman is.
We will look at this in more detail at the end of the chapter.

The parameters beta_3 to beta_5 are all significant, and positive (and of similar magnitude), which
suggests that women with children are more likely to use contraceptives than those without (since
the reference category here is nokids). The parameter sigma2_u is fairly large, suggesting there are
differences between districts in terms of contraceptive use.

What is slightly disappointing here are the ESS values for all the fixed parameters. We have run each
chain, after burnin, for 2,500 iterations resulting in a total of 7,500 actual iterations (i.e. from 3
chains) but the effective sample sizes are of the order of 100-350. As this indicates, the default
algorithm in eStat — random walk Metropolis — is not very efficient for this example. We will look at
two possible solutions in the next two sections.

54 Comparison between software packages
Not all software packages fit the same MCMC algorithm for this model. So here we will show how to
fit the same model in another package, OpenBUGS (Lunn et al, 2009), which uses a different
method: namely multivariate updating for the fixed effects in a GLMM, as developed by Gamerman
(1997). This method results in slower estimation, but, as we will see, far better ESS. We will then
look at a table comparing all the possible MCMC algorithms in the different packages for this model,
which you can verify for yourselves.

To fit the model in OpenBUGS click on the remove text next to Choose estimation engine and set-up
the model as follows:

64

Dataset: bang1,; Template: 2LevelMod; Input string: {'"Engine’: 'OpenBUGS’, 'L2ID': 'district’, 'burnin':

‘2500, 'D": 'Binomial', 'outdata’: 'outopenbugs’, 'storeresid': 'No', 'n': 'cons’, 'nchains': '3, 'thinning':
'1', 'link": 'logit’, 'iterations': '2500', 'y": 'use', 'x": ‘cons,age,age2,Ic:cat’, 'seed’: '1’, 'defaultsv': 'Yes'}

2l evelMod

9 Response: use remove

© Level 2ID: district remove

Specify distribution: Binomial remove
© Denominator: CONS remove
Specify link function: logit remove
(=] Explanatory variables: cons,age,age2 lc:cat remove

Store level 2 residuals? No remove

Choose estimation engine: OpenBUGS remaove
Number of chains: 3
Random Seed: 1
Length of burnin: 2500
Number of iterations: 2500
Thinning: 1
Name of output results: outopenbugs
Use default starting values: N :les
o

Clicking on Next and Run will (after 2 min 18s on my machine) give the following, having selected
ModelResults from the drop-down box above the output pane, and opening it in a new tab:

65

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
beta_0 -0.79044984 0.172520147789 2595
beta_1 0.0065719269272 0.00909771213816 5031
beta_2 -0.00481059466667 0.000726599414238 5057
beta_3 0.7824753212 0.162317868714 5291
beta_4 0.825564053333 0.18610036524 5181
beta_5 0.827532796 0.183875558079 4443
deviance 235119746667 11.5283450785 4441
sigma2_u 0.317104969333 0.100486311959 1753
tau_u 3.47796493333 1.13186027888 1645
Model:

Statistic Value
Dbar_use 23510
Dhat_use 23090
pD_use 42.66
DIC_use 23940
Dbar_total 2351.0
Dhat_total 2309.0
pD_total 42 66

DIC_total 2394.0

Here we see far better effective sample size values, with runs of 7,500 iterations translating into ESS
values of between 2,500 and 5,500 for the beta parameters.

We can repeat this analysis using WinBUGS, JAGS and MLwiN with the same run lengths. Note for
JAGS you will need to edit the initial value files or it will not run. To do this view each in the output
window and click on the Edit button. If you change the value for beta_2 (the fixed effect associated
with age2) from 0.1 to 0.0 in all three initial values files and click Save each time then JAGS should
run. It should also be noted here that results may vary a little if you have different versions of the
third party software packages or have changed options in them.

We could also fit the model using the MCMCglmm package in R, although here we would need to
run a single chain and logistic regression models for binary data are the one GLMM where the
answers can be a little different as it assumes over-dispersion which is inappropriate in this case.

