
i

An Advanced User’s Guide to

Stat-JR version 1.0.4

Programming and Documentation by

William J. Browne*, Christopher M.J. Charlton*, Danius T.

Michaelides**, Richard M.A. Parker*, Bruce Cameron*,

Camille Szmaragd*, Huanjia Yang**, Zhengzheng Zhang*,

Harvey Goldstein*, Kelvyn Jones*, George Leckie* and Luc

Moreau**

*Centre for Multilevel Modelling,

University of Bristol.

**Electronics and Computer Science,

University of Southampton.

June 2016

ii

An Advanced User’s Guide to Stat-JR version 1.0.4

© 2016. William J. Browne, Christopher M.J. Charlton, Danius T. Michaelides, Richard M.A.

Parker, Bruce Cameron, Camille Szmaragd, Huanjia Yang, Zhengzheng Zhang, Harvey

Goldstein, Kelvyn Jones, George Leckie and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, for any

purpose other than the owner's personal use, without the prior written

permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

iii

Contents

1. About Stat-JR ... 1

1.1 Stat-JR: software for scaling statistical heights. ... 1

1.2 About the Advanced User’s Guide .. 2

2 Installation instructions .. 3

3 A simple regression template example ... 4

3.1 Running a first template ... 4

3.2 Opening the bonnet and looking at the code ... 8

3.2.1 Inputs ... 10

3.2.2 Model ... 11

3.2.3 Latex ... 12

3.2.4 Some points to note ... 14

3.3 Writing your own first template ... 14

Exercise 1 .. 14

4 Running templates with the eStat engine .. 15

4.1 Algebra and Code Generation ... 15

4.2 The algebraic software system ... 22

5 Including Interoperability .. 26

5.1 eStat.py ... 27

5.2 Regression2.py .. 28

5.3 WinBUGS and Winbugsscript.py ... 28

5.4 MLwiN ... 32

5.5 R .. 38

5.6 Other packages ... 44

6 Input, data manipulation and output templates .. 45

6.1 Generate template (generate.py) ... 45

Exercise 2 .. 48

iv

6.2 Recode template (recode.py) ... 48

Exercise 3 .. 50

6.3 AverageAndCorrelation template ... 50

Exercise 4 .. 52

6.4 XYPlot template .. 52

Exercise 5 .. 55

7 Single level models of all flavours – A logistic regression example .. 56

7.1 Inputs .. 58

7.2 Engines .. 59

7.3 Model .. 59

7.4 LaTeX ... 61

Exercise 6 .. 61

8 Including categorical predictors .. 62

9 Multilevel models ... 66

9.1 2LevelMod template ... 66

Exercise 7 .. 71

9.2 NLevelMod template .. 71

Exercise 8 .. 76

10 Using the Preccode method .. 76

10.1 The 1LevelProbitRegression template .. 76

10.3 preccode and deviancecode attributes .. 80

11 Multilevel models with Random slopes and the inclusion of Wishart priors 82

11.1 An example with random slopes .. 82

11.2 Preccode for NLevelRS .. 87

Exercise 9 .. 90

12 Improving mixing (1LevelBlock and 1LevelOrthogParam) .. 90

12.1 Rats example ... 90

v

12.2 The 1LevelBlock template ... 92

12.3 The 1LevelOrthogParam template .. 94

Exercise 10 .. 98

12.4 Multivariate Normal response models ... 99

12.5 The preccode function for this template .. 102

13 Out of sample predictions ... 107

13.1 The 1LevelOutSampPred template – using the zxfd trick ... 108

Exercise 11 .. 110

References .. 111

Acknowledgements

The Stat-JR software is very much a team effort and is the result of work funded under three ESRC

grants: the LEMMA 2 and LEMMA 3 programme nodes (Grant: RES-576-25-0003 & Grant:RES-576-

25-0032) as part of the National Centre for Research Methods programme, and the e-STAT node

(Grant: RES-149-25-1084) as part of the Digital Social Research programme. The work has continued

with the ESRC grant ES/K007246/1.

We are therefore grateful to the ESRC for financial support to allow us to produce this software.

All nodes have many staff that, for brevity, we have not included in the list on the cover. We

acknowledge therefore the contributions of:

Fiona Steele, Rebecca Pillinger, Paul Clarke, Mark Lyons-Amos, Liz Washbrook, Sophie Pollard,

Robert French, Nikki Hicks, Mary Takahama and Hilary Browne from the LEMMA nodes at the Centre

for Multilevel Modelling.

David De Roure, Tao Guan, Alex Fraser, Toni Price, Mac McDonald, Ian Plewis, Mark Tranmer, Pierre

Walthery, Paul Lambert, Emma Housley, Kristina Lupton and Antonina Timofejeva from the e-STAT

node.

A final acknowledgement to Jon Rasbash who was instrumental in the concept and initial work of

this project. We miss you and hope that the finished product is worthy of your initials.

WJB June 2016.

1

1. About Stat-JR

1.1 Stat-JR: software for scaling statistical heights.
The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an

increase in the availability and complexity of data sources, and an increase in the sophistication of

statistical methods that can be used. For the novice practitioner of statistical modelling it can seem

like you are stuck at the bottom of a mountain, and current statistical software allows you to

progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR

package is to assist practitioners in making their initial steps up the mountain, but also to cater for

more advanced practitioners who have already journeyed high up the path, but want to assist their

novice colleagues in making their ascent as well.

One issue with complex statistical modelling is that using the latest techniques can involve having to

learn new pieces of software. This is a little like taking a particular path up a mountain with one

piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of

statistical model), and then having to descend again and take another path, with another piece of

software, all the way up again to eventually get there, when ideally you’d just jump across! In Stat-

JR we aim to circumvent this problem via our interoperability features so that the same user

interface can sit on top of several software packages thus removing the need to learn multiple

packages. To aid understanding, the interface will allow the curious user to look at the syntax files

for each package to learn directly how each package fits their specific problem.

To complete the picture, the final group of users to be targeted by Stat-JR is the statistical algorithm

writers. These individuals are experts at creating new algorithms for fitting new models, or better

algorithms for existing models, and can be viewed as sitting high on the peaks with limited links to

the applied researchers who might benefit from their expertise. Stat-JR will build links by

incorporating tools to allow this group to connect their algorithmic code to the interface through

template-writing, and hence allow it to be exposed to practitioners. They can also share their code

with other algorithm developers, and compare their algorithms with other algorithms for the same

problem. A template is a pre-specified form that has to be completed for each task: some run

models, others plot graphs, or provide summary statistics; we supply a number of commonly used

templates and advanced users can use their own – see the Advanced User’s Guide. It is the use of

templates that allows a building block, modular approach to analysis and model specification.

At the outset it is worth stressing that there a number of other features of the software that should

persuade you to adopt it, in addition to interoperability. The first is flexibility – it is possible to fit a

very large and growing number of different types of model. Second, we have paid particular

attention to speed of estimation and therefore in comparison tests, we have found that the package

compares well with alternatives. Third it is possible to embed the software’s templates inside an e-

book which is exceedingly helpful for training and learning, and also for replication. Fourth, it

provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain

Monte Carlo procedures for calculating model estimates and functions of model estimates, via eStat

engine. The eStat engine is a newly-developed estimation engine with the advantage of being

transparent in that all the algebra, and even the program code, is available for inspection.

2

While this is a beginner’s guide – it is a beginner’s guide to the software. We presume that you have

a good understanding of statistical models which can be gained from for example the LEMMA online

course (http://www.bristol.ac.uk/cmm/learning/online-course/index.html) . It also pre-supposes

familiarity with MCMC estimation and Bayesian modelling – the early chapters of Browne’s (2016)

MCMC Estimation in MLwiN (which can be downloaded from

http://www.bristol.ac.uk/cmm/software/mlwin/download/manuals.html) provide a practical

introduction to this material.

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in

Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this

software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of

the Stat-JR community: either through the creation of your own templates that can be shared with

others, or simply by providing feedback on existing templates.

Happy Modelling,

The Stat-JR team.

1.2 About the Advanced User’s Guide

This Advanced Guide is meant to complement the Beginner’s Guide to Stat-JR’s TREE interface and

we recommend that users read that guide first to get an idea of how the Stat-JR software works. A

major component of the Stat-JR package is the use of (often user-written) templates. Templates are

pieces of computer code (written in the Python language; see https://www.python.org/) that

perform a specific task. Many of the templates are used to fit a specific family of statistical models

although there are other templates that perform data input, data manipulation, graphical output,

and so on.

In this document it is our aim to give users who intend to write their own templates, or more

generally are interested in how the Stat-JR system works, more details about how to write templates

and to some degree how the system fits together. We will do this by showing the code for several of

the templates we have written and giving a detailed explanation of what each function and even in

places each line of code does.

An initial question posed by potential template writers has been what language are templates

written in and when told ‘Python’ then ask whether we are providing an introductory chapter on this

language. We are not specifically writing an introductory chapter on Python (good books include

Hetland (2005) and Lutz and Ascher (2004), as well as the many online resources available) as it has a

vast language and we will mainly be interested in specific aspects of the language, some of which are

non-standard and specific to Stat-JR. In fact many of the functions that make up a template in Stat-JR

are designed to create text blocks in other languages, for example C++, BUGS or any of the other

macro languages associated with the software packages supported via inter-operability. This is not

to say that reading up on Python is without merit and certainly Python experts will find writing

http://www.bristol.ac.uk/cmm/learning/online-course/index.html
http://www.bristol.ac.uk/cmm/software/mlwin/download/manuals.html
https://www.python.org/

3

templates initially easier than others (though more because of their programming skills than their

Python skills per se).

Our advice is therefore to work through this guide first and try the exercises and have a Python book

as a backstop for when you are stuck writing your own templates. We will now give instructions into

how to install all the software needed to run Stat-JR before moving on to our first example template.

2 Installation instructions

Stat-JR has a dedicated website for requests for a copy of the software and which contains

instructions for installation. This is currently located at

http://www.bristol.ac.uk/cmm/software/statjr/index.html

To run the software:

Stat-JR runs in a web browser; whilst it will work in most web browsers we suggest not using

Internet Explorer, although it is hoped support for more browsers will be added in future. To start

Stat-JR, select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the start up

menu; this should bring up a web browser.

When you open TREE, this action starts a Command prompt window in the background to which

commands are printed out. This window is useful for viewing what the system is doing: for example,

on the machine on which I have run TREE I can see the following commands:

WARNING:root:Failed to load package GenStat_model (GenStat not found)

WARNING:root:Failed to load package Minitab_model (Minitab not found)

WARNING:root:Failed to load package Minitab_script (Minitab not found)

WARNING:root:Failed to load package SABRE (Sabre not found)

INFO:root:Trying to locate and open default web browser

The last line quoted here (although more lines will appear beneath it on start-up) indicates that Stat-

JR is locating the default web browser on your machine; once it has done so it will open that web

browser and display TREE’s welcome page. The lines such as “WARNING:root:Failed to load package

GenStat model (GenStat not found)” are not necessarily problematic but are warning you that the

Genstat statistical package – one of the third-party statistical packages with which Stat-JR can

interoperate – has not be found (where Stat-JR expects to find it if it is installed) on your particular

machine.

Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is

Internet Explorer it is best to open a different browser and copy the html path to it; this will be

something like localhost:52228 (although the number will likely differ each time you run Stat-JR).

TREE is short for Template Reading and Execution Environment and is an interface into Stat-JR that

allows the user to look at a single template and dataset at a time. There are also an eBook interface

(called DEEP), a Python command line interface, and a beta version of a new workflow interface

called LEAF (Logging and Execution of Analysis Flows) in Stat-JR 1.0.4, but in this manual we stick

with the TREE interface.

http://www.bristol.ac.uk/cmm/software/statjr/index.html

4

3 A simple regression template example

3.1 Running a first template
We will firstly consider a very simple template that is included in the core model templates

distributed with Stat-JR which has the title Regression1. This template is used in the Beginner’s

Guide and perhaps before looking at the code it would be good to run the template again in the

TREE interface to see what it does. To do this start up the Stat-JR package as directed in Section 2. If

you refresh the screen you should be greeted by the following display:

If you click on Begin then the software will move from this welcome page to the general working

page. Here you will see that the template Regression1 is the default template on start up and the

default dataset is called tutorial (see the Beginner’s Guide for more information on the dataset). The

screen will look as shown below:

5

Here you will see a main pane which is looking for inputs for a response (a single select list) and

explanatory variables (a multiple select list). We will here select normexam as the response and cons

and standlrt as the explanatory variables as shown below:

Next we click on the Next button and fill in the input boxes that appear as follows (NB the input

string is {'burnin': '500', 'defaultsv': 'Yes', 'outdata': 'out', 'thinning': '1', 'nchains': '3', 'defaultalg':

'Yes', 'iterations': '2000', 'y': 'normexam', 'x': 'cons,standlrt', 'seed': '1', 'makepred': 'No'}; this can be

entered into the input string box via Template > Set Inputs to populate the input values as an

alternative to pointing and clicking through):

6

Note that when all boxes on the screen are filled in, clicking the Next button will show further inputs

if there are any. Here we have given a name of the object/dataset where the results are to be

stored. The other inputs are for the MCMC estimation methods we are using. When you click Next

again the software will perform some procedures in the background and after a short while the

screen will expand to include a lower pane with an accompanying pull down list in which various

objects generated by Stat-JR can be selected and displayed thus:

The pull-down list contains several objects including the model code which looks a bit like WinBUGS

(Lunn et al., 2000) code which the system uses to create code that will fit the model. Currently a

nicely formatted mathematical description of the model (in LaTeX code) is shown in the pane and

named equation.tex. Objects can be displayed in their own tab by clicking on the word Popout to the

right of the pull-down list:

Back in the first Stat-JR tab there is a green Run button above the output pane. If we click this button

then after a short while the model will run. There is a counter in the bar at the top of the tab which

indicates when Stat-JR is working (coloured blue) or ready (coloured green) and how long the

execution took. The first time a model is run the code will need compiling which will take a while.

7

When the execution has finished we will have more objects to choose from in the pull-down list

including the results (ModelResults) which we show popped out below:

This screen contains summary statistics for five parameters (in fact sigma, sigma2 and tau are all

functions of each other). We can also look at diagnostic plots for the parameters e.g. beta_0.svg:

8

The purpose of this document is not to go into details about what these figures mean – interested

readers can look at the accompanying Beginner’s guide for such information. Instead we want to

teach you here how to write a similar template yourself.

3.2 Opening the bonnet and looking at the code
The operations that we have here performed in fitting our first model are shared between the user-

written template Regression1 and other code that is generic to all templates and which we will

discuss in more detail later.

So our next stage is to look at the source Python file for Regression1. All templates are stored in the

templates subdirectory under the base directory and have the extension .py and so if we open

Regression1.py (in Wordpad/Notepad and not Python) we will see the following:

Copyright (c) 2013, University of Bristol and University of

Southampton.

from EStat.Templating import Template

class Regression1(Template):

 'A model template for fitting 1 level Normal multiple regression

model in eStat only.'

 __version__ = '1.0.0'

 tags = ['Model', '1-Level', 'Normal']

 engines = ['eStat']

 inputs = '''

y = DataVector('Response: ', help= 'a.k.a. Y, Outcome

variable, Dependent variable, etc.')

x = DataMatrix('Explanatory variables: ', allow_cat = True, help=

"<p style='text-align:left'>A.k.a. X, Predictor variables,

Independent variables, etc.</p><p style='text-

align:left'>Note: if you wish to include an

intercept then you need to add it (e.g. a constant

of ones) as one of the explanatory variables.</p><p style='text-

align:left'>Once you've selected a variable, you have the

opportunity to indicate whether it's categorical or not; if

categorical, dummy variables will be added to the model on your

behalf.</p>")

beta = ParamVector(parents=[x], as_scalar=True)

tau = ParamScalar()

sigma = ParamScalar(modelled = False)

sigma2 = ParamScalar(modelled = False)

deviance = ParamScalar(modelled = False)

'''

 model = '''

model{

 for (i in 1:length(${y})) {

 ${y}[i] ~ dnorm(mu[i], tau)

 mu[i] <- ${mmult(x, 'beta', 'i')}

 }

9

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 sigma <- 1 / sqrt(tau)

}

'''

 latex = r'''

\begin{aligned}

 \mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

 ${mmulttex(x, r'\beta', 'i')} \\

%for i in range(0, len(x)):

\beta_${i} & \propto 1 \\

%endfor

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

'''

We will now describe in some detail what this code does. The first line (after the initial copyright

statement) here is simply importing information needed by the template and is generic to many

templates. We then have a class statement which defines a class Regression1 which is a subclass of a

generic Template class. There is then a sentence known as a descriptor that describes what the

template does. For those unfamiliar with the terminology we are using think of a class as being a

definition of a type of object, for example we might have a class of rectangles where each rectangle

might be described by two attributes, length and width. Then an instance of the class which we

might call Dave will have these values instantiated e.g. Dave’s length is 3 and width is 1.

We might think of the subclass of rectangles the squares which again have the two attributes length

and width. We could state that class Square (Rectangle): in which case we know that as squares are

a subclass of rectangles they have a length and width but we would now redefine the attribute width

within the squares definition to equal length.

This terminology is what is used in what is called object orientated programming.

In the definition here five attributes (tags, engines, inputs, model, and latex) are then defined as

being parts of a Regression1 class although there will be other attributes that are generic to the

template class and are defined elsewhere.

Briefly:

 The __version__ attribute identifies which version of this file this is. It is useful for debugging

as when a bug is fixed and a new version created we update the version number.

 The tags attribute identifies the template as belonging to the tag groups ‘Model’, ‘1-Level’,

and ‘Normal’ and this is used in the web interface to decide which templates to show in

specific template lists.

10

 The engines attribute identifies which estimation and or graphical engines can be used with

this template (in this case just the built-in ‘eStat’ estimation engine) which is used by Stat-JR

to decide which estimation options to offer. This attribute is how, along with additional

attributes, we allow Stat-JR to interoperate with other software.

