
A Beginner’s Guide to

Stat-JR’s TREE interface

version 1.0.3
Programming and Documentation by

William J. Browne, Christopher M.J. Charlton, Danius T.

Michaelides*, Richard M.A. Parker, Bruce Cameron, Camille

Szmaragd, Huanjia Yang*, Zhengzheng Zhang, Harvey

Goldstein, Kelvyn Jones, George Leckie and Luc Moreau*

Centre for Multilevel Modelling,

University of Bristol.

*Electronics and Computer Science,

University of Southampton.

August 2015

A Beginner’s Guide to Stat-JR’s TREE interface version 1.0.3

© 2015. William J. Browne, Christopher M.J. Charlton, Danius T. Michaelides, Richard M.A.

Parker, Bruce Cameron, Camille Szmaragd, Huanjia Yang, Zhengzheng Zhang, Harvey

Goldstein, Kelvyn Jones, George Leckie and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, for any

purpose other than the owner's personal use, without the prior written

permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

i

1. About Stat-JR ... 2

1.1 Stat-JR: software for scaling statistical heights. ... 2

1.2 About the Beginner’s guide .. 4

2 Installing and Starting Stat-JR ... 4

2.1 Installing Stat-JR .. 4

2.2 The use of third party software and licenses .. 4

2.3 Starting up TREE .. 5

3 Quick-start guide ... 6

3.1 Stage 1: Selecting a template & dataset ... 7

3.2 Stage 2: Providing template-specific input ... 9

3.3 Stage 3: Outputting the files to run the desired execution .. 11

3.4 Stage 4: Running the execution .. 12

3.5 Stage 5: The results ... 13

4 A detailed guide with worked examples ... 14

4.1 The structure and layout of the TREE interface .. 14

4.2 Application 1: Analysis of the tutorial dataset using the eStat engine 24

4.2.1 Summarising the dataset and graphs ... 24

4.2.2 Single-level Regression .. 29

4.2.3 Multiple chains ... 35

4.2.4 Adding gender to the model .. 36

4.2.5 Including school effects ... 38

4.2.6 Caterpillar plot .. 40

4.3 Interoperability – a brief introduction .. 42

4.3.1 So why are we offering Interoperability? ... 42

4.3.2 Regression in eStat revisited ... 42

4.3.3 Interoperability with WinBUGS ... 44

4.3.4 Interoperability with OpenBUGS .. 47

4.3.5 Interoperability with JAGS .. 49

4.3.6 Interoperability with MLwiN ... 51

4.3.7 Interoperability with R .. 53

4.3.8 Interoperability with AML ... 58

4.4 Application 2: Analysis of the Bangladeshi Fertility Survey dataset 59

4.4.1 The Bangladeshi Fertility Survey dataset .. 59

4.4.2 Modelling the data using logistic regression .. 60

ii

4.4.3 Multilevel modelling of the data ... 63

4.4.4 Comparison between software packages ... 67

4.4.5 Orthogonal parameterisation. .. 71

4.4.6 Predictions from the model .. 73

4.5 Miscellaneous other topics e.g. Data Input/Export .. 75

5 References .. 76

6 Appendix: List of Third Party Software that are used by Stat-JR .. 78

1

Acknowledgements

The Stat-JR software is very much a team effort and is the result of work funded initially under three

ESRC grants: the LEMMA 2 and LEMMA 3 programme nodes (Grant: RES-576-25-0003 & Grant:RES-

576-25-0032) as part of the National Centre for Research Methods programme, and the e-STAT node

(Grant: RES-149-25-1084) as part of the Digital Social Research programme. The work has continued

with the ESRC grant ES/K007246/1.

We are therefore grateful to the ESRC for financial support to allow us to produce this software.

All nodes have many staff that, for brevity, we have not included in the list on the cover. We

acknowledge therefore the contributions of:

Fiona Steele, Rebecca Pillinger, Paul Clarke, Mark Lyons-Amos, Liz Washbrook, Sophie Pollard,

Robert French, Nikki Hicks, Mary Takahama and Hilary Browne from the LEMMA nodes at the Centre

for Multilevel Modelling.

David De Roure, Tao Guan, Alex Fraser, Toni Price, Mac McDonald, Ian Plewis, Mark Tranmer, Pierre

Walthery, Paul Lambert, Emma Housley, Kristina Lupton and Antonina Timofejeva from the e-STAT

node.