66

The table overleaf? details the results of fitting many of these options (unless otherwise stated, each
with Dataset: bang1; Template: 2LevelMod):

Input string — eStat: {'D": 'Binomial’, 'storeresid': 'No', 'nchains': '3, 'link': 'logit’, 'defaultalg': 'Yes',
'iterations’: '2500', 'outdata’: 'out’, 'seed’: '1', 'defaultsv': 'Yes', 'Engine’: 'eStat’, 'L2ID": 'district’,
‘burnin': '2500', 'n': 'cons’, 'thinning': '1', 'y': 'use’, x': 'cons,age,age2,Ic:cat’, 'makepred': 'No'}

Input string - WinBUGS: {'Engine’: 'WinBUGS', 'L2ID': 'district’, 'burnin’: '2500', 'D': 'Binomial’,
‘outdata’: 'outwinbugs', 'storeresid": 'No', 'n': 'cons’, 'nchains': ‘3", 'thinning': '1’, 'link': 'logit’,
'iterations’: '2500', 'y': 'use’, 'x": 'cons,age,age2,Ic:cat’, 'seed’: '1’, 'defaultsv': 'Yes'}

Input string - OpenBUGS: {'Engine': 'OpenBUGS', 'L2ID": 'district’, 'burnin': '2500', 'D": 'Binomial’,
'outdata': 'outopenbugs’, 'storeresid’: 'No’, 'n': 'cons’, 'nchains': '3, 'thinning': '1', 'link': 'logit’,
'iterations': '2500', 'y": 'use’, 'x': 'cons,age,age2,Ic:cat’, 'seed": '1', 'defaultsv': 'Yes'}

Input string - JAGS (remember to change the initial values files before running— see above):
{'Engine": JAGS', 'L2ID': 'district’, 'burnin': '2500', 'D': 'Binomial’, 'outdata’: 'outjags’, 'storeresid': 'No',
'n': 'cons', 'nchains’: '3', 'thinning': '1', 'link’: 'logit’, 'iterations': '2500', 'y': 'use’, 'x':
'cons,age,age2,lc:cat’, 'seed’: '1", 'defaultsv’: 'Yes'}

Input string — MLwiN: {'Engine’: 'MLwWiN_MCMC', 'L2ID": 'district’, 'burnin': '2500', 'D": 'Binomial’,
‘outdata’: 'outmliwin’, 'storeresid’: 'No', 'n': ‘cons’, 'nchains': '3’, 'thinning": '1', 'link': 'logit’,
'defaultalg': 'Yes', 'iterations': '2500', 'y': 'use’, 'x': 'cons,age,age2,Ic:cat’, 'seed': '1'}

Input string — eStat — orthogonal parameterisation (see Section 5.5); Template:
NLevelOrthogParamRS: {'Engine’: 'eStat’, 'x1": ‘cons’, 'burnin': '2500', 'D': 'Binomial’, 'outdata’:
‘outorthog’, 'storeresid'’: 'No', 'thinning': '1', 'n': 'cons’, 'nchains': '3", 'orthtype': 'Orthogonal’, 'link':
'logit!, 'defaultalg’: 'Yes', 'iterations': '2500', 'y': 'use', 'x': 'cons,age,age2,Ic:cat’, 'C1": 'district’,
'NumLevs': '1', 'seed’: '1', 'useorthog': 'Yes', 'makepred': 'Yes', 'defaultsv': 'Yes'}

2 This particular comparison used WinBUGS 1.4.3, OpenBUGS 3.2.3, JAGS 4.2.0 (64-bit), MLwiN 2.36, all run on
Windows 64-bit machine with Intel Core i7-3770S; eStat times are of the form: including compiling time
(excluding compiling time).

67

Parameter eStat WinBUGS OpenBUGS JAGS MLwiN eStat
orthogonal

coeff(sd) -0.761(0.184) -0.789(0.170) -0.790(0.173) -0.792(0.175) -0.835(0.170) -0.784(0.180)

o

I

3| ESS 92 396 2595 250 93 979
coeff(sd) 0.0076(0.0097) 0.0068(0.0090) 0.0066(0.0091) 0.0063(0.0092) 0.0050(0.0089) 0.0068(0.0096)

-

8

2l ESS 183 951 5031 638 247 1792
coeff(sd) -0.0049(0.00074) -0.0048(0.00072) -0.0048(0.00073) -0.0048(0.00072) -0.0047(0.00071) -0.0048(0.00073)

o

s

2| ESS 319 1286 5057 911 315 1799
coeff(sd) 0.761(0.164) 0.779(0.160) 0.782(0.162) 0.784(0.163) 0.799(0.162) 0.779(0.165)

o

s

2| ESS 227 1117 5291 635 268 1686
coeff(sd) 0.809(0.192) 0.822(0.181) 0.826(0.186) 0.827(0.185) 0.856(0.183) 0.823(0.190)