 The inputs attribute is a text string (hence the starting and ending ‘’’) which consists of a list

of the inputs in this template.

 The model attribute is a text string that will produce the model code we saw in the web

interface for this template.

 The latex attribute is a text string that will produce a piece of LaTeX code which is converted

into the nice mathematics we saw in the web interface. We will next look at the last three

attributes in more detail.

3.2.1 Inputs

When this template has been selected in the web interface it will firstly have its inputs interrogated

and start creating an instance of a model object. Stat-JR has a list of object types that can be thought

of as the building blocks of a model object. Statements like

y = DataVector('Response: ', help= 'a.k.a. Y, Outcome

variable, Dependent variable, etc.')

can be thought of as defining the components that make up a model object, so here we are building

a model object that contains a data vector called y. The text in the brackets is used by the web

interface as a piece of text to place on the screen alongside the appropriate input device (in the case

of a data vector a single select list) and the second help string is help text that appears if you hover

over the input in the browser (we’ve greyed this out just to make the remaining code more salient).

Stat-JR’s in-house eStat engine (and some of the other estimation engines with which Stat-JR

interoperates, such as JAGS, OpenBUGS, R_nimble and WinBUGS) distinguish between Data objects

which require user inputs and Parameters (Param) which just need to be declared. This template

therefore has 7 components (2 pieces of data and 5 parameters) that make up the model. The

DataMatrix declaration for x will correspond to the multiple-select list that we saw when running the

template. Here we see that this declaration takes a couple of arguments:

x = DataMatrix('Explanatory variables: ', allow_cat = True, help=

"<p style='text-align:left'>A.k.a. X, Predictor variables,

Independent variables, etc.</p><p style='text-

align:left'>Note: if you wish to include an

intercept then you need to add it (e.g. a constant

of ones) as one of the explanatory variables.</p><p style='text-

align:left'>Once you've selected a variable, you have the

opportunity to indicate whether it's categorical or not; if

categorical, dummy variables will be added to the model on your

behalf.</p>")

In this version of Stat-JR we have implemented code to deal with categorical predictor variables and

so the allow_cat argument tells Stat-JR that elements of x might be treated as categorical variables.

The help argument contains a rather long text string that will appear on the screen if we hover over x

with the mouse.

11

3.2.2 Model

The model attribute gives a definition (as a text string) of an instance of a model set up using this

template. The definition is in a language that very much resembles the language used by the

WinBUGS (Lunn et al., 2000) package to specify models (with some minor differences) and will be

used in Stat-JR to create code to run the model using the eStat engine. The definition can be shown

on the screen in the objects pane under the label model.txt so you can for example see the

definition for the model we fitted to the tutorial dataset earlier by selecting this object from the pull

down list. As the text is specific to the inputs given, the definition is a text string containing some

quantities that depend on inputs. These are integrated into the text string via the $ symbol for

substitutions, through conditional and looping computation achieved via % commands and through

the calling of external functions. The model code for this template uses all three devices, and so we

will here go through stage by stage the instance of model shown in the earlier screen shots.

We start with the raw code:

 model = '''

model{

 for (i in 1:length(${y})) {

 ${y}[i] ~ dnorm(mu[i], tau)

 mu[i] <- ${mmult(x, 'beta', 'i')}

 }

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 sigma <- 1 / sqrt(tau)

}

'''

Now we can substitute normexam for ${y} as this is the column we chose for y thus:

model = '''

model{

 for (i in 1:length(normexam)) {

 normexam[i] ~ dnorm(mu[i], tau)

 mu[i] <- ${mmult(x, 'beta', 'i')}

 }

 # Priors

 % for i in range(0, x.ncols()):

 beta${i} ~ dflat()

 % endfor

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 sigma <- 1 / sqrt(tau)

}

 '''

Next we can evaluate the for loop with, in our example x having 2 columns:

model = '''

model{

 for (i in 1:length(normexam)) {

 normexam[i] ~ dnorm(mu[i], tau)

12

 mu[i] <- ${mmult(x, 'beta', 'i')}

 }

 # Priors

 beta0 ~ dflat()

 beta1 ~ dflat()

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 sigma <- 1 / sqrt(tau)

}

 '''

Finally the function mmult is a function written separately and is used to create the products of the x

variables and their associated betas with appropriate indexing. When run we get:

model = '''

model{

 for (i in 1:length(normexam)) {

 normexam[i] ~ dnorm(mu[i], tau)

 mu[i] <- cons[i]*beta0 + standlrt[i]*beta1

 }

 # Priors

 beta0 ~ dflat()

 beta1 ~ dflat()

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 sigma <- 1 / sqrt(tau)

}

 '''

This is identical to the code we see under model.txt in the TREE interface and is one way of

displaying the model we wish to fit. Another way is to write the model in mathematical form using

the LaTeX language and this can also be shown in the web output in the pull down list under

equation.tex as we saw earlier. Basically we are using a program called MathJax which will display

LaTeX code in a nice format embedded within a webpage. The attribute that is used for creating this

code is latex.

3.2.3 Latex

If you select equation.tex in the pull down list click for the bottom pane then the equations will

appear in LaTeX format. If you then right click in the pane and select Show Maths as TeX commands

option you will get a window popping up that shows the LaTeX source:

13

This code is created via the latex function and we will now look at how we get from latex to this

source for our example. The generic code is as follows:

latex = r'''

\begin{aligned}

 \mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

 ${mmulttex(x, r'\beta', 'i')} \\

%for i in range(0, len(x)):

\beta_${i} & \propto 1 \\

%endfor

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

'''

We have three steps as with the model function, firstly we will substitute normexam for ${y}

latex = r'''

\begin{aligned}

 \mbox{normexam}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

 ${mmulttex(x, r'\beta', 'i')} \\

%for i in range(0, len(x)):

\beta_${i} & \propto 1 \\

%endfor

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

'''

Next we can evaluate the for loop with, in our example x having 2 columns:

latex = r'''

\begin{aligned}

 \mbox{normexam}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

 ${mmulttex(x, r'\beta', 'i')} \\

\beta_0 & \propto 1 \\

\beta_1 & \propto 1 \\

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

14

'''

and finally we have the step to expand a function – this time called mmulttex :

latex = r'''

\begin{aligned}

 \mbox{normexam}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

 \beta_0\mbox{cons}_{i} + \beta_{1}\mbox{standlrt}_{i}

\beta_0 & \propto 1 \\

\beta_1 & \propto 1 \\

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

'''

3.2.4 Some points to note

You will notice that the string object created in latex has an r before the ‘’’ and that similarly there is

an r inside the mmulttex function call before the ‘. Basically the triple quotes are used in place of

quotes to allow the use of single quotes within the actual expression. The r is used to let the

computer know that the expression in the quotes is a raw string and so for example although the \

character is often used as a control character, in a raw string it will be treated simply as a \ and

passed through to the LaTeX reading software. This avoids the use of lots of double \ for each \. One

debugging tip is that lines often finish with a double slash to denote a new line in LaTeX. It is

important to add a space after the double slash in the text file as otherwise it will be concatenated

onto the next line.

Some of you will know LaTeX and so the code in the source window will be familiar. It is however not

essential to write a latex function for your own templates as the code is purely decorative. We will

not give a crash course on LaTeX here but essentially the aligned environment is used to write a set

of mathematical equations with the & sign denoting the place where the lines are lined up

horizontally and the double slashes denoting new lines. LaTeX uses the \ preceding terms to denote

special characters e.g. \beta gives a Greek lowercase beta. The aligned environment is for

mathematics and so if we wish to write words in normal font we enclose them in a \mbox. With this

basic knowledge you should be able to compare the source code and the maths it produces and thus

see what each of the special characters is.

3.3 Writing your own first template
We haven’t at this stage explained how the model function is used to create code to fit the model.

This is done by the Stat-JR system’s eStat engine using generic code that is common to all templates

and which we will discuss a bit more later. It is enough for now to realise that to write some basic

templates simply requires writing code similar to that seen here and the Stat-JR system will do the

rest of the hard work for you. We will now test your understanding by getting you to construct your

own first template:

Exercise 1

15

It is best when starting writing templates to start from a template that works and modify it to

confirm you understand what is going on. You will therefore now take the Regression1 template and

construct a template for an even simpler model – a simple linear regression. To do this in the

template directory copy the file Regression1.py to LinReg.py. It is also sensible to change the

classname in the template.

For a linear regression we want a template with two inputs y and x – only this time x is a vector

rather than a matrix i.e. there is only one predictor plus a constant. Try changing the text to ask

specifically for a Y variable and an X variable for the inputs. You will need to change inputs a little.

Try also then simplifying the model and latex functions – you should be able to get away without

needing the mmult/mmulttex functions.

In fact mu[i] should be something like alpha + beta*x[i], though if you use alpha and beta they will

both need declaring as ParamScalars in the inputs function.

When you think you have the template correctly written save it and reload templates in Stat-JR (via

the Debug menu) and test it out. If it is saved in the templates directory it will be automatically

picked up. It should give similar results to Regression1 for the example shown earlier.

4 Running templates with the eStat engine

4.1 Algebra and Code Generation
In section 3 we have seen the code required to create a template that fits a simple model using the

built-in eStat estimation engine. We have however hidden away many of the details. In this section

we will expose a few more details, including a little section on the algebra system. Let us start by

returning to the same example and show a few more screens that we have not yet exposed.

We will begin however by switching a few of the settings so that we can easier see what is going on.

To do this look at the black bar at the top of the screen and you will see the word Settings. Click on

Settings and you will be greeted by a settings screen (part of which is shown below) where you will

need to change the inputs to look as follows:

16

Here we have switched on standalone code and also switched off optimisation. The Settings screen

contains the locations of various files used by Stat-JR, the pathnames to all third party software one

might use with Stat-JR and specific eStat settings which we have modified here. Scroll to the bottom

of the screen and click on the Set button when you have made the changes which will take you back

to the welcome screen. Now click Begin as before and using Regression1 as the template and

tutorial as the dataset set up the inputs as follows:

Dataset: tutorial; Template: Regression1; Input string: {'burnin': '500', 'defaultsv': 'Yes', 'outdata':

'out', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam', 'x':

'cons,standlrt', 'seed': '1', 'makepred': 'No'}

17

Now clicking on Next we can choose other options from the pull-down list so firstly choose

algorithm.tex from the list and pop it out into a new tab.

Basically this window shows a nicely-presented result of what is returned from the algebra system

when it is given the model description constructed by the model method. We will look at the

algebra system in a little more detail later on, but for now you will see that three of the parameters

(beta0, beta1 and tau) have posterior distributions that require sampling from a conditional

distribution using a method called Gibbs sampling whilst two (sigma and sigma2) are simply

calculated as deterministic functions of the other parameters. Finally a formula for the deviance

function is also returned. In fact the algebra system returns a series of files (in xml format), one for

each parameter and we can also view these (in nicely presented form) for example tau.xml

18

Here we get the same line repeated twice as the second line shows the posterior after optimisation

(which here we have switched off). Stat-JR takes these files and converts each of them into the C++

programming language so if we look at the file modelcode.cpp we will see the actual C++ code

constructed below (note we will not go into detail as to how this is achieved):

Here after some code that is required for passing the variables back and fore from Python to C++ we

see the step for tau. This is similar to that given in the algebra. One difference is that the length of

19

normexam has its value (4059) substituted in. The code also uses a technique called Kahan

summation and so what would have been the line

sum0 = pow(((normexam[i]-(beta0*cons[i]))-(beta1*standlrt[i])),2);

is expanded to the following:

double ysum0 = pow(((normexam[i]-(beta0*cons[i]))-(beta1*standlrt[i])),2) -

csum0;

double tsum0 = sum0 + ysum0;

csum0 = (tsum0 - sum0) - ysum0;

sum0 = tsum0;

to deal with potential rounding issues.

If you scroll down you will see similar code to perform the steps for the other parameters and the

deviance. There are further C++ files which contain supporting routines (supportcode.cpp – note this

used to contain random number generators but they are now included via a library instead), perform

the DIC calculation (dic.cpp) and set up proposal distributions via adaptation when using Metropolis

Hastings sampling but not in this example (adapt.cpp).

When run in the usual way, i.e. without switching settings to run as standalone, each of these pieces

of C code is compiled separately and Python code within Stat-JR pieces everything together. If, as we

have done, we choose run as standalone and now click on Run then the software does as it suggests

and creates standalone C++ files. In the current version of Stat-JR we have included parallel

processing and so only one standalone file is constructed, engine.cpp, which contains the starting

values for all three chains. If we look at engine.cpp in a new tab we see the following:

20

This code contains everything and if you scroll down to near the bottom you will find the code to

update the parameters:

21

If you view the rest of this C++ code in detail you will see that there is a chunk at the top that is

common to all models but the rest of the code is mostly model-specific. If you return to the Settings

screen and switch back on optimisation and switch off Create standalone code under the EStat

heading and press Set, then repeating the model setup (you can do this via Templates > Set Inputs,

and selecting the last model run under History, and then pressing Use) you can fit the model and

view the code in modelcode.cpp:

22

Here the code is much harder to link to the algebra system as the data has been included into the

model steps and any constants have thus been evaluated. You might like to compare the code for

the tau step and see if you can spot the links, for example 2029.501 is 4059/2 + 0.001. Our advice is

that if you are interested in understanding the C++ code and the algorithm generally then it is

probably easier to switch off optimisation whereas if you want the code to run faster then switch it

on. We will revisit the C++ code in later sections when we introduce the use of the preccode method.

We will next look at how the algebra system converts the model statements into a set of steps in

more detail.

4.2 The algebraic software system
The algebra system that we have developed for the Stat-JR system (with main developer Bruce

Cameron) will take a BUGS-like model file and produce output xml format files for each parameter.

This will consist of their full conditional posterior distribution either as a known distribution with

formula or as an unknown distribution function. In version 1.0 of the software we integrated the

algebra system with the main software allowing us to view some of the intermediate files that show

how the algebra system works. If you have run the model that we saw above with the Regression1

template then the intermediate algebra system steps are included as xml format files.

23

If we select node_beta_0.xml from the pull-down list and pop it out we get the following:

…and if we scroll to the bottom of the window we see the further algebraic processing:

24

The program decides which lines in the model specification involve the parameter beta0. It then

finds the prior and likelihood parts of the model for this parameter before merging them together to

find the posterior and log posterior as a product of distributions. It then attempts to match the

distribution to known statistical distributions and here spots that the posterior for beta0 is a normal

distribution. Finally it gives the conditional posterior distribution in terms of other objects in the

model. We can view beta1 via node_beta_1.xml and see similarly a Normal posterior:

25

Finally tau the precision has a Gamma posterior distribution with calculations shown in

node_tau.xml:

26

The algebraic processing software then saves these three final distributions in XML file format

(beta_0.xml, beta_1.xml and tau.xml) so that they can be read in later when we create code to fit

the model. These files are then used to generate the C++ code to fit the model via a code generator

as explained earlier.

5 Including Interoperability
We have now seen that the Stat-JR package has its own new algebra system and estimation engine,

known as eStat as illustrated in the last section. Another aspect of the package is its ability to

interface with other software packages and in particular (but not exclusively) their estimation

engines. This feature doesn’t, however, come for free and translator methods that are often

template-specific need writing to achieve interoperability. The work here can be broken down into

generic work that is built into the Stat-JR software and includes interfacing with the external

software and managing the output received, and other work such as construction of data and script

files for the external package that may be template-specific and thus written by the template-writer

or generic as well.

In this section we will describe the (generic) Python code that is written to support interoperability

and found in the packages subdirectory of Stat-JR. We will return to the regression modelling

template and take a look at how we can include interoperability via an adapted template

27

(Regression2.py). We will here describe work on three of the software packages that have been

considered for interoperability, namely WinBUGS, MLwiN, and R but first we will delve a little further

into the workings of the eStat engine and look at the file eStat.py.

5.1 eStat.py
When running a model in Stat-JR with a specific estimation engine an object is constructed of a

unique class related to that engine. These objects are what pull together inputs and data, perform

the estimation and store the results. The files for the various engines are found in the packages

subdirectory which also contains equivalent files for use with templates not related to model

estimation. The object of type eSTAT is defined in the file eStat.py and you will see if you access this

code that it is rather long and complicated. We will not try and go through everything as this would

only be useful for the most expert Python coders. There are, however, some commonalities across

engines and so we will give very brief indications of what certain methods do in the template. Note

that only some of these are externally referenced (Methodinput, init, run and runmore) whilst

others are called internally as they do parts of the work of the externally-referenced attributes:

 The MethodInput method is present in each engine and contains the engine’s specific

estimation method inputs that we saw when running the Regression1 template earlier

(Number of chains, Random Seed, etc.).

 The init method is what is called after the estimation method inputs have been answered by

the user and the Next button is pressed. It calls lots of other methods to perform the

various tasks here including getting the algorithm from the algebra system and constructing

the code for running the model.

 The applydata method is used with eStat to construct starting values for parameters in the

model

 The compilemodel method is used to call the algebra system and get back algebraic steps

for each parameter.

 The calcconsts method is what is run with eStat when optimisation is switched on to pull out

terms in the algebra that are purely data and evaluate them.

 The run method is used to run the current model with the prescribed estimation settings

and is called when the Run button is pressed.

 The runmore method is used when the More button has been pressed for further iterations.

 The genCPP method is used to generate the C++ code for the standalone engine.

 The runCPP method is used to run the estimation algorithm when standalone C++ code is

selected.

 The saveresults method brings together the (potentially multi-chain) output and constructs

the ModelResults and output chains objects.

 The dic method constructs code if required to calculate the DIC diagnostic for the model.