A final acknowledgement to Jon Rasbash who was instrumental in the concept and initial work of

this project. We miss you and hope that the finished product is worthy of your initials.

WJB August 2015.

2

1. About Stat-JR

1.1 Stat-JR: software for scaling statistical heights.

The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an

increase in the availability and complexity of data sources, and an increase in the sophistication of

statistical methods that can be used. For the novice practitioner of statistical modelling it can seem

like you are stuck at the bottom of a mountain, and current statistical software allows you to

progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR

package is to assist practitioners in making their initial steps up the mountain, but also to cater for

more advanced practitioners who have already journeyed high up the path, but want to assist their

novice colleagues in making their ascent as well.

One issue with complex statistical modelling is that using the latest techniques can involve having to

learn new pieces of software. This is a little like taking a particular path up a mountain with one

piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of

statistical model), and then having to descend again and take another path, with another piece of

software, all the way up again to eventually get there, when ideally you’d just jump across! In Stat-

JR we aim to circumvent this problem via our interoperability features so that the same user

interface can sit on top of several software packages thus removing the need to learn multiple

packages. To aid understanding, the interface will allow the curious user to look at the syntax files

for each package to learn directly how each package fits their specific problem.

To complete the picture, the final group of users to be targeted by Stat-JR are the statistical

algorithm writers. These individuals are experts at creating new algorithms for fitting new models, or

better algorithms for existing models, and can be viewed as sitting high on the peaks with limited

links to the applied researchers who might benefit from their expertise. Stat-JR will build links by

incorporating tools to allow this group to connect their algorithmic code to the interface through

template-writing, and hence allow it to be exposed to practitioners. They can also share their code

with other algorithm developers, and compare their algorithms with other algorithms for the same

problem. A template is a pre-specified form that has to be completed for each task: some run

models, others plot graphs, or provide summary statistics; we supply a number of commonly used

templates and advanced users can use their own – see the Advanced User’s Guide. It is the use of

templates that allows a building block, modular approach to analysis and model specification.

At the outset it is worth stressing that there a number of other features of the software that should

persuade you to adopt it, in addition to interoperability. The first is flexibility – it is possible to fit a

very large and growing number of different types of model. Second, we have paid particular

attention to speed of estimation and therefore in comparison tests, we have found that the package

compares well with alternatives. Third it is possible to embed the software’s templates inside an e-

book which is exceedingly helpful for training and learning, and also for replication. Fourth, it

provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain

Monte Carlo procedures for calculating model estimates and functions of model estimates, via its

eStat engine. The eStat engine is a newly-developed estimation engine with the advantage of being

transparent in that all the algebra, and even the program code, is available for inspection.

3

While this is a beginner’s guide – it is a beginner’s guide to the software. We presume that you have

a good understanding of statistical models which can be gained from for example the LEMMA online

course (http://www.bristol.ac.uk/cmm/learning/online-course/index.html) . It also pre-supposes

familiarity with MCMC estimation and Bayesian modelling – the early chapters of Browne (2012)

available at http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-

33/mcmc-web.pdf provide a practical introduction to this material.

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in

Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this

software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of

the Stat-JR community: either through the creation of your own templates that can be shared with

others, or simply by providing feedback on existing templates.

Happy Modelling,

The Stat-JR team.

http://www.bristol.ac.uk/cmm/learning/online-course/index.html
http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-33/mcmc-web.pdf
http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-33/mcmc-web.pdf

4

1.2 About the Beginner’s guide

We have written three initial guides to go with the software: this Beginner’s Guide will cover how to

start up and run the software, with a particular focus on the TREE (Template Reading and Execution

Environment) interface. It will provide some simple examples and is designed for the researcher who

wishes to be able to use the software package without worrying too much about how the

mathematics behind the modelling works. As such, it does not go into detail on how users can

contribute to extending the software themselves: that is covered in the second, Advanced User’s,

guide, designed for those who want to understand in greater detail how the system works. There is

also a third, E-book User’s, guide which deals with the software’s alternative DEEP (Documents with

Embedded Execution and Provenance) E-book interface.