<

s

3l ESS 169 780 5181 484 196 1726
coeff(sd) 0.805(0.192) 0.824(0.180) 0.828(0.184) 0.832(0.181) 0.863(0.177) 0.823(0.191)

un

8

2l ESS 114 547 4443 353 131 1666
coeff(sd) 0.320(0.099) 0.318(0.100) 0.317(0.100) 0.317(0.103) 0.328(0.103) 0.322(0.101)

Q

©

_E,, ESS 807 1764 1753 1282 733 756

wv

pd 42.96 42.44 42.66 42.16 43.08 43.21

DIC 2394.03 2393.36 2394.0 2393.40 2393.65 2394.51

. 40 (24) 192 137 217 8 36(22)

Time (s)

In summary we see that MLwiN is by far the fastest of the packages, with eStat quicker than the

other three as well. Both MLwiN and eStat use the simple random walk Metropolis algorithm, which

is not the best method for this model and gives fairly poor ESS. Interestingly, both WinBUGS and

OpenBUGS use the Gamerman method, but in this case OpenBUGS performs better in terms of time

taken and ESS. This is somewhat puzzling as when each is run with a single chain, their performance

is almost identical. Finally, JAGS is slower than the two BUGS packages with ESS generally poorer

too; however, there have been many comparisons between JAGS and BUGS for different models,

and which method is better varies from model to model, so we need to take care when making

comparisons based on just one example. The final column shows another eStat method which we

will discuss next.

5.5

Orthogonal parameterisation
The reason eStat (and MLwiN) perform badly in terms of ESS in this instance is that they are

performing single-site updating, and the parameters are correlated. So here we will consider a

reparameterisation method that aims to fit parameters that are less correlated, and then translates

68

them back to the original parameters. For this we construct a set of orthogonal vectors from the
original predictor variables (see Browne et al. (2009) for details).

We will therefore now look at the NLevelOrthogParamRS template in order to use orthogonalisation
on our model. This template actually fits a larger family of models: those with any number of higher

levels/classifications (hence “NLevel”), allowing for the possibility of random slopes at each of these

levels (hence “RS”), and so our 2-level random intercept model is perhaps the simplest case that the

template fits.

Click on the Template pull-down list and click Choose then select NLevelOrthogParamRS from the
template list.

Click on Use and fill in the template inputs as follows:

Dataset: bang1; Template: NLevelOrthogParamRS,; Input string: {'Engine’: 'eStat’, 'x1": 'cons’,
'‘burnin': '2500', 'D': 'Binomial’, 'outdata’: 'outorthog’, 'storeresid": 'No', 'thinning": '1', 'n": ‘cons’,
'nchains': '3', 'orthtype': 'Orthogonal’, 'link": 'logit’, 'defaultalg': 'Yes', 'iterations': '2500', 'y': 'use’, 'x':
‘cons,age,age2,lc:cat’, 'C1": 'district', 'NumLevs': '1', 'seed'’: '1', 'useorthog': 'Yes', 'makepred': 'Yes',
'defaultsv': 'Yes'}

69

NLevelOrthogParamRS

© Number of Classifications:

Classification 1:

© Response:

Specify distribution:

© Denominator:

Specify link function:

© Explanatory variables:

@ Explanatory variables random at district classification:

@ Do you want to use orthogonal parameterisation?:

© Type:

Store residuals?

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

© Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

© Name of output results:

1 remove

district remove

use remove

Binomial remove

cons remove

logit remove

cons,age,age2,lc:cat remove

cons remove

Yes remove

Orthogonal remaove

No remove

eStat remove

3 remove

1 remove

2500 remove

2500 remove

1 remove

Yes remove

Yes remove

Yes remove

outorthog

© Current input string: {Engine': 'eStat,, 'x1" ‘cons', 'burnin’: '2500", 'D": 'Binemial', ‘makepred’: 'Yes', 'storeresid': 'No', 'thinning':

'logit', 'defaultalg” "Yes', 'iterations’: '2500", 'y": 'use', 'x": 'cons,age,age?2 lccat’, 'C1": 'district’,