With regard to engine classes in general we would expect to find a MethodInput method, an init

method, a run method and often a saveresults method but also some engine-specific methods. The

MethodInput method always contains any additional engine-specific inputs that are displayed on the

screen. The init method contains the Python code to be run upon pressing the Next button, but prior

to pressing the Run button, and the run method contains the Python code to be run after pressing

the Run button. The saveresults method, where present, is usually called from the run method. If the

28

estimation method allows more iterations (typically packages using MCMC estimation) then there

will be a runmore method that is called after pressing the More button. We will now look at a

second template that contains further interoperability.

5.2 Regression2.py
In this section we will consider a second template – Regression2 that extends the first template by

including the option to fit the same model in a variety of packages. If you look at the code in the

Python file you will see that this template has identical code for the attributes defined in

Regression1 but in addition has methods to allow the user to call other programs. We will begin

however by looking at the engines attribute:

engines = ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS' , 'MLwiN_MCMC',

'MLwiN_IGLS', 'R_MCMCglmm', 'R_glm', 'R_nimble', 'Stata_model',

'SPSS_model', 'PSPP_model', 'SAS_model', 'Minitab_model', 'SABRE',

'MATLAB_script', 'Octave_script','GenStat_model', 'gretl_model',

'Python_PyMC']

Here we see that this template offers very many software packages to be used. For several packages
there is simply one engine whereas for MLwiN and R there are more, as these packages have both
classical (ML) and Bayesian (MCMC) engines built-in. If you scroll down the file you will see
additional attributes:

 mlnscript

 rscript

 statascript

 spssscript

 psppscript

 sasscript

 minitabscript

 sabrescript

 matlabscript

 genstatscript

 gretlscript

 pymcscript

Each of these methods is used to produce scripts or parts of scripts for the corresponding package,
and the main point to take home here is that although some template-specific coding is required,
the code required is generally short functions (and in the case of WinBUGS, OpenBUGS and JAGS
non-existent) and so the bulk of the work, at least for this template, is done by the generic code
within the package files for the engines.

5.3 WinBUGS and Winbugsscript.py
We will begin by looking at the WinBUGS package (Lunn et al., 2000) as the model code we have

been creating for the Stat-JR engine has many similarities with BUGS code. We will begin by running

the template and viewing the output. It should be noted that in order to run the WinBUGS engine

Stat-JR needs to be able to find it. Stat-JR has a file of settings, settings.cfg which it will have placed

in a .statjr directory under your Users directory. This file contains amongst other things directory

names for each package. For example on my machine I have:

[WinBUGS]

executable = C:\WinBUGS14\WinBUGS14.exe

29

If you wish to use this option you need to either install WinBUGS in this directory or change these

paths to point to WinBUGS on your machine. This can either be done by editing the file or by going

to the Settings screen we looked at earlier and changing the file there. If you edit the file itself you

will need to restart the TREE program or select Debug > Reload packages so that it uses these

settings and then select Regression2.py from the template choices and tutorial for the dataset. Next

select the following inputs:

Dataset: tutorial; Template: Regression2; Input string: {'Engine': 'WinBUGS', 'burnin': '500',

'defaultsv': 'Yes', 'outdata': 'outwinbugs', 'thinning': '1', 'nchains': '2', 'iterations': '2500', 'y':

'normexam', 'x': 'cons,standlrt', 'seed': '1'}

Clicking on Next will result in Stat-JR constructing all the files it needs to fit the model in WinBUGS

and these can be found under the pull-down list. There will be model code (model.txt) and the

mathematical representation (equation.txt) as we saw for Regression1 with the eStat engine apart

from that this model code has been modified slightly to be in line with standard WinBUGS code, in

this case length(normexam) has been replaced with 4059 in code. (Note that this template also

supports the eStat estimation engine). We can look at the other input files required by WinBUGS for

example here is the file containing initial values for chain 1:

30

There is also a data file and a script file. If we next click on Run you will see a WinBUGS window

appear on your toolbar, and in the background, whilst WinBUGS is fitting the model. When it finishes

it will disappear and the list of files in the pull-down list will lengthen; so, for example, if we select

tau.svg and pop it out we will get the following output in the browser:

As we chose 2 chains you will also observe a green and blue output for both the chains and kernel

density plots. If you look at ModelResults you will notice that we get results for each parameter

(including the deviance and some reordering of the output). We now need to see how the

connection to WinBUGS was achieved. Interestingly, for the Regression2 template, you will not find

any additional code to run WinBUGS within the template itself apart from putting WinBUGS in the

engines list. This means that all the code is generic and not template-specific and will be found in the

WinBUGS.py file within the packages directory.

As mentioned in the last section these engine files give class definitions for classes that will perform

the interoperability work for specific packages, and the file WinBUGS.py gives the class definition for

the WinBUGSScript class. This class has, as expected, MethodInput, init and run methods and, as

WinBUGS supports running further MCMC iterations, there is also a runmore method. The

MethodInput method is fairly self explanatory and contains the various additional estimation

method inputs required by WinBUGS along with some code to allow the user to specify their own

starting values if they wish. The init method is split into two main parts written in two methods:

PrepareWBugsInputs which is used to create, in turn, the three files that are needed to fit a model in

WinBUGS, namely the data, initial values and model files, and also WriteScript which creates the

script file that WinBUGS uses to perform the model-fitting and extraction of results, etc.

The PrepareWBugsInputs method has code that will construct the model and data files for BUGS as

well as a series of initial value files. In many simple model scenarios, including the regression model

31

we have considered, the WinBUGS model file will, aside from simple substitutions, be identical to

the input file for the eStat algebra system and so the chunk of code dealing with model construction

is fairly simple and simply involves copying the model.txt file and making the substitutions.

If you are interested in writing templates that either only use WinBUGS or are for models where the

code for WinBUGS and eStat diverges then it is possible to write methods within the template to

construct the required model, data and inits files. These methods are named bugsmodel, bugsdata

and bugsinits respectively. The bugsmodel method should resemble to some degree the model

method used for eStat, whilst the bugsdata and bugsinits methods will generally consist of

commands to pull out or construct the various objects that make up the data and initial values.

For example in the 1LevelMVNormal template there are lines like:

data['M'] = M

...and…

data['R'] = Rmat

…which tell Stat-JR that there are two data objects that need adding to the WinBUGS output file.

Stat-JR can evaluate that M is an integer and R is a matrix from how they have been constructed in

Python, and there is code within PrepareWBugsInputs to write these out correctly into the data file.

For initial values there is a similar construction with the data[] construction replaced with an inits[]

construction. Note that if you wish to write your own bugsdata and/or bugsinit methods then all

data and/or parameters requiring initial values must be defined in the method.

For examples of template with their own WinBUGS functions you might look at 1LevelMVNormal or

CapRecap. The template 1LevelMVNormal fits a multivariate response model and as discussed later

in the manual the eStat engine has an unusual way of fitting such models and so for WinBUGS we

have files for bugsmodel and bugsdata to create these files in a more standard use of the WinBUGS

language. We do not have a bugsinit methods as the generic code works OK for creating the initial

values here. The template CapRecap fits a capture-recapture model which involves multinomial

distributions where again WinBUGS and eStat diverge. Here there is code to create all three required

files, however the reason for the bugsinit attribute is primarily because we want to have a specific

pattern of starting values.

The WriteScript function is totally generic as it creates the script file to be run in WinBUGS and this,

at least at present, is consistent across templates.

The run function which is run when the Run button is pressed is fairly short:

def run(self):

 self.eng.run('script.txt')

 try:

 self.saveresults()

 except:

 logging.error('There was a problem running the model')

32

The command:

self.eng.run('script.txt')

…actually runs WinBUGS.

The last command:

self.saveresults()

…both extracts the numbers from the text files returned from WinBUGS and constructs the

ModelResults object that can be viewed.

We have limited this section to a broad description of the purposes of specific functions used in the

interoperability and how an advanced user, if required, might write their own methods for their

template. Stat-JR also supports OpenBUGS (Lunn et al., 2009) and JAGS (Plummer, 2003) which are,

in terms of input files, similar to WinBUGS. There are differences in their script files and so the files

OpenBUGS.py and JAGS.py have similar but slightly differing code to account for this. JAGS also has a

slightly different format for data and initial values files which JAGS.py takes care of. If you are writing

your own bugsmodel, bugsdata and bugsinit methods then these will also be used to create the

model code, data and initial values in OpenBUGS and JAGS so you will not need to repeat the work.

We next look at MLwiN.

5.4 MLwiN

MLwiN (Rasbash et al. 2009) is another package with MCMC functionality but which can also fit

multilevel models using classical statistical methods. For the Regression2 template in Stat-JR we

offer the option of fitting models in MLwiN using either approach. Having seen how WinBUGS links

into Stat-JR we will now show the similarities and differences in how MLwiN links in. The first

observation is that MLwiN doesn’t use a model description language like Stat-JR or WinBUGS. It is

also more restrictive in terms of which models it can fit which means that it will not be available for

all templates but many of the templates we have written thus far fit models that MLwiN can also fit.

Although MLwiN has a GUI user interface which is typically how users will use it, it also has a macro

language and it is this language that we have to make use of when writing interoperability code for

Stat-JR. So as with WinBUGS we need to tell Stat-JR where to find MLwiN and this is found in the

settings.cfg file, for example:

[MLwiN]

executable = C:\Program Files (x86)\MLwiN v2.36\x64\mlnscript.exe

Let us demonstrate using MLwiN and MCMC for the tutorial dataset and Regression2 template. Here

select the template and dataset and next choose inputs as follows:

33

Dataset: tutorial; Template: Regression2; Input string: {'Engine': 'MLwiN_MCMC', 'burnin': '500',

'outdata': 'outmlwin', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y':

'normexam', 'x': 'cons,standlrt', 'seed': '1'}

The first thing to note is that the two approaches for MLwiN have their own engine name, and we

will see later that they have their own python files in the package directory. A further thing to note is

that MLwiN normally only offers single chains for MCMC. However if you run it from Stat-JR you can

get the illusion of multiple chains as Stat-JR will run MLwiN several times (in parallel), once for each

chain. Currently each chain has the same initial values but different random number seed but in the

future we hope to allow different starting values as well. Clicking on the Next button we see the

following:

34

Here we see the dataset file which contains only the columns in the data that are involved in the

modelling in MLwiN. The list of objects has been populated by many MLwiN script files and we will

look at one of these now, so select initscript0.mac and the screen will look as follows:

35

This is the script that is run first in MLwiN and sets up the required model and runs it (using IGLS first

to generate initial values). If we look in the file Regression2.py we can find the attribute mlnscript

which is as follows:

mlnscript = '''

RESP "${y}"

IDEN 1 "_id"

ADDT "_levres"

SETV 1 "_levres"

FPAR 0 "_levres"

% for i in range(len(x)):

ADDT "${x[i]}"

% endfor

'''

You should be able to see that, for our inputs, if we were to expand out this Python code we would

get the second section of code that appears within initscript0.mac. This code essentially sets up the

model in MLwiN ready to be fitted. The package file MLwin_MCMC.py will therefore take the code

that appears in mlnscript in the template and place it in the initscript macros (note there is one

initscript for each chain). Stat-JR will also construct 3 further macros for each chain: burninscript,

runscript and resultsscript. As MLwiN works by building up the model (as performed in initscript)

these further scripts perform the burnin iterations, main run iterations and results extraction

respectively and are generic. They only depend on the estimation method inputs, i.e. length of

burnin, number of iterations, thinning, etc., and each chain has a different random seed set.

Clicking on Run will fire off the three instances of MLwiN and bring back the output

as follows (after changing the output list to show ModelResults):

36

Apart from the speed of estimation (which is much quicker than Stat-JR and WinBUGS) the results

are very similar. Note that we have some slightly different numbering with MLwiN. MLwiN requires

being told that there is a constant variance at level 1 and to do this we create a constant column (of

ones), named _levres, which is made random at level 1 to represent this constant variance. The

fixed effects are then numbered from 2 rather than 0. We could, as an alternative run, run the

model via IGLS instead of MCMC by clicking on Choose Estimation Engine and choosing the

following and clicking Next:

Dataset: tutorial; Template: Regression2; Input string: {'y': 'normexam', 'x': 'cons,standlrt', 'Engine':

'MLwiN_IGLS', 'defaultalg': 'Yes'}

Note that as the non-MCMC engines do not create a datafile of the output that question is not

asked. Clicking on Run you get almost instantaneous answers if you choose ModelResults:

37

You will notice here that the results produced are simply point estimates and standard errors as the

method doesn’t construct chains. We also do not see the plots that we get with MCMC methods. As

we mentioned earlier there are two engines and hence two files in the packages directory:

MLwiN_MCMC.py and MLwiN_IGLS.py. We will discuss briefly MLwiN_MCMC.py which is currently,

apart from eStat.py and an associated eStat engine (CustomC), the biggest file in the directory.

As usual the file defines a class, this time for an MLwiNMCMC object. The class has the usual

MethodInput, init and run (and runmore) methods. The init method will construct the dataset and

script files for running in MLwiN. In fact there are attributes within the code for each of the script

files and you will see the code for the init_script:

init_script = '''

INIT 5 10000 1500 150 30

NOTE input data file

RSTA 'datafile.dta'

NOTE Set up the model

${userscript}

METH 1

BATCH 1

START

STOR "modelstate${chainnum}.wsz"

'''

Here the script written within the template gets inserted where we see ${userscript}, and you

will also see that chain number gets inserted in the last line of the macro. The run method simply

runs MLwiN using the constructed datasets and macro files, and then calls the saveresults method

which creates the ModelResults object. Again we omit details of precisely how these code sections

work as they are generic code and not template-specific. The MLwiN_IGLS.py file has a similar form

to MLwiN_MCMC.py except the macros are slightly shorter and the objects produced in the

38

saveresults methods are different. We will leave MLwiN here and move onto another package with

some functionality for the use of both MCMC and classical estimation methods: R.

 5.5 R
R (R Core Team, 2016) is a general purpose statistics programme that consists of a framework of

interlinking statistical commands that are known as packages. The R installation consists of a base

package containing many of the standard statistical operations and to this can be added user-written

packages. For our Regression2 template we will utilise the glm function when performing classical

inference. For MCMC methods we use the MCMCglmm package (Hadfield 2010), a user-defined

function that can fit many models using MCMC1. As with the earlier programs we need to include

details of the location of R in settings.cfg on our machine prior to running webtest. On my machine

this is as follows:

[R]

executable = C:\Program Files\R\R-3.3.0\bin\x64\R.exe

We can again first run the Regression2 template to see what it returns when we choose R, so select

Regression2 as the template and tutorial as the dataset and then input the following:

Dataset: tutorial; Template: Regression2; Input string: {'y': 'normexam', 'x': 'cons,standlrt', 'Engine':

'R_glm'}

Clicking on Run will fire off R and then give the following output if we choose qqNorm.svg from the

output list:

1 Although we have recently added support for the nimble (de Valpine et al, 2016) package in R too, although
nimble has an additional depencency on Rtools.

39

Here we see a quantile-quantile plot, which is one of the outputs from R produced from the script

sent to R. We can select ModelResults in the output list to get the following:

Here you will see that as the method is maximum likelihood we get only estimates and standard

errors and the AIC statistic. It is also possible to view the full log file from R and a plot of residuals

40

against fitted values in the output pane as this is also created by the R script. If we wish to look at

the script itself we can select script.R from the output list and pop it out as follows:

Here we find some heavily commented R code. We can see the call to glm near the bottom of the

window and this is followed by some code to generate the two plots that appear in the output list.

If we wish to instead use MCMC estimation we could, for example, do so by providing the following

inputs:

Dataset: tutorial; Template: Regression2; Input string: {'Engine': 'R_MCMCglmm', 'burnin': '1000',

'outdata': 'outR', 'thinning': '1', 'iterations': '5000', 'y': 'normexam', 'x': 'cons,standlrt', 'seed': '1'}

Clicking on Next and then Run will give the following upon running and selecting ModelResults from

the output list:

41

It should be noted that MCMCglmm is a single chain package and so Stat-JR does not give the option

for multiple chains here although in theory R could be called several times to give parallel chains as

we did for MLwiN. It also only gives the actual DIC estimate and not pD. Let us now look at how

interoperability is performed in the code. At present R interoperability is possibly the opposite

extreme to MLwiN interoperability. In the packages directory there are files for each R package; here

we are interested in R_glm.py and R_MCMCglmm.py which are quite short files defining classes for

each object. Then, in the Regression2 template file, there is a longer attribute rscript which is used to

construct the R script for model-fitting, with Python conditional statements to split up the code for

glm and for MCMCglmm.

Looking firstly at R_glm.py, it has a MethodInput method but this doesn’t have any additional inputs

as they are not required for this package. The inits method code begins as follows:

def init(self):

 self.WriteData()

Here we see a call to the WriteData method that constructs the data file that needs to be sent to R.

Then we begin to construct the script file for R:

script = '''

<% from EStat.Utils import Rmmult %>\\

local({r <- getOption("repos"); r["CRAN"] <- "http://cran.r-project.org"; options(repos = r)})

Note that when Stat-JR interoperates with R, it sets the working

directory to wherever the user's temporary files are stored, i.e.

workdir = tempdir(). The data to be modelled, this script, and the

files exported from R, are all saved there.

test to see if foreign package is already installed, if not, then install it

if (!require(foreign)) {

 install.packages("foreign")

 library(foreign)

}

read *.dta file (Stata format) into R data frame (requires foreign):

mydata<-read.dta("datafile.dta")

42

print summary of the data

summary(mydata)

'''

which here initially involves loading up the data and installing the R packages required if they are not

already present. Next is the call to the template specific code via the rscript attribute as shown

below:

 script += self.template.rscript

Here the substitutions into the template specific code are made and it is added to the script file.
Finally some more generic code to interrogate the output produced by R and create datafiles to be
used as output objects in Stat-JR is written.

 script += '''

Here an empty list called 'stats' is created, to which various

components of the model just fitted are added. If you are fitting this

model yourself in R, you can of course access these components directly

yourself, rather than necessarily copying them to a list for export.

create an empty list called 'stats'

stats <- list()

add (residual) deviance to 'stats'

stats$deviance <- myModel$deviance

add null deviance to 'stats'

stats$nulldeviance <- myModel$null.deviance

add Akaike information criterion to 'stats'

stats$aic <- myModel$aic

add convergence status (logical TRUE / FALSE) to 'stats'

stats$converged <- myModel$converged

add number of iterations taken to fit the model to 'stats'

stats$iter <- myModel$iter

A variety of parameters / model fit statistics are saved to the

working directory as *.dta files; Stat-JR imports these and

translates them into its own format for presentation to the user.

save 'stats' as 'stats.dta'

write.dta(data.frame(stats), file="stats.dta")

create 'estimates.dta', consisting of the coefficient estimates on one row,

and their standard errors on another

write.dta(data.frame(rbind(myModel$coefficients, sqrt(diag(vcov(myModel))))),

file="estimates.dta")

save the residuals as 'residuals.dta'

write.dta(data.frame(myModel$residuals), file="residuals.dta")

'''

Looking at the template specific code in the template Regression2 we see the following code at the

beginning of the method:

rscript = '''

Here we specify the model formula, formatted as y ~ x1 + x2 + ...