As well as these three Guides, we also publish support, such as answers to frequently asked

questions, on our website (http://www.bristol.ac.uk/cmm/software/statjr), where you can also find

our forum in which users can discuss the software.

In this Beginner’s Guide we first describe how to install Stat-JR, and then provide a ‘Quick-start’

guide as a quick visual overview, with brief notes, of the basics of how to work with Stat-JR via TREE.

There then follows more detailed sections which provide further explanation, together with point-

and-click examples for you to work through.

We look at an example application taken from education research, fitting a Normal response model

for a continuous outcome. Here our aim is more to illustrate how to use the software than primarily

how to do the best analysis of the dataset in question, and we will demonstrate the interoperability

features with the other software packages that link to Stat-JR as well. We will then look at a second

example from demography that illustrates binomial response models for a discrete outcome.

2 Installing and Starting Stat-JR

2.1 Installing Stat-JR

Stat-JR has a dedicated website (http://www.bristol.ac.uk/cmm/software/statjr) from which you can

request a copy of the software, and which contains instructions for installation.

2.2 The use of third party software and licenses

Stat-JR is written primarily in the Python package but also makes use of many other third party

software packages. We are grateful to the developers of these programs for allowing us to use their

products within our package. When you have installed Stat-JR you will find a directory entitled

licences in which you can find subdirectories for each package detailing the licensing agreement for

each. The list of software packages that we are using can be found in the Appendix to this document.

http://www.bristol.ac.uk/cmm/software/statjr
http://www.bristol.ac.uk/cmm/software/statjr

5

2.3 Starting up TREE

Stat-JR’s interface is viewed and operated via a web browser, but it is started by running an

executable file.

To start Stat-JR select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the

start up menu. This action opens a command prompt window in the background to which

commands are printed out. This window is useful for viewing what the system is doing: for example,

on the machine on which we have run TREE, you can see commands like the following:

WARNING:root:Failed to load package GenStat_model (GenStat not found)
WARNING:root:Failed to load package Minitab_model (Minitab not found)
WARNING:root:Failed to load package Minitab_script (Minitab not found)
WARNING:root:Failed to load package SABRE (Sabre not found)
http://0.0.0.0:55534/

The most important command when starting up is the final line (the precise five-digit number

written out towards the end of the line will likely differ, though). This only appears when the

program has successfully performed all its initial set-up routines. This may take a while, particularly

the first time you use the program. You should then be able to view the start page of TREE in your

browser; if you can’t, then try refreshing the browser window, or typing localhost:55534 (in this

example) into the address bar. The lines such as WARNING:root:Failed to load package GenStat

model (GenStat not found) are not necessarily problematic but are warning you that the Genstat

statistical package has not be found and loaded on your particular machine.

6

3 Quick-start guide
This section provides an overview ‘quick-start’ guide to using Stat-JR, via the TREE application; for

more detailed instructions, together with worked point-and-click examples, see later sections. We’re

assuming you’ve installed Stat-JR, and can see the opening page of the TREE application in your

browser (see Section 2).

When operating Stat-JR through TREE, you generally proceed through the following five stages:

Stat-JR writes commands,

etc., to perform

requested function on

dataset (displayed in

browser window /

available for download)

Template

Dataset

Stat-JR

prompts user

for input

needed by

template to

perform

function

Function

performed

(If applicable)

external

software

opened, run,

then closed,

with results

returned to

Stat-JR.

Results of function

produced (displayed

in browser window /

available for

download)

(If applicable) results outputted as dataset…

Equations

(LaTeX) Scripts

Macros

1 4

2 3 5

Stage 1. Firstly, choose the

dataset you want to analyse / plot

/ summarise / etc., and the

template you want to use to do

so. Each template contains

commands to perform certain

functions: some run models,

others plot graphs, or provide

summary statistics, and so on…

Stage 2. You will be asked for

further template-specific input:

e.g. which variables from your

dataset you would like to include

in your model / which variables

you would like to plot /

summarise / etc.

Stage 3. Once you’ve answered

all the input queries, Stat-JR

generates all the commands,

scripts, macros, equations, and

instructions necessary to

perform, or describe, the

function you’ve requested. You

can view these within TREE, and

can download them too…

Stage 4. Stat-JR then runs

these commands / scripts /

macros, employing

externally-authored

software (e.g. R, MLwiN,

WinBUGS, SPSS, Stata, etc.),

or in-house software (such

as the eStat engine), as

appropriate.