9 C

'use’, 'x
'iterations": 2500, 'seed": '1", 'makepred": "Yes'})

d: RunStatJR(I

='NLevelOrthogParamRS', dataset="bang1’, invars = {NumLevs" '1', 'D": '‘Binomial', 'storeresid" 'No', 'n
cons,age, age? lc:cat’, 'C1": 'district’, 'x1" 'cons’, 'useorthog': "Yes'}, estoptions = {'Engine': 'eStat’, 'burnin’: 2500, 'defaultsv': 'Yes', 'thinning": "1, 'nchains” '3', 'defaultalg’: 'Yes',

'n": 'cons’, 'nchains’: '3', 'orthtype”: 'Orthogonal’, 'link":
'NumLevs': '1', 'seed": '1", 'useorthog" 'Yes', 'defaultsv" "Yes'}

cons', "orthtype” 'Orthogonal’, 'link": "logit', 'y"

Clicking on Next and selecting equation.tex in the pull down list (we’ve opened it in a new tab) will

show the following:

70

Stat-JR:TREE

use; ~ Binomial(cons;, ;)
logit(m;) = Bjorthcons; + B orthage; + fjorthage2; + fiorthle 1; + fjorthle 2; + B:orthle 3; + us;mﬂa[i]
(D?r;istﬁm(i) ~ N(0,73,)
Tuz ~ 1(0.001,0.001)
032 =1/Tu
By o<1
By o1
B3 oc1
B3 o1
By o1
B o1
fo = 1.08; — 0.002048103861138; — 81.19146511663; — 0.21408415166235 — 0.27638933206243; — 0.6784646064187;
B = D.Uﬁa + 1.[),31' — 3.98134713968,35 + 0.00731689215009ﬂ5 — 0.00244525658859ﬁ; — 0.03563437468[)1,5;
Ba = D.Oﬁa + B.Dﬁf + I.Oﬁz' + 0.000382130301133,3:,: + 0.000959517791234,3; + 0.00134115598842,5;
Ba = 0.08; + 0.087 + 0.085 + 1.085 + 0.2171297141643; + 0.4693863060385;
Ba=0.06; +0.08] +0.08;5 + 0.05; + 1.05; + 0.627080532383 3
B5 = D.0B; + 0.08; +0.08; +0.08; + 0.08; + 1.08;

cons;

u

Here we see that the model code is actually fitting a different set of predictors, each with the prefix
‘orth’ and a corresponding set of coefficients. There is then a set of deterministic statements that
translate these coefficient values to the coefficient values for the original predictors (again, see
Browne et al. (2009) for details)

Clicking on the Run button will run the model (which took 36s on this particular machine, including
compiling), after which selecting ModelResults from the pull down list, and popping out into a new
tab, gives the following:

71

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
sigma2_u0_1 0.322611997838 0.100988344452 756
deviance 235130603584 11.7512785968 1293
betaort 0 -0.584422193533 0.0940982100777 315
betaort_1 0.00925227105254 0.00611737920645 1863
betaort_ 2 -0.00633183225716 0.000669841236497 1679
betaort_3 0.325993846063 0.129887324437 1799
betaort_4 0.307001409516 0.142090095981 1850
betaort_5 0.823501468221 0191451499533 1667
beta 0 -0.783622684065 0.180131036563 979 cons
beta_1 0 00675107940155 0 00956507217846 1792 age
beta_2 -0.00480826241604 0.000730012649254 1799 age2
beta_3 0.779101816497 0.165132052505 1686 Ic_1
beta_4 0.823279406876 0.189574245211 1726 Ic_2
beta_5 0.823437482593 0.191418149556 1666 Ic_3
tau_u0_1 3.41856462849 1.133235441 689
Model:

Statistic Value
Dbar 2351.30603584
D(thetabar) 2308.09827984
pD 432077560009
D

C 239451379184

The estimates, their ESS, and the time taken to run the model are all added to the end of the
software comparison table we looked at above. It indicates that, compared to the other method we
employed to fit the model in eStat, there is no obvious overhead incurred when performing the
orthogonalising algorithm, and it is much faster than OpenBUGS, and the ESS are now much better
(if still not as good as OpenBUGS). We therefore have two ways of fitting the model that are
reasonably comparable in terms of ESS/s, with little to choose between them. This orthogonalising
approach is also available in MLwiN: this will be faster again, and should have similar ESS to the
method in eStat, and therefore may be the best overall in terms of ESS/s, but we leave this for the
reader to investigate.