Since Stat-JR assumes users have included the intercept in their list

of explanatory variables, -1 removes the intercept which the glm

function otherwise adds by default.

formula <- ${y} ~ ${Rmmult(x)} - 1

This first line here (after the comment) simply defines the formula for the model which is common

to both estimation methods and then the code goes on to specific code for the glm package.

43

% if Rpackage == 'glm':

fit the model using the glm function, specifying the formula, data, and distribution (with

identity link) in its arguments

myModel <- glm(formula, data = mydata, family = gaussian(identity))

print summary of the model fit

summary(myModel)

Objects of class glm have several residual plots available (can

view them all via e.g. plot(myModel)), here we export the first two.

open a scalable vector graphics device called 'ResivsFitted.svg'

svg("ResivsFitted.svg")

request a plot of the residuals vs fitted values

plot(myModel, 1)

close the device

dev.off()

open a scalable vector graphics device called 'qqNorm.svg'

svg("qqNorm.svg")

request a Q-Q plot

plot(myModel, 2)

close the device

dev.off()

% endif

This second chunk is the code specific to the glm engine and consists of the call to that function

followed by calls to a summary function and two plotting functions. There is then a large chunk of

code specific for the MCMCglmm function which essentially runs that code and then the script is

returned. So we should now see how the full script file for R is formed and what needs to be placed

in the template.

The run method (within R_glm.py) that is executed when the Run button is pressed is, in this case,

very short and basically consists of a command to run the script followed by a call to the saveresults

method.

def run(self):

 self.eng.run('script.R')

 try:

 self.saveresults()

 except:

 logging.error('There was a problem running the model')

The saveresults method itself is also reasonably short and creates the ModelResults object. Here it

involves interrogation of the two output files from R, estimates.dta and stats.dta, to extract the

appropriate numbers for the ModelResults object.

def saveresults(self):

 results = ModelOutput()

 dta = self.eng.outputs['estimates.dta']

 for var in dta.variables.keys():

 results.add(var, 'est', dta.variables[var]['data'][0])

 results.add(var, 'se', dta.variables[var]['data'][1])

 statsdta = self.eng.outputs['stats.dta']

 for stat in statsdta.variables.keys():

 results.add('model', stat, statsdta.variables[stat]['data'][0])

 self.eng.outputs['ModelResults'] = results

It then continues to create separate .dta files and objects for parameters and fit.

44

The R_MCMCglmm.py file performs the equivalent operations when this engine is called from Stat-

JR and the same methods are present. The code is slightly more involved and in this case the

MethodInputs method has inputs to tell R how long to run MCMC for. There are also other

differences in the functions to account for the method being MCMC and hence returning chains to

be summarised. These methods are, however, similar to those for MLwiN and WinBUGS and we will

not detail them here.

Finally here we should point out that there are R-specific templates that perform other functions.

For example PlotsViaR.py allows the user to use the R lattice (Sarkar, 2008) graphical functions from

within Stat-JR. These templates generally have a very simple structure: the engine attribute is set to

R_script, the inputs attribute gives all the inputs required by the template and the rscript attribute is

used to construct a script file to be used in R to perform the required operations. There is therefore

a file in the packages directory named R_Script.py which handles such templates. It has a very simple

structure and contains the usual methods we have become familiar with when looking at the files in

this directory. It basically contains code to construct the data file for R, call the template code to

construct the script and then run the script and store the output objects. We will give no further

details here but finish by mentioning the other packages supported by Stat-JR.

5.6 Other packages
For our Regression2 template you will see that we also offer interoperability with other packages:

GenStat, Gretl Stata, Matlab, Minitab, PSPP, PyMC, SABRE, SAS and SPSS. Each of these packages will

have a Python file in the packages directory which deals with getting the data in the correct format

for the package, calling the template-specific code for the package and interrogating the output files

received back by Stat-JR from the package. Some packages will have two Python files in the packages

directory, for example for Stata we have files Stata_model.py and Stata_script.py, and here the

distinction is between calls from templates that fit models and thus need to create a ModelResults

object and templates that use other functionality e.g. graphs from within the package.

For our Regression2 template you will see that for most packages the code is quite short, for

example for Stata, we have:

statascript = '''

local family gaussian

local link identity

glm ${y} \\

% for p in x:

${p} \\

% endfor

, family(`family') link(`link') \\

##always remove the intercept

noconstant

produce diagnostic plots

predict yhat, mu

predict ehat, response

predict rhat, response standardized

scatter ehat yhat

graph export "ResivsFitted.png", replace

egen rank=rank(rhat)

45

gen nscore=invnormal(rank/(_N+1))

scatter rhat nscore

graph export "QQ_Plot.png", replace

'''

Here the code not only fits a model but also produces two plots.

This ends our whirlwind description of the interoperability features in the Stat-JR program. The

interoperability features are still a work in progress and although they are present in many of the

templates that we will describe in later sections we will not be going into details on this aspect of

these templates. The interested reader can look at these templates and see how they perform

interoperability and try writing their own interoperability code for their own templates.

6 Input, data manipulation and output templates

The Stat-JR system does not simply consist of templates for fitting models to datasets. There are, in

addition, templates that allow the user to input their own datasets, manipulate and summarise

datasets and plot features of datasets. In many ways these templates are much simpler to write and

understand. We will here look at a few examples of the templates along with their code and explain

how they fit into the TREE interface.

6.1 Generate template (generate.py)
Our first template to look at is used for generating columns to add to a dataset. These columns can

be constants, sequences, repeated sequences or random numbers. As this template doesn’t have

any exciting outputs we will not see much happen after execution. Let’s look at an example of

adding a vector of uniform random numbers to the tutorial dataset.

We firstly choose the Generate template from the template list on the main window and press the

Use button. The template will look as follows:

Now we select random for the output column name and choose Uniform Random for the type. After

clicking Next we are asked for a name of output results, and here if we enter tutorial the new

column will be appended onto the dataset and the tutorial dataset (in memory) will have an

additional column. If we choose a new name then a new dataset containing all the columns from

tutorial along with this new column will be formed (in memory) and tutorial will persist without the

new column.

46

Pressing Next will finish the inputs and Pressing Run will run the template and the Run button will

then disappear. If we then select tutorial from the pull-down list we will see:

Dataset: tutorial; Template: Generate; Input string: {'type': 'Uniform Random', 'outdata': 'tutorial',

'outcol': 'random'}

Here you can see a new column labelled random to the right of the dataset (you can pop this out

into another tab if it is not clear).

Examining the code it is first worth noting that the template has

engines = ['Python_script']

This tells Stat-JR that this template is not a model template and therefore needs to be treated

differently. The template has an inputs attribute as shown below:

inputs = '''

outcol = Text('Output column name: ')

type = Text('Type of number to generate: ', ['Uniform Random', 'Binomial

Random', 'Chi Squared Random', 'Exponential Random', 'Gamma Random',

'Normal Random', 'Poisson Random', 'Constant', 'Sequence', 'Repeated

sequence'])

if type == 'Binomial Random':

 prob = Text('Probability')

 numtrials = Integer('Number of Trials')

if type == 'Chi Squared Random':

 degreefree = Integer('Degrees of Freedom')

if type == 'Gamma Random':

 shape = Text('Shape')

if type == 'Poisson Random':

 exp = Text('Expectation')

47

if type == 'Constant':

 value = Text('Value')

if type == 'Sequence':

 start = Integer('Starting Value')

 step = Integer('Step')

if type == 'Repeated sequence':

 max = Integer('Maximum number')

 repeats = Integer('Repeats per block')

outdata=Text('Name of output dataset: ')

'''

Here we see that there are two main inputs, a name for the column to add (outcol) and a type of

column to generate. Depending on the type there may be additional inputs and these are catered for

through a set of “if” statements in Python. So for example if we want a constant column we will have

an additional attribute, value which gives the value of the constant. Note that the length of the

vector is controlled by the lengths of the columns already in the dataset, as a dataset is currently

restricted to be a set of columns of equal length.

As this template is not a model template there is no model or latex attributes; instead the

computations are performed within a method called pythonscript which basically performs the

required calculation in Python and adds the column to the output. The method code is as follows:

pythonscript = '''

import numpy

import EStat

from EStat.Templating import *

from EStat.DTAFile import DTAFile

retval = DTAFile()

retval.nobs = datafile.nobs

for k in datafile.variables.keys():

 retval.addvariable(k, data = datafile.variables[k]['data'])

datalen = datafile.nobs

if type == 'Uniform Random':

 outvar = numpy.random.uniform(size = datalen)

if type == 'Binomial Random':

 outvar = numpy.random.binomial(float(numtrials), float(prob), size =

datalen)

if type == 'Chi Squared Random':

 outvar = numpy.random.chisquare(float(degreefree), size = datalen)

if type == 'Exponential Random':

 outvar = numpy.random.exponential(size = datalen)

if type == 'Gamma Random':

 outvar = numpy.random.gamma(float(shape), size = datalen)

if type == 'Normal Random':

 outvar = numpy.random.normal(size = datalen)

if type == 'Poisson Random':

 outvar = numpy.random.poisson(float(exp), size = datalen)

if type == 'Constant':

 outvar = numpy.ones(datalen) * float(value)

48

if type == 'Sequence':

 outvar = numpy.arange(int(start), int(start) + (datalen * int(step)),

int(step))

if type == 'Repeated sequence':

 outvar = numpy.array(list(numpy.repeat(numpy.arange(1, int(max) + 1),

int(repeats))) * numpy.ceil(datalen / (float(max) *

float(repeats))))[0:datalen]

retval.addvariable(str(outcol), data = outvar)

outputs[str(outdata)] = retval

'''

Although the function is long this is mainly due to the many “if” statements to cope with each type

of vector to be generated. So, for example, if we wanted a vector of Uniform random numbers to be

stored in random then the only lines to be executed are:

retval = DTAFile()

retval.nobs = datafile.nobs

for k in datafile.variables.keys():

 retval.addvariable(k, data = datafile.variables[k]['data'])

datalen = datafile.nobs

outvar = numpy.random.uniform(size = datalen)

retval.addvariable(str(outcol), data = outvar)

outputs[str(outdata)] = retval

Here the code calculates the length of vector in the fifth line, uses the numpy random generator in
the next line to create the column of numbers in outvar. In the remaining lines we link the column
into the dataset and finally return the dataset to the output name we gave as an input.

Exercise 2

Try modifying this template so that it only offers the random number generators. Try expanding the

inputs so for example the Normal random generator will allow a mean and a variance, the Gamma

has a scale parameter and the exponential has a rate parameter.

6.2 Recode template (recode.py)
The Generate template allows the user to add new columns to their existing dataset. There are many

templates that expand or manipulate a dataset and we will here look at a second template, the

Recode template. The Recode template, as the name suggests, recodes values – in this case recoding

values within a certain range to a specific new value. This can be useful for creating categorical

values, although this might involve several repeated uses of the Recode template!

We will demonstrate this with the tutorial dataset and look at recoding the school gender (schgend)

column. In the original dataset schgend takes values 1 for a mixed school, 2 for a boys school and 3

for a girls school. We might want to recode this to take values 1 for mixed and 2 for single sex: i.e.

convert the 3s for girls’ schools to 2s. To do this first we select Recode from the template list and hit

the Use button. Next we select schgend from the list of columns and select the other inputs as

below:

Dataset: tutorial; Template: Recode; Input string: {'incol': 'schgend', 'newval': '2', 'outdata': 'tutorial',

'rangeend': '3', 'rangestart': '2'}

49

Clicking on Next and Run will run the template. Selecting View from the Dataset pull-down list at the

top of the screen and then clicking on the Summary tab shows a dataset summary:

Here we see that schgend now goes from 1 to 2 as expected. Let us now look at the code for this

template. As with generate this template has an inputs and a pythonscript attribute. These are both

quite short:

inputs = '''

incol = DataVector('Input column name: ')

rangestart = Text('Start of range: ')

rangeend = Text('End of range: ')

newval = Text('New value: ')

outdata=Text('Name of output dataset: ')

'''

Here the inputs attribute contains the five inputs that we saw when running the template. Next the
pythonscript attribute:

 pythonscript = '''

import numpy

import numexpr

import EStat

from EStat.Templating import *

from EStat.DTAFile import DTAFile

retval = DTAFile()

50

retval.nobs = datafile.nobs

for k in datafile.variables.keys():

 retval.addvariable(k, data = datafile.variables[k]['data'])

Copy data into numpy array for processing

var = numpy.array(datafile.variables[incol]['data'])

var[(var >= float(rangestart)) & (var <= float(rangeend))] = float(newval)

retval.addvariable(incol, data = var)

outputs[str(outdata)] = retval

'''

After some importing lines, the pythonscript attribute firstly copies the original column to the object

var and then performs the recoding by finding the values in the original column within the correct

range and then replacing them with the newval. Note the >= and <= operators mean that the range

is inclusive of its end points. Finally when var is modified it is then linked back to the input column

and the dataset is returned.

Exercise 3

This template applies the recoding by copying the recoded column over itself. As an exercise, try

modifying the template so that it will place the recoded column into a new location i.e. have another

name that is where to output the column to. Note the code for Generate should help here.

6.3 AverageAndCorrelation template
Another template that one might consider using prior to fitting a model is the

AverageAndCorrelation template. This template will give either some summary statistics (including

the averages) for a series of columns or the correlation matrix for a set of columns.

The template has a very short inputs attribute:

inputs = '''

op = Text('Operation: ', ['averages', 'correlation'])

vars = DataMatrix('Variables: ')

'''

Here op allows the user to choose between averages and correlations whilst vars stores which

columns to perform the operation on. This template again uses the pythonscript attribute but this

time creates an output called table which will give the averages or correlations in tabular form.

The code for pythonscript is as follows:

 pythonscript = '''

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput()

if op == 'averages':

 tabout.column_headings = ['name', 'count', 'mean', 'sd']

 for i in range(0, len(vars)):

 var = datafile.variables[vars[i]]['data']

 tabout.add_row(vars[i], [len(var), var.mean(), var.std()])

51

if op == 'correlation':

 invars = numpy.ma.row_stack([datafile.variables[var]['data'] for var in

vars])

 corrs = numpy.corrcoef(invars)

 tabout.column_headings = ['name']

 for j in range(0, len(vars)):

 tabout.column_headings.append(vars[j])

 for i in range(0, len(vars)):

 row = []

 for j in range(0, len(vars)):

 row.append(corrs[i, j])

 tabout.add_row(vars[i], row)

outputs['table'] = tabout

'''

You will see here separate chunks of code for averages and correlations. The average code basically

initialises a table output with column heading and then loops through the columns in vars setting

each in turn as a numpy masked array (the format in which all columns are currently stored in Stat-

JR) stored in var. An array of text strings are then constructed and added to the tabular output,

tabout, and here we are utilising the len function to get the number of data items and the built in

numpy functions mean and std to get the mean and standard deviation respectively.

The correlation code is slightly longer, we here firstly need to construct the data as a matrix invars

from which we can construct the correlations (corrs) by a call to the numpy.corrcoef function. Then

we again format the output nicely into tabout.

The line outputs['table'] = tabout creates the table object which is then included in the

output object list. If we consider using this template with the tutorial dataset we first need to select

it from the template list and select Use to get the default screen:

We can now try this with some of the variables and in turn averages and correlation. Here is an

example of averages – note we select table from the objects list:

Dataset: tutorial; Template: AverageAndCorrelation; Input string: {'vars':

'avslrt,standlrt,girl,normexam', 'op': 'averages'}

52

…and the correlations for the same four variables:

Dataset: tutorial; Template: AverageAndCorrelation; Input string: {'vars':

'avslrt,standlrt,girl,normexam', 'op': 'correlation'}

Exercise 4

Why not try and add the option to this template to give the standard error of the mean and also to

allow the template to output both averages and correlations together for the same variables.

Remember to rename the template first!

6.4 XYPlot template
Our final template in our whistle-stop tour of non-model templates is a graphing template. Python

has excellent graphing facilities and so we have created a few very basic graphing templates that

demonstrate some of these facilities. The xyplot template basically allows the user to plot one or

more Y variables against an X variable on the same plot.

53

The template has an inputs attribute as shown below:

inputs = '''

yaxis = DataMatrix('Y values: ')

xaxis = DataVector('X values: ')

'''

Here we have two inputs, the various Y variables and the corresponding X variable to plot against.

For a graph template we once again use the pythonscript attribute but this time the method

constructs an object called graphxy which is in fact a .svg image file and is constructed by a function

called ImageOutput.

The pythonscript code is as follows:

pythonscript = '''

from io import BytesIO

from matplotlib.figure import Figure

import matplotlib.lines as lines

from matplotlib.backends.backend_agg import FigureCanvasAgg

import EStat

from EStat.Templating import *

fig = Figure(figsize=(8,8))

ax = fig.add_subplot(100 + 10 + 1, xlabel = str(xaxis))

for n in yaxis:

 ax.plot(datafile.variables[xaxis]['data'],

datafile.variables[n]['data'], 'x', label = n)

 ax.legend()

canvas = FigureCanvasAgg(fig)

buf = BytesIO()

canvas.print_figure(buf, dpi=80, format='svg')

buf.seek(0)

outputs['graphxy.svg'] = ImageOutput(buf.getvalue())

buf.close()

'''

Here we have to firstly import lots of Python libraries in order to call the graphics functions. The

function we are using is the Figure function from the matplotlib package. We then make a blank plot

sticking on the axes labels before looping over the y variables and plotting their points. The ‘x’ is the

symbol to be plotted for each plot. The last six lines are used to store the plotted figure as a .svg file.

To see this template in action we will pick it from the template pull down list (along with the tutorial

dataset) and we will be greeted by the following in the browser:

54

Perhaps the simplest plot here would be to plot normexam against standlrt which you can try

yourself. Here we illustrate instead the use of more than one y variable by making the following

selections:

Dataset: tutorial; Template: XYPlot; Input string: {'xaxis': 'school', 'yaxis': 'avslrt,standlrt'}

Clicking on the Run button and choosing to popout graphxy.svg gives the following graph:

55

Here we see plotted the actual intake scores for each pupil against school number in green and the

school average in blue.

Exercise 5

Simplify this template to only allow a single y variable. Try adding a main title to the graph and

varying the symbol and colours – maybe make this an option for the user to choose. Remember to

rename the template before you start!

56

7 Single level models of all flavours – A logistic regression

example
We have so far met two model templates: Regression1, which could be used to fit normal response

multiple regression models in the Stat-JR built-in MCMC engine eStat, and Regression2, which

allowed the same models to be fitted in other statistics packages. We will now look at a

generalisation of these templates, 1LevelMod that allows other response types including Binomial

and Poisson responses. This template will illustrate the use of conditional statements within the

inputs and model functions.

We will begin by looking at the template in action in Stat-JR. The template should be able to fit all

the models that Regression1 fits and so you could test the earlier regressions but here we will look at

a logistic regression. So from the main menu headings we need to set the template to be 1LevelMod

and the dataset to be bang, our example binary response dataset taken from the 1988 Bangladeshi

Fertility Survey. Clicking on Use gives the following output in the browser:

We will now set up the various inputs and the screen will look as follows:

57

Dataset: bang; Template: 1LevelMod; Input string: {'Engine': 'eStat', 'burnin': '500', 'D': 'Binomial',

'outdata': 'out', 'n': 'cons', 'nchains': '3', 'thinning': '1', 'link': 'logit', 'defaultalg': 'Yes', 'iterations':

'2000', 'y': 'use', 'x': 'cons,age', 'makepred': 'No', 'seed': '1', 'defaultsv': 'Yes'}

We are here fitting a logistic regression to the response variable which is whether the women in

Bangladesh in the dataset use contraception or not. We are regressing this against age and using the

Stat-JR built-in MCMC engine with some default settings for estimation.

If we click on Next, equation.tex will display the model:

We will next click on Run to run the model and then get the following results by selecting

ModelResults from the objects list:

58

Here we see that the age coefficient is positive and significant meaning that older women are more

likely to use contraceptives. So we now want to look at the template to see what the code looks like.

We will only concern ourselves with the Stat-JR built-in engine here and so will not look at how the

template works with interoperability as this will be an extension of the code for Regression2 in

Section 5.

7.1 Inputs
The code for inputs is as follows:

inputs = '''

y = DataVector('Response: ', help= 'a.k.a. Y, Outcome variable,

Dependent variable, etc.')

D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson', '-ve

Binomial'])

if D == 'Binomial':

 n = DataVector('Denominator: ', help='e.g. if modelling a binary 0/1

response, select a constant of ones.')

 link = Text('Specify link function: ', ['logit', 'probit', 'cloglog'])

if D == 'Poisson':

 link = Text(value = 'ln')

 offset = Boolean('Is there an offset: ', help="An offset allows you to

model rates, instead of raw counts.")

 if offset:

 n = DataVector('Offset: ')

if D == '-ve Binomial':

 offset = Boolean('Is there an offset: ')

 if offset:

 n = DataVector('Offset: ')

x = DataMatrix('Explanatory variables: ', allow_cat = True, help= "<p

style='text-align:left'>A.k.a. X, Predictor variables, Independent

59

variables, etc.</p><p style='text-align:left'>Note: if you

wish to include an intercept then you need to add it (e.g.

a constant of ones) as one of the explanatory variables.</p><p style='text-

align:left'>Once you've selected a variable, you have the opportunity to

indicate whether it's categorical or not; if categorical, dummy variables

will be added to the model on your behalf.</p>")

if D == 'Normal':

 tau = ParamScalar()

 sigma = ParamScalar(modelled = False)

 sigma2 = ParamScalar(modelled = False)

if D == '-ve Binomial':

 alpha = ParamScalar()

 rho = ParamVector(parents = [y])

beta = ParamVector(parents = [x], as_scalar = True)

deviance = ParamScalar(modelled = False)

'''

Compared to Regression1 you will see that we have introduced an input D for distribution and that

we introduce conditional statements (“if” statements). The distribution D is defined as a Text input

and you will see that there are a limited number of choices given as a second argument to the

statement. The TREE program will treat this as a pull-down list input with the limited number of

choices populating the list.

As we saw in our example when fitting a Binomial model we introduce additional inputs n – the

denominator column and link a Text based input to indicate the link function. We also see that for

non-normal models there is no level 1 variance and so the quantities tau, sigma and sigma2 are not

included.

7.2 Engines
This template allows many estimation engines as shown below:

engines = ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS', 'MLwiN_MCMC',

'MLwiN_IGLS', 'R_glm', 'R_MCMCglmm', 'R_MCMCpack', ‘R_nimble’,

'Stata_model','SPSS_model', 'SAS_model', 'R_INLA', 'R_RStan']

when we originally wrote Stat-JR each template had its own inputs for these engines defined in a

Methodinput function but now these are generic inputs and so simply by including an engine here,

Stat-JR knows which inputs to use.

7.3 Model
The model attribute now also contains conditional statements as shown below:

model = '''

model{

 for (i in 1:length(${y})) {

 ${y}[i] ~ \\

 % if D == 'Normal':

dnorm(mu[i], tau)

 mu[i] <- \\

 % endif

 % if D == 'Binomial':

dbin(p[i], ${n}[i])

 ${link}(p[i]) <- \\

 % endif

 % if D == 'Poisson':

60

dpois(p[i])

 ${link}(p[i]) <- \\

 % if offset:

${n}[i] + \\

 % endif

 % endif

 % if D == '-ve Binomial':

dpois(p[i])

 p[i] <- rho[i] * exp(\\

 % if offset:

${n}[i] + \\

 % endif

 % endif

 % if D == '-ve Binomial':

${mmult(x, 'beta', 'i')})

 rho[i] ~ dgamma(alpha, alpha)

 % else:

${mmult(x, 'beta', 'i')}

 % endif

 }

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 % if D == 'Normal':

 tau ~ dgamma(0.001000, 0.001000)

 sigma <- 1 / sqrt(tau)

 sigma2 <- 1 / tau

 % endif

 % if D == '-ve Binomial':

 alpha ~ dlnorm(0, 0.001)

 % endif

}

 '''

Basically in the model code, conditional statements are started by a %if and the code to be

conditionally executed is ended by a %endif. The conditional statements can be hierarchical for

example the line

% if offset:

is within another %if statement and now the %endif will correspond to the latest %if. In our

example we have D == ‘Binomial’ and so the code simplifies to:

model = '''

model{

 for (i in 1:length(${y})) {

 ${y}[i] ~ \\

dbin(p[i], ${n}[i])

 ${link}(p[i]) <- \\

${mmult(x, 'beta', 'i')}

 }

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

}

61

 '''

and as we demonstrated for Regression1 we can fill in the $ calls and unwind the %for loop and the

$mmult function to get the code we can view in the model.txt output object.

7.4 LaTeX
Finally the latex method now also contains conditional statements.

latex = r'''

\begin{aligned}

%if D == 'Normal':

 \mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

%endif

%if D == 'Binomial':

 \mbox{${y}}_i & \sim \mbox{Binomial}(\mbox{${n}}_i, \pi_i) \\

\mbox{${link}}(\pi_i) & =

%endif

%if D == 'Poisson':

 \mbox{${y}}_i & \sim \mbox{Poisson}(\pi_i) \\

\mbox{${link}}(\pi_i) & =

%if offset:

\mbox{${n}}_i +

%endif

%endif

 ${mmulttex(x, r'\beta', 'i')} \\

%if str(Engine) in ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS' , ‘R_nimble’,

'MLwiN_MCMC', 'R_MCMCglmm']:

%for i in range(0, len(x)):

\beta_{${i}} & \propto 1 \\

%endfor

%if D == 'Normal':

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

%endif

%endif

\end{aligned}

'''

and as with the model function we achieve conditional operations via the %if and %endif pairs.

Again for our example we can strip out the conditionals to get

latex = r'''

\begin{aligned}

\mbox{${y}}_i & \sim \mbox{Binomial}(\mbox{${n}}_i, \pi_i) \\

\mbox{${link}}(\pi_i) & =

 ${mmulttex(x, r'\beta', 'i')} \\

%for i in range(0, len(x)):

\beta_{${i}} & \propto 1 \\

%endfor

\end{aligned}

'''

If you look at the code you will see other functions for the various other software packages but we

will not discuss these here.

Exercise 6

62

Convert the more general 1LevelMod template into a specific logistic regression template. To do this

copy 1LevelMod.py to 1LevelLogit.py and simply remove the conditional statements and additional

options so that the template only allows the user to fit logistic regression models. You can check the

template works by attempting the example given in the section with your new template.

8 Including categorical predictors

Originally in Stat-JR all predictor variables were assumed to be continuous and so if a predictor was

categorical, for example school gender in the tutoral dataset, we would need some method to

transform the original form to a series of dummy variables. To this end several templates were

created that performed this transformation as part of the template in an attribute called

preparedata. We will look at an example of this in a minute with the 1LevelCatRef template which

allows the user to specify variables as categorical and to specify which category is the reference. In

later versions of Stat-JR functionality was built in to allow the user to specify that an input might be

categorical and so, for example, in the inputs in 1LevelMod you will see the line:

x = DataMatrix('Explanatory variables: ', allow_cat = True, help= "<p

style='text-align:left'>A.k.a. X, Predictor variables, Independent

variables, etc.</p><p style='text-align:left'>Note: if you

wish to include an intercept then you need to add it (e.g.

a constant of ones) as one of the explanatory variables.</p><p style='text-

align:left'>Once you've selected a variable, you have the opportunity to

indicate whether it's categorical or not; if categorical, dummy variables

will be added to the model on your behalf.</p>")

which tells Stat-JR to ask for each element of x whether it is categorical or not; then, within each

package file, there is code to construct the dummy variables. This method is restricted in that it

always chooses the first category to be the reference. We will here look at an alternative template

that has built in functionality for constructing these categorical variables within the template. This

template is called 1LevelCatRef and we will first look at its inputs attribute to see how it gets the user

to input the model structure before demonstrating its use on the tutorial dataset.

The inputs code is as follows:

inputs = '''

y = DataVector('Response: ', help= 'a.k.a. Y, Outcome variable,

Dependent variable, etc.')

D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson'])

if D == 'Binomial':

 n = DataVector('Denominator: ', help='e.g. if modelling a binary 0/1

response, select a constant of ones.')

 link = Text('Specify link function: ', ['logit', 'probit', 'cloglog'])

if D == 'Poisson':

 link = Text(value = 'ln')

 offset = Boolean('Is there an offset: ', help="An offset allows you to

model rates, instead of raw counts.")

 if offset:

 n = DataVector('Offset: ')

x = DataMatrix('Explanatory variables: ', help= "<p style='text-

align:left'>A.k.a. X, Predictor variables, Independent variables,

etc.</p><p style='text-align:left'>Note: if you wish to

include an intercept then you need to add it (e.g. a

63

constant of ones) as one of the explanatory variables.</p><p style='text-

align:left'>Once you've selected a variable, you have the opportunity to

indicate whether it's categorical or not, and then which value you wish to

make the reference category.</p>")

for var in x:

 context[var + '_cat'] = Boolean('Is ' + var + ' categorical? ',

default=False)

 if context[var + '_cat']:

 context[var + '_ref'] = Integer('Reference Category: ',

help="A.k.a. the base category (coded zero in all associated dummy

variables); i.e. the category against which other categories are

contrasted.")

origx = Text(value = [])

if D == 'Normal':

 tau = ParamScalar()

 sigma = ParamScalar(modelled = False)

 sigma2 = ParamScalar(modelled = False)

beta = ParamVector(parents = [x], as_scalar=True)

deviance = ParamScalar(modelled = False)

'''

This code section is much the same as that in 1LevelMod (aside from not doing negative binomial) up

to the point that x is input. We next see a “for” loop that includes the use of the context statement

which is used to construct attribute names that are a combination of text and variable names. If, for

example, x contains the three variable list [‘cons’,’standlrt’,’schgend’] then the context statements

will create 3 variables ‘cons_cat’, ‘standlrt_cat’ and ‘schgend_cat’ which will store the text strings

‘yes’ or ‘no’ depending on whether the variables are categorical or not. If ‘yes’ then a further context

statement is used to construct a variable to house the reference category for that variable. The line

origx = Text(value = [])

will be used to store the original x variables prior to manipulating the categorical variables. By

setting its value in the assignment we will not get an input widget appearing in the browser.

Let us demonstrate fitting this model: choose 1LevelCatRef from the template list and tutorial as the

dataset. Note if you have previously used the recode template on this dataset, on the main menu

click on Debug > Reload datasets to get back the original tutorial dataset. Firstly we will choose the

inputs as follows:

64

Dataset: tutorial; Template: 1LevelCatRef; Input string: {'defaultsv': 'Yes', 'schgend_ref': '1', 'D':

'Normal', 'schgend_cat': 'Yes', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'outdata': 'tutout',

'seed': '1', 'standlrt_cat': 'No', 'Engine': 'eStat', 'burnin': '500', 'thinning': '1', 'y': 'normexam', 'x':

'cons,standlrt,schgend', 'cons_cat': 'No', 'makepred': 'No'}

Next we click on the Next button and we will be able to look at the equation for the model:

Here we see that in the maths that the expression for the linear predictor has two terms to

represent two of the possible categories for school gender (schgend_2 and schgend_3).

The important attribute here is preparedata. The preparedata attribute allows for template specific

data manipulations to be executed prior to the model run. In this case the code is as overleaf:

65

preparedata = '''

mydata = data['datafile']

for var in x:

 origx.name.append(var) # Save user's original selection

del x[:]

x.orignames = []

for var in origx.name:

 if context[var + '_cat']:

 uniqvals = list(set(mydata.variables[var]['data'].compressed()))

 uniqvals.sort()

 uniqvals.remove(int(context[var + '_ref']))

 for i in uniqvals:

 if int(i)<0:

 lab = 'neg'+str(abs(int(i)))

 else :

 lab = str(int(i))

 mydata.addvariable(var + '_' + lab, data =

(mydata.variables[var]['data'][:] == i).astype(float))

 x.name.append(var + '_' + lab)

 x.orignames.append(var)

 else:

 # TODO: fix this

 x.name.append(var)

 x.orignames.append(var)

beta.ncols = len(x)

'''

This code firstly retains the named predictor variables in origx by copying the contents of x to origx

and then deleting them from x. Then the code loops over the variables via the second for statement

and conditionally (the “if” statement) on a particular variable being categorical does some

processing.

The lines

 uniqvals = list(set(mydata.variables[var]['data'].compressed()))

 uniqvals.sort()

 uniqvals.remove(int(context[var + '_ref']))

firstly find all unique values in the categorical predictor which are then stored in uniqvals. We then

sort these into ascending order before removing the user defined reference category as it will play

the role as the base category in the model. We then have a second loop over this list of uniqvals

where we create the dummy variables. The lines

mydata.addvariable(var + '_' + lab, data =

(mydata.variables[var]['data'][:] == i).astype(float))

 x.name.append(var + '_' + lab)

firstly construct an array which takes value 1 if the original variable has value i or 0 otherwise. This

newly constructed predictor variable is then appended to the new variable list. If the variable is not

categorical it is simply added to this new variable list itself. We finally adjust the length of beta to

account for the expansion of the categorical variables and return the new dataset.

This preparedata method is run before the model and latex attributes and so these are similar to

those we saw in 1LevelMod. To continue running the example we can press the Run button and then

select the ModelResults object from the list to get the following results:

66

This completes this section and is the last single level model we will meet for a while. Another

extension would be to allow the inclusion of interactions into the model. This has been done in the

template 1LevelInteractions (which is available from the template repository but not part of the core

release). Here the modifications are done in the inputs and model/latex methods as no new

predictor variables are created. Instead the model code includes multiplications between the

variables. We will leave you to try out this template as an exercise.

9 Multilevel models
Our next step is to move onto templates for models for more complex data structures. In this section

we look at multilevel modelling templates – templates that allow random effects to account for

clustering in the data. We will look at two templates of increasing complexity, firstly a template for

fitting models that have 2 levels i.e. 1 higher level of clustering and then secondly a more general

template that will fit models with any number of levels clustering whether nested or crossed. Note

here that these templates allow only random intercepts in the models we are fitting.