5.6 Predictions from the model
When we ran this model we discussed some interpretation of the fit, but it would be nice to plot
some predictions from the model as well. In this latest version of Stat-JR we have added the option
to store predictions when fitting the model. So hopefully in the last model fit you will have ticked
“Yes” to the generate prediction dataset question. This will generate a new dataset named
prediction_datafile which contains the original data and several prediction columns formed from the
model fit.

72

To use this dataset we need to select Choose on the dataset list and select prediction_datafile from
the list and click Use.

In fact the dataset has a full prediction column called pred_full but this also contains the district
random effects. We would here like to simply predict from the fixed part of the model so we can
construct the variable pred_fixed as follows:

Click on View from the Dataset menu, then choose Add variable, and input the new variable
pred_fixed as indicated below.

Click on Create to create the variable

Stat-JR:TREE

Dataset name: prediction_datafile E| Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
New Variable name: :

pred_fixed
Expression:

pred_full - pred_u0_0

This has created a variable on the fixed predictor scale but as we are fitting a logistic regression we
need to take an anti-logistic transform to convert these predictions to probabilities. This can be done
by creating another column in the dataset as shown below:

Stat-JR:TREE

Dataset name: prediction_datafile E| Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
New Variable name:

fitprob
Expression:

exp(pred_fixed)/(1+exp(pred_fixed))

In order to plot separate fitted curves for the various numbers of living children we can use the
template XYGroupPlot as shown below:

73

Dataset: prediction_datafile; Template: XYGroupPlot; Input string: {'group’: 'Ic’, 'xaxis": 'age’, 'yaxis':
‘fitprob'}

Stat-JR:TREE Start aga Dataset ~ prediction_datafile Template~ XYGroupPlot

X values: age remove
Y values: fitprob remove

Grouped by: Ic remove

Clicking on Run and popping out graphxygroup.svg gives the following:

0.6 . .

¢ |c=0, fitprob
¢ lc=1, fitprob
¢ |c=2, fitprob
¢ |c=3, fitprob |

* ¢ O @

0.4 2 83]

2 ®
03l o o0®t0e, s
> *. g
o ’0 * ¢
. *
L ¢ 8
0.2} *]
& * ¢
0’ ¢
‘0
0.1} o
*
0.0 - ' '
215 ~10 _5 0 5 10 15 20
age

74

Here we see the four curves (although three of them are very close together) which clearly showing
that the women with children have higher probabilities of using contraceptives, and that the peak
for each group is around the average age of the sample, as discussed earlier.

Hopefully this section has shown firstly that Stat-JR can fit models other than Normal response
models; in fact there are a vast number of model templates which fit lots of other model classes.
Secondly, we hope we’ve shown its utility in terms of comparing model-fitting across different
software packages for different models, accessing each from a common hub.

6 Miscellaneous other topics e.g. Data Input/Export

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in
the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user
name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black
bar at the top of the browser window in the TREE interface; if you do this then make sure you press
the Set button, and then Debug > Reload datasets in the black bar at the top).

6.1 If your dataset is already in .dta format
If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >
Upload (menu options in the black bar at the top of the browser window), which will upload it into
the temporary memory cache, or by (ii) saving your dataset in one of the datasets folders (as
discussed above), and then selecting Debug > Reload datasets (again, accessible via the black bar at
the top of the browser window).

In the case of option (i), the dataset will be available for use in the current session, but you then
need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the

Stat/R\datasets folder) for use in the future sessions too. In the case of option (ii), the dataset will be
available in future sessions since it has been saved in one of the folders in which Stat-JR searches for
datasets on start-up.

6.2 If your dataset is in .txt format
If, instead, you have your dataset saved as a .txt file, you can use Stat-JR's LoadTextFile template to
save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user to
specify more particulars, and can also handle string variables).

This dataset will be available for use in the current session, but you then need to download it (as
a .dta file) via Dataset > Download (e.g. saving it into the Stat/R\datasets folder) for use in the
future sessions too.

6.3 Converting your dataset to .dta format
Via the procedure described in Section 6.2 (and downloading), Stat-JR will save your .txt dataset as
a .dta file, but you can also create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

7 References

Brooks, S.P. and Gelman, A. (1998) General Methods for Monitoring Convergence of Iterative
Simulations. Journal of Computational and Graphical Statistics, 7, 434-455.

75

Browne, W.J. (2016) MCMC Estimation in MLwiN, v2.36. Centre for Multilevel Modelling, University
of Bristol.