9.1 2LevelMod template
We will begin our investigation of 2LevelMod by looking at its inputs attribute. Note that here and

later we have stripped out the help text from some of the inputs for readability:

inputs = '''

y = DataVector('Response: ')

67

L2ID = IDVector('Level 2 ID: ')

D = Text('specify distribution: ', ['Normal', 'Poisson', 'Binomial'])

if D == 'Binomial':

 n = DataVector('Denominator: ')

 link = Text('Specify link function: ', ['logit', 'probit', 'cloglog'])

if D == 'Poisson':

 link = Text(value = 'ln')

 offset = Boolean('Is there an offset: ')

 if offset:

 n = DataVector('Offset: ')

x = DataMatrix('Explanatory variables: ', allow_cat = True)

storeresid = Boolean('Store level 2 residuals?')

if D == 'Normal':

 tau = ParamScalar()

 sigma2 = ParamScalar(modelled = False)

beta = ParamVector(parents=[x], as_scalar=True)

if storeresid:

 u = ParamVector(parents=[L2ID], as_scalar=False)

else:

 u = ParamVector(parents=[L2ID], as_scalar=False, monitor=False)

tau_u = ParamScalar()

sigma2_u = ParamScalar(modelled = False)

deviance = ParamScalar(modelled = False)

'''

If you compare this with the inputs function for 1LevelMod you will see we have added 2 additional

inputs: L2ID to allow the user to input the column containing the level 2 identifiers and storeresid, a

Boolean indicator of whether to store the level 2 residuals or not. We also have three additional

parameters u, tau_u and sigma2_u (to represent the level 2 residuals, their precision and variance

respectiviely) that have been included. We can try out an example of these inputs by selecting the

template 2LevelMod and the dataset tutorial and applying the following inputs:

68

Dataset: tutorial; Template: 2LevelMod; Input string: {'Engine': 'eStat', 'L2ID': 'school', 'burnin': '500',

'D': 'Normal', 'outdata': 'tutout', 'storeresid': 'No', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes',

'iterations': '2000', 'y': 'normexam', 'x': 'cons,standlrt', 'makepred': 'No', 'seed': '1', 'defaultsv': 'Yes'}

Clicking on Next we will see equation.tex in the bottom pane:

Here we see a mathematical representation of the model created in latex. Let’s look next at model:

model = '''

model {

 for (i in 1:length(${y})) {

 ${y}[i] ~ \\

69

 % if D == 'Normal':

dnorm(mu[i], tau)

 mu[i] <- \\

 % endif

 % if D == 'Binomial':

dbin(p[i], ${n}[i])

 ${link}(p[i]) <- \\

 % endif

 % if D == 'Poisson':

dpois(p[i])

 ${link}(p[i]) <- \\

 % if offset:

${n}[i] + \\

 % endif

 % endif

${mmult(x, 'beta', 'i')} + u[${L2ID}[i]]

 }

 for (j in 1:length(u)) {

 u[j] ~ dnorm(0, tau_u)

 }

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 % if D == 'Normal':

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 % endif

 tau_u ~ dgamma(0.001000, 0.001000)

 sigma2_u <- 1 / tau_u

}

'''

The code has become quite long mainly due to the conditional statements for the different

distribution types. We see that the term u[${L2ID}[i]] has been appended to the linear

predictor where L2ID is inserted for a particular model. The chunk of code

 for (j in 1:length(u)) {

 u[j] ~ dnorm(0, tau_u)

 }

then gives the random effect distribution and finally the chunk

 tau_u ~ dgamma(0.001000, 0.001000)

 sigma2_u <- 1 / tau_u

gives a prior distribution for the variance of the random effects. The latex function is adapted in very

similar ways and so for brevity we omit this code here. We will finish off this template by running it

and looking at ModelResults (in a new tab). If we do this we only get results for the variables that

have had their chains stored:

70

Basically although we didn’t store chains for each of the 65 random effects u we can store summary

statistics for them but by default we do not display them unless we change the output options on

the settings screen. As usual we also can get the MCMC plots e.g. for beta_0.svg:

71

Exercise 7

Try adapting this template so that it allows the user to incorporate interactions.

9.2 NLevelMod template
The NlevelMod template, as the name suggests, extends the 2LevelMod template to an unlimited

number (input by the user) of levels of clustering. Note that these clusters can be either nested or

cross-classified. We will once again start by looking at the inputs attribute to see how it differs from

2LevelMod (again we’ve removed the help text):

inputs = '''

NumLevs = Integer('Number of classifications: ')

for i in range(0, int(NumLevs)):

 selstr = 'Classification ' + str(i + 1) + ': '

 context['C' + str(i + 1)] = IDVector(selstr)

y = DataVector('Response: ')

D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson'])

if D == 'Binomial':

 n = DataVector('Denominator: ')

 link = Text('Specify link function: ', ['logit', 'probit', 'cloglog'])

if D == 'Poisson':

 link = Text(value = 'ln')

 offset = Boolean('Is there an offset: ')

 if offset:

 n = DataVector('Offset: ')

x = DataMatrix('Explanatory variables: ', allow_cat = True)

storeresid = Boolean('Store residuals?')

beta = ParamVector(parents=[x], as_scalar=True)

if D == 'Normal':

 tau = ParamScalar()

 sigma2 = ParamScalar(modelled = False)

for i in range(0, int(NumLevs)):

 if storeresid:

 context['u' + str(i + 1)] = ParamVector(parents=[context['C' +

str(i + 1)]], as_scalar=False)

 else:

 context['u' + str(i + 1)] = ParamVector(parents=[context['C' +

str(i + 1)]], as_scalar=False, monitor=False)

 context['tau_u' + str(i + 1)] = ParamScalar()

 context['sigma2_u' + str(i + 1)] = ParamScalar(modelled = False)

deviance = ParamScalar(modelled = False)

'''

Here we have needed to replace the code for inputting the level 2 identifier with code to input the

number of classifications (levels of clustering) and then we have looped over the number of

classifications constructing both the names of the columns that contain the classification vectors

(which will labelled C1, C2 …) and, towards the bottom of the code, the new parameters associated

with each classification (u1, tau_u1 and sigma2_u1 etc). To achieve these inputs we have used the

context command to construct attribute names by concatenating strings and also a simple string

concatenation to create selstr which contains the question associated with inputting each

classification name. The rest of the code is similar to before. It should be noted that a 2 level model

in this template has 1 classification as we are not considering level 1 here.

72

We can consider using this template on a cross-classified example with two higher classifications.

This example is a dataset from Fife in Scotland where we are looking at the impact of both primary

school and secondary school on the attainment of children at age 16. To do this select the template

NLevelMod from the template list and the dataset xc from the dataset list. Select the inputs as

shown:

Dataset: xc; Template: NLevelMod; Input string: {'D': 'Normal', 'storeresid': 'No', 'nchains': '3',

'defaultalg': 'Yes', 'iterations': '2000', 'C2': 'sid', 'outdata': 'out', 'NumLevs': '2', 'seed': '1', 'defaultsv':

'Yes', 'Engine': 'eStat', 'burnin': '500', 'thinning': '1', 'y': 'attain', 'x': 'cons,vrq', 'C1': 'pid', 'makepred':

'No'}

Clicking on the Next button will display the mathematical formulation of the model (equation.tex) in

the pull-down list:

73

If we select model.txt from the list we can see the model code. It is similar to that we had for the 2-

level model and 2LevelMod.

The model code is created by the model attribute and here we see the code:

74

model = '''

<% numlevs = int(NumLevs) %>

model {

 for (i in 1:length(${y})) {

 ${y}[i] ~ \\

 % if D == 'Normal':

dnorm(mu[i], tau)

 mu[i] <- \\

 % endif

 % if D == 'Binomial':

dbin(p[i], ${n}[i])

 ${link}(p[i]) <- \\

 % endif

 % if D == 'Poisson':

dpois(p[i])

 ${link}(p[i]) <-

 % if offset:

${n}[i] + \\

 % endif

 % endif

${mmult(x, 'beta', 'i')} \\

 % for i in range(0, numlevs):

+ u${i + 1}[${context['C' + str(i + 1)]}[i]]

 % endfor

 }

 % for i in range(0, numlevs):

 for (i${i + 1} in 1:length(u${i + 1})) {

 u${i + 1}[i${i + 1}] ~ dnorm(0, tau_u${i + 1})

 }

 % endfor

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 % if D == 'Normal':

 tau ~ dgamma(0.001000, 0.001000)

 sigma2 <- 1 / tau

 % endif

 % for i in range(0, numlevs):

 tau_u${i + 1} ~ dgamma(0.001000, 0.001000)

 sigma2_u${i + 1} <- 1 / tau_u${i + 1}

 % endfor

}

'''

Here we introduce the use of local variable numlevs. Basically the model attribute is a text string

with substitutions. Then if we wish to include a Python statement, whilst inside the text string, we

place it within a <% and a %>. In this case we set a value to numlevs and then use it as a looping

upper bound later in the code. You will see that the rest of the code contains many of the features

we have discussed in earlier examples. You do however have to be careful as the code is such a

mixture of WinBUGS like model code and Python code. For example if we consider the chunk:

% for i in range(0, numlevs):

 for (i${i + 1} in 1:length(u${i + 1})) {

 u${i + 1}[i${i + 1}] ~ dnorm(0, tau_u${i + 1})

 }

75

 % endfor

with our cross-classified model. Here we are using i in both the model code we are constructing and

as a python variable. So numlevels in our example is 2 and so the outside %for (Python) can be

expanded out and the i substitutions made and we get:

for (i1 in 1:length(u1)) {

 u1[i1] ~ dnorm(0, tau_u1)

 }

for (i2 in 1:length(u2)) {

 u2[i2] ~ dnorm(0, tau_u2)

 }

as we see in the browser. Once again the latex function which creates the LaTeX output will have

similar substitutions via Python but we will not describe this in detail here.

Clicking on Run will run the model and the output contains information for all the parameters but

not the residuals as we didn’t ask to store them and the usual MCMC plots are available.

Interestingly the ESS values for beta_0 and beta_1 are poor and if we look at the object beta_0.svg

We see the following:

Clearly in this case the 500 burnin was not long enough and convergence has not been achieved. If

we modify the burnin to 2000 and main run to 5000 we get the following:

Dataset: xc; Template: NLevelMod; Input string: {'D': 'Normal', 'storeresid': 'No', 'nchains': '3',

'defaultalg': 'Yes', 'iterations': '5000', 'C2': 'sid', 'outdata': 'out', 'NumLevs': '2', 'seed': '1', 'defaultsv':

'Yes', 'Engine': 'eStat', 'burnin': '2000', 'thinning': '1', 'y': 'attain', 'x': 'cons,vrq', 'C1': 'pid', 'makepred':

'No'}

76

There are several other N level modelling templates included with the software that you can also

look at. We will describe one further such template (NLevelRS) which allows random slopes in

section 11. This template will need to utilise the preccode feature and so we will first explain this

with a simpler 1 level example.

Exercise 8

Try adapting this template to allow interactions between predictors calling your new templates

nlevelint.

10 Using the Preccode method
One of the aims of the Stat-JR system is to allow other estimation engines aside from our built-in

MCMC engine to be used with templates. We saw in section 5 details of how the system can interact

with third-party software. In this section (and in fact the following three sections) we will see how

through the inclusion of additional C++ code the user can increase the set of models and methods

that can be fitted using the built-in eStat engine. At present the methods we describe are partly to

advance the modelling but also partly to cover current limitations in the algebra system which may

eventually be rectified. As the names suggest the preccode function will involve writing C++ code and

so some knowledge of the C/C++ languages would be useful. The examples given here will however

allow the user with some modification to use similar chunks of code for their examples. We begin in

this chapter with a simple example of a 1 level probit regression model.

10.1 The 1LevelProbitRegression template
We have seen already that the 1LevelMod template can be used to fit binary response models and

we have demonstrated a logistic regression model for the bang dataset. A probit regression is similar

77

to a logistic regression but uses a different link function. One interesting feature of a probit

regression is that the link function is the inverse normal distribution cdf. This means that we can

interpret the model using latent variables in an interesting way.

Imagine that you had a variable which was a continuous measurement but that we can only observe

a binary indicator as to whether the variable was above or below a threshold, for example in

education we might have a mark in an exam but the student is only told whether they pass or fail. If

we model the pass/fail indicators using a probit regression then this is equivalent to assuming the

unobserved (latent) continuous measure follows a normal distribution (with threshold 0 and

variance 1).

We can use this fact in our modelling when we use MCMC by generating the latent continuous

variables as part of the algorithm. Then having generated the latent variables we have a normal

response model for these variables which is easy to fit. The 1LevelProbitRegression template

therefore fits a probit regression using this technique and we will add the step to update the

continuous response variables via the preccode methods.

We will start as usual by looking at the inputs attribute which is quite short (again, omitting the help

text):

 inputs = '''

v = DataVector('Response: ')

y = ParamVector(parents=[v], as_scalar=False, customstep=True,

monitor=False)

x = DataMatrix('Explanatory variables: ', allow_cat = True)

beta = ParamVector(parents=[x], as_scalar=True)

deviance = ParamScalar(customstep=True)

'''

 Here you will see that the column containing the 0/1 response is actually stored as v in this template

as we will use y to be the underlying continuous response. As y is latent it is defined as a

Paramvector rather than data, and the parents term links the lengths of the two vectors together

which basically ensures that the continuous response vector y is the same length as the observed

binary response vector v. The argument customstep=True tells Stat-JR that this parameter will have

it’s own C code step and the monitor=False argument tells Stat-JR not to store a chain for each

element of y. As always it helps to demonstrate the template with an example so we will fit a probit

regression model (equivalent to the logistic regression in section 7) to the Bangladeshi dataset.

Select 1LevelProbitRegression from the template list and bang from the dataset list and then fill in

the template as shown below:

Dataset: bang; Template: 1LevelProbitRegression; Input string: {'burnin': '500', 'defaultsv': 'Yes',

'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'v': 'use', 'outdata': 'out', 'x':

'cons,age', 'seed': '1', 'makepred': 'No'}

78

Clicking on the Next button, equation.tex will appear in the output pane and we see the model

described mathematically:

Here you see how use* is the latent continuous variable written as y in the model code. If we look at

model.txt (below) we see that the model code is really just fitting a normal model as if we already

know the values of y.

79

If we look at the model attribute we can see that clearly.

model = '''

model{

 for (i in 1:length(${v})) {

 y[i] ~ dnorm(mu[i],1.0)

 mu[i] <- ${mmult(x, 'beta', 'i')}

 # Priors

 % for i in range(0, x.ncols()):

 beta_${i} ~ dflat()

 % endfor

 }

}

'''

Here the code is fairly straightforward so the interesting thing is how we actually include a step for y

to make this the correct model. You will recall that y will need a custom step and will not be monitored.

To see this in practice we will continue our example and press the Run button. When finished if you

select ModelResults then the results will look as follows:

80

We see that the model has run and got reasonable ESS values and has returned a DIC value. To see

how this happened we need to look at the preccode and deviancecode attributes

10.3 preccode and deviancecode attributes
So we have seen that the code works but we need now to look and see how the step for updating

the latent y variable is incorporated into the code. This is done via the preccode attribute which for

this template looks as follows:

 preccode = '''

<%!

 def mmult(names, var, index):

 out = ""

 count = 0

 for name in names:

 if count > 0:

 out += ' + '

 out += 'double(' + name + '[' + index + ']) * ' + var + '_' +

str(count)

 count += 1

 return out

%>

 double mean;

 for(int i=0;i<length(y);i++)

 {

 mean = ${mmult(x, 'beta', 'i')};

 if(${v}[i] <= 0)

 y[i] = dtnormal(mean,1,2,0,0);

 else

 y[i] = dtnormal(mean,1,1,0,0);

 }

 '''

81

This function could have been even shorter except we need to include in here a definition for the

mmult function that is used to construct the linear predictor, this time as C++ code.

The actual C++ code is the chunk

 double mean;

 for(int i=0;i<length(y);i++)

 {

 mean = ${mmult(x, 'beta', 'i')};

 if(${v}[i] <= 0)

 y[i] = dtnormal(mean,1,2,0,0);

 else

 y[i] = dtnormal(mean,1,1,0,0);

 }

Here we see that the code involves looping over all data points via a “for” loop and for each point

evaluating the mean value which is the linear predictor calculated via the substitution. Then

depending on the value of the binary response a call is made to the truncated normal random

number generator via the dtnormal function. Here dtnormal takes 5 arguments, the mean, the sd,

the type of truncation with 1 left truncation, 2 right truncation and 3 both, and finally the left and

right truncation values.

To see this in action choose modelcode.cpp from the list and choose to pop it out:

82

Here we see that after some initial setup lines, the preccode chunk, as the name suggests appears

before the steps for other parameters (in this case beta_0). This is important as the y variable needs

initialising before the other parameters are updated and updating it first ensures y is positive when

use is 1 and negative when use is 0.

So we have added in a step via preccode to enable the MCMC algorithm to work correctly. Of course

the model that the algebra system has been sent is the simpler normal model and so the deviance

for this model would be returned by it and thus as this is used to construct the DIC diagnostic then

we would get a model fit diagnostic for the wrong model. To rectify this the attribute deviancecode

can be used to overwrite the definition of the deviance. This attribute contains a piece of C++ code

for the deviance step. This code is then included in both the iteration loop and the DIC code and

thus the DIC diagnostic is calculated correctly. The code can be seen within the template but will not

be repeated here.

11 Multilevel models with Random slopes and the inclusion of

Wishart priors
One limitation of the algebra system in its current form is that it treats all parameters as scalars. This

means for example that for the Regression1 template, the set of beta parameters are all updated

individually through univariate normal steps. We will investigate the implications of this in section

12. In section 9 we introduced our first multilevel models all of which only had random intercepts.

To extend such models to include random slopes requires (assuming slopes and intercepts are

correlated) the use of a multivariate normal distribution for the random effects.

Multivariate normal distributions by their nature have vector and not scalar parameters and so our

model code diverges from standard WinBUGS model code here (and hence this is an example

template where template specific methods are required for WinBUGS). Our improvised model code

depends on the number of response variables i.e. we have bivariate, trivariate etc normal

distributions. We will see how these work in practice via the template NLevelRS. It should be noted

that we also have templates that completely circumvent the algebra system and simply write custom

C code. These templates have the postfix ‘cc’ at their end for example 1LevelModcc.

11.1 An example with random slopes
Firstly select NLevelRS from the template list and tutorial from the data list. Then choose the inputs

as follows:

83

Dataset: tutorial; Template: NLevelRS; Input string: {'Engine': 'eStat', 'x1': 'cons,standlrt', 'burnin':

'500', 'D': 'Normal', 'outdata': 'outrs', 'storeresid': 'No', 'makepred': 'No', 'thinning': '1', 'nchains': '3',

'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam', 'x': 'cons,standlrt', 'C1': 'school', 'NumLevs': '1',

'seed': '1', 'priors0': 'Uniform', 'defaultsv': 'Yes'}

You will see that there are lots of inputs here and correspondingly the inputs function for this

template is therefore quite long as we see below (omitting the help text):

inputs = '''

NumLevs = Integer('Number of Classifications: ')

for i in range(0, int(NumLevs)):

 selstr = 'Classification ' + str(i + 1) + ': '

 context['C' + str(i + 1)] = IDVector(selstr)

y = DataVector('Response: ')

D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson'])

if D == 'Binomial':

 n = DataVector('Denominator: ')

 link = Text('Specify link function: ', ['logit', 'probit', 'cloglog'])

if D == 'Poisson':

 link = Text(value = 'ln')

 offset = Boolean('Is there an offset: ')

 if offset:

84

 n = DataVector('Offset: ')

if D == 'Normal':

 tau = ParamScalar()

 sigma = ParamScalar(modelled = False)

x = DataMatrix('Explanatory variables: ', allow_cat = True)

for i in range(0, int(NumLevs)):

 context['x'+str(i+1)] = DataMatrix('Explanatory variables random at ' +

context['C' + str(i + 1)] + ' classification: ', allow_cat = True)

storeresid = Boolean('Store residuals?')

beta = ParamVector(parents=[x], as_scalar=True)

for i in range(0, int(NumLevs)):

 for var in range(0, len(context['x'+str(i+1)])):

 if storeresid:

 context['u' + str(var) + '_' + str(i)] =

ParamVector(parents=[context['C' + str(i + 1)]], as_scalar=False)

 else:

 context['u' + str(var) + '_' + str(i)] =

ParamVector(parents=[context['C' + str(i + 1)]], as_scalar=False,

monitor=False)

 num = len(context['x'+str(i+1)])

 if num == 1:

 context['tau_u0_'+str(i+1)] = ParamScalar()

 context['sigma_u0_'+str(i+1)] = ParamScalar(modelled = False)

 else:

 context['omega_u'+str(i+1)] = ParamMatrix(modelled = False,

customstep=True)

 context['omega_u'+str(i+1)].size = num

 context['d_u'+str(i+1)] = ParamMatrix(customstep=True)

 context['d_u'+str(i+1)].size = num

 context['priors' + str(i)] = Text('Priors (NB Uniform not supported

by WinBUGS / OpenBUGS): ', ['Uniform', 'Wishart'])

 if context['priors' + str(i)] == 'Wishart':

 context['R' + str(i)] = List('R matrix: ')

 context['v' + str(i)] = Integer('Degrees of Freedom:')

deviance = ParamScalar(modelled = False)

'''

The template is initially like the NLevelMod template but then has an additional section that is used

to input the variables that have random effects associated with them (at each level), and then any

priors at those levels are input. You will see that we use the context functionality to construct

variable names a lot and that there are different parameters for classifications where there is a

single random parameter and where there are more than one. In brief parameters beginning tau_u0

and sigma_u0 are the precision and variance of the random effects if there is a single set of random

effects; those beginning omega_u and d_u are the variance matrix and precision matrix if we have

multiple sets of random effects at a classification. Finally in this case there are two possible priors

and for the (informative) Wishart priors an estimate (beginning with R) and degrees of freedom

(beginning with v) parameter are required.

Having completed our inputs we now need to click on Next to see what the model looks like (as

shown by equation.tex):

85

Here we see the LateX code including the multivariate normal distribution for the random intercepts

and slopes. To see the model specification we choose model.txt from the list:

The multivariate normal distribution is written in the model code as follows:

for(i1 in 1:length(u0_0)) {

86

 dum_0[i1] ~ ddummy(dummy_0[i1])

 dummy_0[i1] ~ dnormal2a(u0_0[i1], u1_0[i1], 0, 0, d_u1[0],

d_u1[1], d_u1[2])

 u0_0[i1] ~ dflat()

 u1_0[i1] ~ dflat()

 }

Basically the dnormal2a distribution has as its first two arguments the two responses. Next we get

the 2 means and then the 3 parameters that make up the precision matrix. As the algebra system

expects all parameters to appear on the left-hand side we complete our workaround for a

multivariate Normal distribution by including the two dflat statements which do not change the

posterior but mean that the u0_0[i1] and u1_0[i1] are regarded in the algebra system as parameters.

Note that the dummy_0 parameters are simply placeholders as each distribution needs a scalar left-

hand side. The definition of dnormal2a does not depend on the left hand side term. The dummy_0

parameters also appears on the right hand side in the ddummy statement and this is to trick the

algebra system into thinking that dummy_0 is truly a parameter so that the dnormal2a statement is

not considered part of the likelihood for calculating DIC etc.

The code for creating the model code is in model but doesn’t contain anything very new that needs

reporting here. The latex code might interest those trying to learn LateX as it contains a chunk to

produce the multivariate Normal line as follows:

\left(

\begin{array}{l}

% for i in range(0, len(context['x'+str(lev+1)])):

u^{(${lev + 2})}_{${i},${context['C' + str(lev + 1)]}(i)}

% if i != len(context['x'+str(lev+1)]) -1:

\\

% endif

% endfor

\end{array}

\right) & \sim \mbox{N}

\left[\left(

\begin{array}{l}

% for i in range(0, len(context['x'+str(lev+1)])):

0

% if i != len(context['x'+str(lev+1)]) -1:

\\

% endif

% endfor

\end{array}

\right), \Omega^{(${lev + 2})}_{u} \right] \\

Here we use Python %ifs and %fors to allow conditional code and the array environment and \left

and \right (for big brackets) in LaTeX to deal with vectors and matrices. The actual code that is

produced can be looked at by right clicking on the LateX and selecting show source and selecting the

appropriate lines. It looks as follows:

\left(

\begin{array}{l}

u^{(2)}_{0,school(i)}

\\

u^{(2)}_{1,school(i)}

\end{array}

87

\right) & \sim \mbox{N}

\left[\left(

\begin{array}{l}

0

\\

0

\end{array}

\right), \Omega^{(2)}_{u} \right] \\

Looking at the model code we have not included a prior for d_u1 and so here we again resort to

writing our own preccode chunk.

11.2 Preccode for NLevelRS
We will here look at the preccode in chunks. The preccode is being used to add a step for updating

the precision matrix d_u1 and the corresponding variance matrix omega_u1. Looking at the start of

the code overleaf:

 preccode = '''

 {

<% numlevs = int(NumLevs) %>\\

 bool fail = false;

% for i in range(0, numlevs):

<% n = len(context['x'+str(i + 1)]) %>\\

% if n > 1 :

 std::vector<double*> tmp_u${i};

% for j in range(0, n):

 tmp_u${i}.push_back(u${j}_${i});

% endfor

 RectMatrix mat_u${i}(tmp_u${i}, length(u0_${i}));

 SymMatrix sb${i + 1} = mat_u${i}.T() * mat_u${i};

This first section stores the number of levels (numlevs) for looping purposes and also within the loop

the number of random effects are constructed (as n) because for classifications with only 1 set of

random effects nothing needs doing as the algebra system has evaluated the posterior required. We

take the u’s and store them in a matrix so that we can do matrix arithmetic. We next construct a

matrix variable sb1 which initially stores the crossproduct matrix of the residuals before moving to

the next chunk of code:

% if context['priors' + str(i)] == 'Uniform':

 int vw${i+1} = length(u0_${i})-${n + 1};

 if (runstate == 0) {

% for j in range(0, n):

 sb${i + 1}(${j}, ${j}) += 0.0001;

% endfor

 }

% endif

% if context['priors' + str(i)] == 'Wishart':

 int vw${i+1} = length(u0_${i}) + ${context['v' + str(i)]};

% endif

% if context['priors' + str(i)] == 'Wishart':

<%

import numpy

88

Rmat = numpy.empty([n, n])

count = 0

for j in range(0, n):

 for k in range(0, j + 1):

 Rmat[j, k] = float(context['R' + str(i)].name[count])

 Rmat[k, j] = Rmat[j, k]

 count += 1

%>

<% count = 0 %>

% for j in range(0, n):

% for k in range(j, n):

 sb${i+1}(${j}, ${k}) += ${str(Rmat[j, k] * float(context['v' +

str(i)]))};

% endfor

% endfor

% endif

In this chunk of code we have different blocks of code depending on prior distribution types. For the

uniform prior we simply construct the degrees of freedom parameter (vw1), which equals the

number of higher level units minus the number of sets of random effects + 1. We also have some

code for the first iteration (runstate = 0) to avoid numerical problems as the residual starting values

may all be the same. For the Wishart prior we have to add the prior parameters to the sb1 and vw1

parameters. Next we have:

 matrix_sym_invinplace(sb${i+1});

 mat_d_u${i + 1} = dwishart(vw${i+1}, sb${i+1}, fail);

 mat_omega_u${i + 1} = matrix_sym_inverse(mat_d_u${i + 1}, fail);

%endif

%endfor

 }

'''

In this last chunk of code we invert the sb1 parameter before drawing the new precision matrix

which we store in mat_d_u1 and the inverse matrix to the vector mat_omega_u1. To see the code

that the preccode method generates for our example we can select modelcode.cpp and scroll down

a few lines as shown below:

89

As the name preccode suggests the code appears before the other steps in the algorithm.

We can finally run the template by clicking on the Run button and selecting ModelResults from the

list. The results appear as follows:

90

and as usual we also get MCMC output graphs for the fixed effect parameters, variances and

precisions via the pulldown list.

Exercise 9

Try adapting the NLevelRS template so that it only allows one higher classification and compare your

results with the 2LevelRS template. This exercise will be in essence a merging of features of two

templates, 2LevelMod and NLevelRS and will test your understanding of the various chunks of code.

12 Improving mixing (1LevelBlock and 1LevelOrthogParam)
In this section we will return once again to our first template Regression1 but use it on a different

dataset, rats. This dataset consists of the weights of 30 laboratory rats at weekly intervals from 8

days old and here we will consider a regression looking at the impact on their final weight at 36 days

of their initial weight at 8 days old.

12.1 Rats example
We will set up a simple regression for this rather small dataset as follows:

91

Dataset: rats; Template: Regression1; Input string: {'burnin': '500', 'defaultsv': 'Yes', 'outdata':

'ratsout', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'y36', 'x': 'cons,y8',

'seed': '1', 'makepred': 'No'}

We will then run the model by clicking the Next and Run buttons. If we look at the output and

change the pull down list to beta_1.svg and pop it out so that we have the MCMC plot for beta1

visible we will see the following:

92

In ModelResults we see that both the regression coefficients have very small effective sample sizes

(32 and 32 respectively) and the chains we observe in the graphs above are not mixing well. Aside

from being a small dataset a difference between the rats and the tutorial dataset is that the data

have not been centred. This means that the joint posterior distribution of beta0 and beta1 has a very

large correlation between the pair of parameters and so if we update them separately we will have

problems. We will look at two templates that will rectify this problem.

12.2 The 1LevelBlock template
Most MCMC algorithms implemented in software packages will update the parameters beta0 and

beta1 together in one multivariate normal block. As we have seen, the current algebra system in

Stat-JR does not produce multivariate posterior distributions. We can, however, work out the correct

posterior distribution by hand and plug this into the code via the preccode options we have seen

earlier. This is performed by the 1LevelBlock template. If you look at the template code you will see

it has an initial input in the inputs attributes as to whether or not to block the fixed effects and

conditional on this we let Stat-JR know whether beta is to be updated via a custom step.

mv = Boolean('Use MVNormal update for beta?: ')

if mv:

 beta = ParamVector(parents=[x], as_scalar=True, customstep=True)

else:

 beta = ParamVector(parents=[x], as_scalar=True)

This code is informing the code generator that customsteps are to be used for the beta parameters
when the block updating option (mv) is selected and that it should ignore whatever has been
returned from the algebra system for these steps. The preccode method then contains the code to
update the beta vector which has mean (in matrix form) (XTX)-1XTy and variance (XTX)-1 times the
residual variance. The code which uses matrix classes is as follows:

 preccode = '''

% if mv:

 {

 bool fail = false;

 static RectMatrix xtxchol(${len(x)}, ${len(x)});

 static RectMatrix mean(${len(x)}, 1);

 // Setting up constant terms for beta step

 if (runstate == 0) {

 xtxchol = matrix_cholesky(mat_x.T() * mat_x, false,

fail);

 RectMatrix xty = mat_x.T() * mat_y;

 mean = matrix_cholsolve(xtxchol, xty);

 }

 // Multivariate step for beta

 DiagMatrix taudiag = identity(${len(x)}) / tau;

 SymMatrix variance = matrix_cholsolve(xtxchol, taudiag);

 mat_beta = dmultnormal(mean, variance, fail);

 }

% endif

'''

93

If we want to test this template we can choose it (along with rats) from the template list and set up

the inputs as follows:

Dataset: rats; Template: 1LevelBlock; Input string: {'Engine': 'eStat', 'burnin': '500', 'defaultsv': 'Yes',

'outdata': 'outblock', 'thinning': '1', 'mv': 'Yes', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y':

'y36', 'x': 'cons,y8', 'seed': '1', 'makepred': 'No'}

Running the template by pressing the Next and Run buttons results in the following output. Note

here we have selected beta_1.svg for comparison with the Regression1 output.

94

We can see that the method has given much better mixing for beta1. Looking at the ModelResults

the effective sample size values have increased from 32/32 to 5745/5780 for beta_0 and beta_1

respectively! We have in other templates (2LevelBlock and NLevelBlock) implemented similar block

updating of fixed effects for multilevel models. We will next look at an alternative method that has

the advantages of not needing to use preccode and also of being useful for non-normal response

models.

12.3 The 1LevelOrthogParam template
The alternative approach to blocking variables that are correlated is to reparameterise the

parameters to a configuration that are less correlated. We will achieve this by using an orthogonal

parameterisation for the fixed effects rather than the standard parameterisation.

The template we will use is called 1LevelOrthogParam and the inputs are very similar to the

1LevelMod template (as this approach also works for non-normal responses). The template does

have 2 additional inputs in inputs which are used to find out whether or not to use a transformed

parameterisation and if so whether to use an orthogonal or orthonormal parameterisation.

This can be seen in the following lines (omitting the help text):

useorthog = Boolean('Do you want to use orthogonal parameterisation?: ')

if useorthog:

 orthtype = Text('Type:', ['Orthogonal', 'Orthonormal'])

and the following lines are conditional on using the orthogonal parameterisation:

if useorthog:

 betaort = ParamVector(parents=[x], as_scalar=True)

 orthogmat = List(value = [])

 #orthogmat = ParamVector()

95

 #orthogmat.ncols = -(len(x) * len(x))

 beta = ParamVector(parents=[x], as_scalar=True, modelled = False)

else:

 beta = ParamVector(parents=[x], as_scalar=True)

Here we add an additional vector of responses, betaort if the orthogonal parameterisation is to be

used and the standard beta vector is now not modelled but becomes deterministically calculated.

Let us try out the template on the rats example so choose 1LevelOrthogParam from the template list

and input the following:

Dataset: rats; Template: 1LevelOrthogParam; Input string: {'Engine': 'eStat', 'burnin': '500', 'D':

'Normal', 'outdata': 'outort', 'thinning': '1', 'orthtype': 'Orthogonal', 'nchains': '3', 'defaultalg': 'Yes',

'iterations': '2000', 'y': 'y36', 'x': 'cons,y8', 'makepred': 'No', 'seed': '1', 'useorthog': 'Yes', 'defaultsv':

'Yes'}

Clicking on the Next button will give the following output for the model:

96

The method of using an orthogonal parameterisation is mentioned in Browne et al. (2009) for non-

normal examples and has also been implemented in MLwiN. For details on how we construct

orthogonal vectors we refer the reader to Browne et al. (2009) but note that a function to do the

procedure named orthog that is stored elsewhere is used in this template. Here you will see that we

fit a model with the parameters betaort placed in the linear predictor along with data vectors

orthcons and orthy8. These data vectors are constructed in the preparedata attribute that we detail

here:

 preparedata = '''

from EStat.stats.utils.orthog import orthog

import numpy

mydata = data['datafile']

if useorthog:

 orth = numpy.zeros([len(mydata.variables[x[0]]['data']), len(x)])

 for i in range(0, len(x)):

 orth[:, i] = mydata.variables[x[i]]['data']

 if orthtype == 'Orthogonal':

 (tmp, om) = orthog(orth)

 orthogmat[:] = [str(i) for i in om.flat]

 for n in range(0, len(x)):

 mydata.addvariable('orth' + x[n], data = numpy.array(tmp[:,

n]).flatten())

 if orthtype == 'Orthonormal':

 (tmp, om) = numpy.linalg.qr(numpy.mat(orth))

 orthogmat[:] = [str(i) for i in om.I.flat]

 for n in range(0, len(x)):

 mydata.addvariable('orth' + x[n], data = numpy.array(tmp[:,

n]).flatten())

 x[:] = ['orth' + n for n in x]

'''

97

We begin by constructing a blank list ‘orthogmat’ and an empty matrix orth. We then implement the

orthogonalising algorithm by filling orth with the original x variable vectors and then calling the

orthog function. This results in tmp which is the matrix of orthogonal versions of the predictors and

om which is the matrix that performs the orthogonalisation. We store this as a vector in the object

‘orthogmat’ . A slightly different routine is given if the user chooses Orthonormal instead here. The

columns of this tmp matrix are then placed in objects that have the string ‘orth’ appended to the

front of the original x variables names. Finally the original x variable names are replaced with these

new orthogonal variable names before the data is returned. The model attribute then constructs the

model code:

model = '''

model{

 for (i in 1:length(${y})) {

 ${y}[i] ~ \\

 % if D == 'Normal':

dnorm(mu[i], tau)

 mu[i] <- \\

 % endif

 % if D == 'Binomial':

dbin(p[i], ${n}[i])

 ${link}(p[i]) <- \\

 % endif

 % if D == 'Poisson':

dpois(p[i])

 ${link}(p[i]) <- \\

 % if offset:

${n}[i] + \\

 % endif

 % endif

%if useorthog:

${mmult(x, 'betaort', 'i')}

% else:

${mmult(x, 'beta', 'i')}

% endif

 }

 # Priors

 % for i in range(0, beta.ncols):

%if useorthog:

 betaort_${i} ~ dflat()

% else:

 beta_${i} ~ dflat()

% endif

 % endfor

% if useorthog:

<% count = 0%>

 % for i in range(0, beta.ncols):

 beta_${i} <- \\

 % for j in range(0, beta.ncols):

${orthogmat[count]} * betaort_${j}\\

% if j == (beta.ncols - 1):

% else:

% if float(orthogmat[count+1]) >= float(0.0) :

 + \\

% endif

% endif

98

<% count += 1 %>\\

 % endfor

 % endfor

% endif

 % if D == 'Normal':

 tau ~ dgamma(0.001000, 0.001000)

 sigma <- 1 / sqrt(tau)

 sigma2 <- 1 / tau

 % endif

}

 '''

Here we see that a different mmult function is performed for the orthogonal parameterisation and

priors are given for betaort rather than beta in this case. Finally code is given to allow us to recover

beta from betaort deterministically. We construct the product of the orthogmat terms and the

betaorts placing + signs between the terms unless the orthogmat term is negative.