Browne, W.J,, Steele F., Golalizadeh, M., and Green M.J. (2009) The use of simple
reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel
models with applications to discrete time survival models Journal of Royal Statistical Society, Series
A, 172,579-598

de Valpine, P., Paciorek, C., Turek, D., Anderson-Bergman, C., and Temple Lang, D. (2016). nimble:
Flexible BUGS-Compatible System for Hierarchical Statistical Modeling and Algorithm Development.
R package version 0.5. http://r-nimble.org

Gamerman, D. (1997). Sampling from the posterior distribution ingeneralized linear mixed models.
Statistics and Computing, 7, 57-68.

Gelfand, A.E., Hills, S.E., Racine-Poon, A. and Smith, A.F.M. (1990). lllustration of Bayesian inference
in Normal data models using Gibbs Sampling. Journal of the American Statistical Association, 85,
972-985.

Hadfield, J.D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The
MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22.
http://www.jstatsoft.org/v33/i02/.

Lillard, L.A. and Panis C.W.A. (2003) aML Multilevel Multiprocess Statistical Software, Version 2.0.
EconWare, Los Angeles, California.

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325--337.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique, and
future directions, Statistics in Medicine, 28, 3049-3067.

Plummer, Martyn (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC
2003), March 20-22, Vienna, Austria. ISSN 1609-395X.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org

Rasbash, J., Charlton, C., Browne, W.J., Healy, M. and Cameron, B. (2009). MLwiN Version
2.1. Centre for Multilevel Modelling, University of Bristol.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer. ISBN 978-0-
387-75968-5.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002). Bayesian measures of model
complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 191-232.

76

http://r-nimble.org/

8 Appendix: List of Third Party Software that are used by Stat-

JR

Stat-JR makes use of several third party software products that are included within the distributed
code or (in the case of MinGW) need to be downloaded separately. These software products each

have a license file that can be viewed from the links in the table below and/or in the licences

subdirectory of the installed code.

Package

Link

Licence terms

beautifulsoup

http://bazaar.launchpad.net/~leonardr/beautifulso
up/bs4/view/head:/COPYING.txt

MIT

BLAS http://www.netlib.org/blas/fag.html#2 Own licence
(Netlib)

Blockly https://qgithub.com/google/blockly/blob/master/LICE | Apache (v2)
NSE

Bootstrap https://qithub.com/twitter/bootstrap/blob/master/LIC | MIT
ENSE

bottle https://github.com/bottlepy/bottle/blob/master/LICE | MIT
NSE

bottle-websocket https://github.com/zeekay/bottle- MIT
websocket/blob/master/LICENSE

cssselect http://www.opensource.org/licenses/bsd- BSD
license.php

cx_freeze http://cx- PSF
freeze.readthedocs.org/en/latest/license.html

cycler https://opensource.org/licenses/BSD-3-Clause BSD

dateutil http://opensource.org/licenses/BSD-2-Clause Simplified BSD

decorator https://micheles.googlecode.com/hg/decorator/do | BSD
cumentation.html#licence

gevent https://github.com/gevent/gevent/blob/master/LI | MIT
CENSE

gevent-websocket | https://bitbucket.org/noppo/gevent- Apache(v2)
websocket/src/0df192940acd288e8a8f6d2dd3032
9a3381c90f1/LICENSE ?fileviewer=file-view-default

html5lib https://github.com/htmI5lib/html5lib- MIT
python/blob/master/LICENSE

isodate http://www.opensource.org/licenses/bsd- BSD
license.php

jggrid http://www.trirand.com/blog/?page id=87 Dual MIT/GPL(v2)

jquery http://jquery.org/license MIT

jguery-cookie https://github.com/carhartl/jquery- MIT
cookie/blob/master/jquery.cookie.js

jQuery File Upload | http://opensource.org/licenses/MIT MIT

jQuery text align http://www.opensource.org/licenses/bsd- BSD
license.php

jquery-treeview https://qgithub.com/jzaefferer/jquery-treeview Dual MIT/GPL

jquery-ui http://jquery.org/license MIT

77

http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
https://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-2-Clause
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://github.com/gevent/gevent/blob/master/LICENSE
https://github.com/gevent/gevent/blob/master/LICENSE
https://bitbucket.org/noppo/gevent-websocket/src/0df192940acd288e8a8f6d2dd30329a3381c90f1/LICENSE?fileviewer=file-view-default
https://bitbucket.org/noppo/gevent-websocket/src/0df192940acd288e8a8f6d2dd30329a3381c90f1/LICENSE?fileviewer=file-view-default
https://bitbucket.org/noppo/gevent-websocket/src/0df192940acd288e8a8f6d2dd30329a3381c90f1/LICENSE?fileviewer=file-view-default
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
http://www.trirand.com/blog/?page_id=87
http://opensource.org/licenses/MIT