We can run the model by clicking on the Run button and we will see the following results for beta_1

if we select beta_1.svg in the list:

We again see good mixing of the chains and very similar estimates to the blocking approach

(Effective sample sizes for beta0 and beta1 are 5686 and 5725 respectively). The other advantage of

this orthogonal approach is in it’s generalisability to non-normal response models. In these cases

Metropolis Hastings algorithms are used and so a blocking approach is not so straight forward.

Exercise 10

99

Convert this template so that it is analogous to the Regression1 template but uses the orthogonal

parametrisation. Call this new template orthogregression.

12.4 Multivariate Normal response models
Having established a method of including multivariate distributions for use with random slopes in

the preccode we can reuse the same method to allow us to fit multivariate Normal response models

We will here consider the template for fitting 1 level multivariate response models,

1LevelMVNormal.py. This template can be used to fit models with missing data for some responses

which is achieved by a method similar to that used for the probit regression and so the preccode will

generate (at least) two steps, one for the variance matrix of the responses and an intial step to set

up the missing responses. Looking at the inputs attribute we see the following (omitting the help

text):

 inputs = '''

y = DataMatrix('Responses: ')

for i in range(0, len(y)):

 context['x'+str(i+1)] = DataMatrix('Explanatory variables for response

' + y[i] + ': ', allow_cat = True)

mv = Boolean('Use MVNormal update for beta?: ')

lenbeta = 0

for i in range(0, len(y)):

 lenbeta += len(context['x'+str(i+1)])

 context['miss'+y[i]] = ParamVector(monitor=False)

n = len(y)

if n == 1:

 tau = ParamScalar()

 sigma = ParamScalar(modelled = False)

else:

 omega_e = ParamMatrix(modelled = False, customstep=True)

 omega_e.size = n

 d_e = ParamMatrix(customstep=True)

 d_e.size = n

 priors = Text('Priors: ', ['Uniform', 'Wishart'], help="<p>Note:

Uniform not supported by WinBUGS / OpenBUGS)</p>")

 if priors == 'Wishart':

 R = List('R matrix: ')

 v = Integer('Degrees of Freedom:')

if mv:

 beta = ParamVector(customstep=True)

else:

 beta = ParamVector()

beta.ncols = lenbeta

deviance = ParamScalar(modelled=False)

'''

Here you will notice that we construct parameter vectors that are a combination of the string ‘miss’

and the y variable names input using a context statement and these will be used in the model. Note

that in line with the 1LevelBlock template we have also given the option to update beta as a block

but for now we will ignore this here. Let us run the template with the gcsemv1 dataset that contains

two responses for secondary school pupils taking General Certificate of Secondary Education (GCSE)

exams in 1989, a written and a coursework test score. We will set up the inputs as follows:

100

Dataset: gcsemv1; Template: 1LevelMVNormal; Input string: {'imputeiters': '1000,2000', 'defaultsv':

'Yes', 'outdata': 'outmv', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'x2': 'cons,female', 'x1':

'cons,female', 'seed': '1', 'Engine': 'eStat', 'burnin': '500', 'priors': 'Uniform', 'thinning': '1', 'mv': 'Yes',

'y': 'written,csework', 'makepred': 'No'}

Here we allow the two responses to both depend on one predictor female. Note that both responses

contain missing values as there are some pupils with only a written score and some with only a

coursework score. The missing values are given the value -9.999e29 and this value will be looked

for in the preccode function. You will also note the extra input for imputing datasets. Here we will

return datasets with the current values of missing data at the prescribed iteration numbers for each

chain. Clicking on the Next button and looking at the model output, equation.tex in the output pane

we see:

101

If we select model.txt we can see the model code thus:

Here we see again the use of the dnormal2a function and also that we have included dflat

statements for both the misswritten and misscsework responses to let the algebra system know that

these are parameters. We will not look in detail at the model method as we can see the output it

produces on the screen.

There is a preparedata attribute that is used to set the length of the missing data vector to equal the
original response vector:

 preparedata = '''

mydata = data['datafile']

for i in range(0, len(y)):

 context['miss'+y[i]].ncols = -1*len(mydata.variables[y[i]]['data'])

'''

102

We next turn our attention to the preccode function.

12.5 The preccode function for this template
We will deal with the code here in chunks. We begin with a definition of the mmult2 function that

we will use to work out the linear predictors for each response. The mmult2 function is specifically

useful for multivariate response models as it contains a count parameter which informs us which

element of beta to start with in the linear predictor:

 preccode = '''

<%!

 def mmult2(names, var, index,count):

 out = ""

 first = True

 for name in names:

 if first == False:

 out += ' + '

 else:

 first = False

 out += 'double(' + name + '[' + index + ']) * ' + var + '_' +

str(count)

 count += 1

 return out

%>

 {

<% n = len(y) %>\\

Next we have the code chunk for generating the step for the level 1 variance matrix. This is almost

identical to the random slopes code except we need the crossproduct of the level 1 residuals e

(instead of the higher level random effects u) and this needs constructing which is done in the initial

code using the mmult2 function:

 SymMatrix sb(${n});

 for(int i = 0; i < length(miss${y[0]}); i++) {

<% lenbeta = 0 %>\\

% for i in range(0, n):

 double e${i} = double(miss${y[i]}[i]) -

(${mmult2(context['x' + str(i+1)], 'beta', 'i', lenbeta)});

<% lenbeta += len(context['x' + str(i + 1)]) %>\\

% endfor

% for i in range(0, n):

% for j in range(i, n):

 sb(${i}, ${j}) += e${i} * e${j};

% endfor

% endfor

 }

Once constructed the remainder of the code follows the same pattern as random slopes and so for

brevity we omit this code here, it can be viewed in 1LevelMVNormal.py.

The one thing we have not mentioned is how the missing data is updated and here this is currently

done in a slightly undesirable way, and relies on the parameter name beginning with the character

string miss. To see how this is done we once again have to delve deeper into the code. In the

subdirectory of Stat-JR with path src/lib/EStat/templates you will find some of the files that are used

in the code generation. The file gibbsstep.cpp contains the template that is used by Stat-JR to

103

convert the step from the algebra system into C code and in here we can modify what precisely is

written in the C code. You will notice a few statements that involve the “miss” prefix at the start and

end of the code:

% if "miss" in theta:

<% temp = theta.replace('miss', '',1) %>

if (${temp} <= -9.999e29) {

% endif

and

% if "miss" in theta:

}

% endif

This code recognises the prefix “miss” in a variable name and places the condition statements

around the update step for that parameter. There are also some more complicated reliance on

various prefixes involving “mis” but these are primarily for the mixed response modelling which we

do not discuss here . Basically for the case “miss” we have:

% if fn == "dnorm" and "mis" in theta:

% if

% elif "miss" in theta:

 ${theta} = ${expr};

% endif

% endif

which simply translates to equating the variable name of interest (theta) to the expression the

algebra system gives for its posterior (expr). This reliance on the parameter name is undesirable and

we will hopefully come up with a better method for making such algorithmic changes in later

releases.

It would be good at this point to look at the code generated for this example. To do this choose

modelcode.cpp from the object list and scroll down. Here we see the step for the variance matrix

omega_e near the top of the code:

{

 // Note currently using a uniform prior for variance matrix

 SymMatrix sb(2);

 for(int i = 0; i < 1905; i++) {

 double e0 = double(misswritten[i]) - (double(cons[i]) *

beta_0 + double(female[i]) * beta_1);

 double e1 = double(misscsework[i]) - (double(cons[i]) *

beta_2 + double(female[i]) * beta_3);

 sb(0, 0) += e0 * e0;

 sb(0, 1) += e0 * e1;

 sb(1, 1) += e1 * e1;

 }

 if (runstate == 0) {

 sb(0, 0) += 0.0001;

 sb(1, 1) += 0.0001;

 }

 matrix_sym_invinplace(sb);

 int vw = 1905 - 3;

104

 bool fail = false;

 mat_d_e = dwishart(vw, sb, fail);

 mat_omega_e = matrix_sym_inverse(mat_d_e, fail);

and later on the steps for the missing data:

// Update misswritten

 for(unsigned int i=0; i<1905; i++){

// This code was generated by the Stat-JR package (copyright 2012

University of Bristol and University of Southampton).

 {

if (written[i] <= -9.999e29) {

 misswritten[i] =

dnorm(((cons[i]*beta_0)+(beta_1*female[i])+((d_e[1]*misscsework[i]*pow(d_e[

0],(-1.0)))*(-1.0))+(d_e[1]*beta_2*pow(d_e[0],(-

1.0))*cons[i])+(d_e[1]*beta_3*female[i]*pow(d_e[0],(-1.0)))),d_e[0]);

}

 }

 }

// Update misscsework

 for(unsigned int i=0; i<1905; i++){

// This code was generated by the Stat-JR package (copyright 2012

University of Bristol and University of Southampton).

 {

if (csework[i] <= -9.999e29) {

 misscsework[i] = dnorm((((d_e[1]*pow(d_e[2],(-

1.0))*misswritten[i])*(-1.0))+(d_e[1]*pow(d_e[2],(-

1.0))*beta_0*cons[i])+(d_e[1]*pow(d_e[2],(-

1.0))*beta_1*female[i])+(beta_2*cons[i])+(beta_3*female[i])),d_e[2]);

}

 }

 }

We can run the template by clicking on the Run button and choosing the ModelResults in the list we

see:

105

Note here we do not see the missing values as by default non-monitored nodes are not displayed in

ModelResults. To view the missing values you would need to return to the Settings screen (from the

main screen) and click on the tick box, under the EStat heading (not the CustomC heading), that

allows you to Include unmonitored values in results and click on Set before setting up the model

again. At present due to the number of nodes this takes a very long time in the browser so we do not

advise you to try however if you do then eventually the screen will look as follows:

106

Here you will see that for the missing data variables the ones that correspond to actual data have

standard deviation zero in the output as they shouldn’t change from iteration to iteration so for

example the first and third written scores were observed. We can also look at the values of these

missing data at prescribed iterations/chains and so selecting impute_datafile_chain0_iter1000 gives

the following:

107

Here the second written test score has value 53.89, and the ninth written score is 28.58, while their

means are 43.60 and 33.11 respectively across all iterations and chains. We have extended these

multivariate normal modelling templates to more levels and to include random slopes. They also

form the basis for the mixed response templates which allow other response types via the use of

latent variables, mimicing and extending the functionality that exists in the REALCOM software

program (Goldstein et al, 2007), and a number of these are called by Stat-JR multiple imputation

templates such as 2LevelImpute. You will see that these templates are pretty big and involve coding

in several languages (Python, WinBUGS model code, LaTeX and C++). It is hoped that with advances

in the algebra system that the reliance on the preccode functions will reduce but if you want to look

at the other multivariate templates you will see many similarities in the code in these functions. This

is one of the plus points of the ability to view the code in the templates within the Stat-JR system.

We will finish this documentation by considering one more example of getting more from the MCMC

estimation engine.

13 Out of sample predictions
Most of the statistical modelling templates we have thus far created are primarily being used for

statistical inference. We might however be interested in using the model to predict future

responses. The advantage of a simulation-based approach is that we can easily get confidence

intervals about these predictors at the same time as we estimate the model. We do however have

to be careful that we do not feedback the results of our predicting into the estimation part of the

model. WinBUGS has a method to do this with its cut function and we have developed a similar

method which we will demonstrate here.

108

13.1 The 1LevelOutSampPred template – using the zxfd trick
We will illustrate our approach on a 1 level model which we can fit using the 1LevelOutSampPred

template. We will firstly choose this template along with the tutorial dataset and then select the

following inputs:

Dataset: tutorial; Template: 1LevelOutSampPred; Input string: {'nmiss': '10', 'burnin': '500', 'D':

'Normal', 'outdata': 'outpred', 'xm': 'cons,standlrt', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes',

'iterations': '2000', 'y': 'normexam', 'x': 'cons,standlrt', 'makepred': 'No', 'seed': '1', 'defaultsv': 'Yes'}

To explain what is going on we are planning to fit a regression model to normexam with predictor

standlrt as we have done previously using the 1LevelMod template. We will then use the predictors

given in ‘missing explanatory variables’ to predict the 10 individuals who in this case have the same

scores as the first 10 in the model actually fit. Note if you want to predict other individuals you need

to form new columns of the same length as the data although the values below the ‘Number of

missing’ row will be ignored. Clicking on the Next button and choosing model.txt gives the following

output:

109

Here you will notice that we have an additional j loop in the model code for the out-of-sample

predictions which will be stored in mnormexam. There are two interesting parts to this code. Firstly

the line

mumiss[j] <- cons[j] * betazxfd_0 + standlrt[j] * betazxfd_1

has the strange string zxfd placed in the middle of the two parameter names. This is our way of

stopping the predictions from feeding back to the model parameter estimation (equivalent to

performing the cut function in WinBUGS). Basically as the predictors in this line are not beta0 and

beta1 then this line will not influence the posteriors for the fixed effects. The posterior for

mnormexam will be calculated but this is only because we include the line

dummy[j] ~ ddummy(mnormexam[j])

so that mnormexam appears on both the left and right hand side within the model code to

differentiate it from data. The algebra system will formulate the posterior which will depend on

betazxfd0 and betazxfd1. Of course in practice we want these replaced by the correct beta0 and

beta1 and this is done in the bowels of the code generator with the lines:

elif type == 'variable':

 result=l['name'].replace('.', '_').replace('zxfd','')

which is in code that is not currently available to view by the user. If we run the template we get the

following output for ModelResults:

110

Here you can see that the out of sample predictions, mnormexam have been estimated with

standard errors. We do not get a DIC diagnostic here as this would include the missing data and be a

little misleading. We have recently incorporated the ability to use additional datasets in a template

and we may in the future update this template to allow the data to be predicted to be in a different

dataset. We hope that this and other templates give you a flavour of the possibilities that are

available in the Stat-JR package. The package is still evolving and so we very much welcome feedback

and suggestions for improvement. We also encourage you to send us your own templates for

inclusion with the software.

Exercise 11

Try modifying the regression1 template to allow for out of sample predictions. Call the new template

regression1pred.

111

References

Browne, W.J. (2016) MCMC Estimation in MLwiN, v2.36 . Centre for Multilevel Modelling,
University of Bristol.

Browne, W.J., Steele F., Golalizadeh, M., and Green M.J. (2009) The use of simple
reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel
models with applications to discrete time survival models Journal of Royal Statistical Society, Series
A. 172: 579-598

de Valpine, P., Paciorek, C., Turek, D., Anderson-Bergman, C., and Temple Lang, D. (2016). nimble:
Flexible BUGS-Compatible System for Hierarchical Statistical Modeling and Algorithm Development.
R package version 0.5. http://r-nimble.org

Goldstein H., Rasbash J., Steele F. and Charlton C. (2007). REALCOM: Methodology for realistically
complex multilevel modelling. Available at http://www.cmm.bris.ac.uk/
research/Realcom/index.shtml.

Hadfield, J.D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The
MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22.
http://www.jstatsoft.org/v33/i02/.

Hetland, M.L. (2005) Beginning Python: From Novice to Professional. Springer-Verlag. New York.

Lillard, L.A. and Panis C.W.A. (2003) aML Multilevel Multiprocess Statistical Software, Version 2.0.
EconWare, Los Angeles, California.

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling

framework: concepts, structure, and extensibility. Statistics and Computing, 10: 325--337.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique, and

future directions, Statistics in Medicine, 28, 3049-3067.

Lutz, M. and Ascher, D. (2005) Learning Python, Second Edition. O’Reilly Media, Sebastopol, CA.

Plummer, M. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs

Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC

2003), March 20–22, Vienna, Austria. ISSN 1609-395X.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. https://www.R-project.org

Rasbash, J., Charlton, C., Browne, W.J., Healy, M. and Cameron, B. (2009). MLwiN Version

2.1. Centre for Multilevel Modelling, University of Bristol.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer. ISBN 978-0-

387-75968-5.

http://r-nimble.org/