jQuery-xpath http://opensource.org/licenses/MIT MIT

keepalive https://github.com/wikier/keepalive/blob/master/ | LGPL
LICENSE

LAPACK http://www.netlib.org/lapack/LICENSE.txt Modified BSD

Ixml http://Ixml.de/index.html#license BSD

mako http://www.opensource.org/licenses/mit-license.php | MIT

markupsafe http://www.opensource.org/licenses/bsd- BSD
license.php

MathJax http://cdn.mathjax.org/mathjax/2.0-latest/LICENSE | Apache

matplotlib http://matplotlib.sourceforge.net/users/license.html Modified BSD

MinGW http://www.mingw.org/license Not distributed with

software directly

networkx http://networkx.github.io/documentation/developme | BSD
nt/reference/legal.html

numexpr http://www.opensource.org/licenses/mit-license.php | MIT

numpy http://numpy.scipy.org/license.html#license BSD

pandas http://pandas.pydata.org/pandas- Modified BSD
docs/stable/overview.html#license

patsy https://qithub.com/pydata/patsy/blob/master/LICEN | BSD
SE.txt

ply http://www.dabeaz.com/ply/README.txt BSD

prov https://github.com/trungdong/prov/blob/master/L | MIT
ICENSE

provpy http://opensource.org/licenses/BSD-2-Clause BSD

pyparsing http://www.opensource.org/licenses/mit-license.php | MIT

pyquery http://www.opensource.org/licenses/bsd- BSD
license.php

Python http://docs.python.org/license.html PSF

pytz https://pypi.python.org/pypi/pytz/ MIT

rdflib http://www.opensource.org/licenses/bsd- BSD
license.php

reset-fonts-grids http://yuilibrary.com/license/ BSD

scipy http://www.scipy.org/License Compatibility BSD

setuptools http://docs.python.org/license.html / PSF

Six https://bitbucket.org/gutworth/six/src/e3da7fd96 | MIT
039a6ed89493f89d121c4f3797e6713/LICENSE?at=
default

sparqglwrapper http://www.w3.org/Consortium/Legal/2002/copyri | W3C
ght-software-20021231

statsmodels https://github.com/statsmodels/statsmodels/blob/ | Modified BSD
master/LICENSE.txt

tinymce https://github.com/tinymce/tinymce/blob/master/ | LGPL
LICENSE.TXT

weave http://projects.scipy.org/scipy/browser/trunk/Lib/wea | BSD

ve/LICENSE.txt?rev=1511

78

http://opensource.org/licenses/MIT
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/wikier/keepalive/blob/master/LICENSE
http://www.dabeaz.com/ply/README.txt
https://github.com/trungdong/prov/blob/master/LICENSE
https://github.com/trungdong/prov/blob/master/LICENSE
http://opensource.org/licenses/BSD-2-Clause
http://yuilibrary.com/license/
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT

9 Index

Datasets Range of software possible 37
Location/path/reloading 10-11, 75 WinBUGS 38, 4043
Selecting, viewing & editing 9-10, 11-12, Starting the TREE interface 6

18, 19, 35, 55-56, 59-60, 73 Stat-JR Forum 6,9
eStat engine 4, 10, 16, 19-36, 38-40, 56—64, Templates 4,5,7,12
68-72 Editing outputs (e.g. scripts / macros) 66
Standalone C++ 26 Identifying interoperability 10, 12

Installing Stat-JR 6 Input string 10, 15

Interoperability 4,6,7,37-55 Location/path/reloading 10-11
AML 38, 54-55 Outputs 16-18
Comparison of engines 67-68 Popout outputs (in separate tab) 21
JAGS 45-47 Selecting 10
Location/path/reloading 10-11, 37 Specifying inputs 13-16
MLwiN 47-50, 72 Tags 10, 12
OpenBUGS 43-45,72 Workflows
R 50-54 Location/path/reloading 10

79