Stage 5. Finally, the results are returned;

depending on the template these can

include model estimates, graphs,

summary tables, and so on. Again, these

can be viewed within TREE, and are also

downloadable. The output may also

include datasets (e.g. MCMC chains),

which you can then feed back into the

system by matching them up with a

template back in Stage 1.

myModel<- glm(normexam~
Summary(myModel)
plot(myModel,1)

Point & click

instructions

Select Open Worksheet
Select datafile.dta

Select Equations from Fi

Results

tables

Charts

Results

Model:
DIC: 9766.506

Parameters:
Beta1: 0.594

7

Below we briefly highlight the main features, with screenshots, of each of these five stages.

3.1 Stage 1: Selecting a template & dataset
 On opening Stat-JR, the page below, containing introductory information, will be displayed

in a web browser. To proceed to choosing a template and dataset, click on the Begin button.

 Having pressed Begin, the page below will be displayed. Note that here, and on other

screens, wherever you see the question mark symbols, context-specific help is revealed if

you hover your cursor over them. Hover-over help can appear elsewhere too: e.g. describing

the options along the top navigation bar.

 Here you can specify the template and dataset you want to use, and then begin to specify

your inputs.

 Selecting Dataset > Choose or Template > Choose from the top bar will reveal lists of

available datasets and templates. For each, find the one you want from the list, and then

press Use.

 Note, when choosing a template, you can use the cloud terms to help your search: the blue

tags describe functional aspects of the templates, whilst the red terms describe which

engines / packages the templates support (you can combine search terms by clicking on

more than one, and cancel your selections by pressing [reset]).

A link to the Stat-JR webpages

which contain further support,

including frequently asked

questions & a user forum

Click here to progress to the

next screen where you can

choose a template & dataset,

and can start specifying your

inputs…

This link, available on all subsequent pages

of TREE too, allows you to change settings

such as paths to data and template folders,

paths to interoperating software, and

optimisation settings for generated code.

If you have modified any files in the

templates, datasets or packages

folders, then you can reload their

contents into the current session via

the Debug menu here, which is also

available on all subsequent pages of

TREE.

8

Wherever you see these

(question mark) symbols,

context-specific help is revealed

if you hover your cursor over

them. Hover-over help can

appear elsewhere too: e.g.

describing the options along the

top navigation bar.

You can select one

or more of these

terms to help you

find relevant

templates; the blue

tags describe the

functional aspects

of a template,

whilst the red terms

describe the

engines / packages

supported by a

template. To

unselect terms,

press [reset]

Here you can see which dataset and template are currently selected. Hovering

your cursor over these names will reveal a description of each (if available).

…and likewise for

the Template…

Clicking on the down arrow symbol just to the right of the Dataset heading in

the top bar will bring up a menu. Select Choose to bring up the window,

below, allowing you to nominate a dataset other than that currently

selected…

Clicking the ‘label’ symbol

brings up a list of tags, whilst

clicking the ‘cog’ symbol brings

up a list of supported engines /

packages.

9

3.2 Stage 2: Providing template-specific input
 Once your desired Dataset and Template is selected, you can start answering the input

questions back on the main page. These are required by Stat-JR to allow the template to

perform the appropriate executions with your dataset; these inputs vary between

templates, and also within templates too, depending on your earlier choices as you progress

through the screens.

 For multi-choice lists you can de-select variables by simply clicking on their name in the list

of selected items.

 Press Next each time you’ve completed the input questions on the current page.

 Then, if applicable, more inputs will be revealed, and those you have already selected will be

greyed-out. However, you can still change each input via the remove button which you’ll see

next to each one. Alternatively, to re-specify all your inputs, press Start again (in the top

bar).

 When asked for the Name of the output results, this will be the name given to any

outputted dataset which results from running the template (see Stage 5).

Choose your

inputs
Once you’re

happy with your

choices, press

Next…

10

For multi-select lists,

you can de-select

variables by clicking

on their name here

You can remove

specific inputs via

these buttons

here

Again, once you’re

happy with your

inputs, press Next

As you progress through the screens, you can

see your choices reflected in the input string

and the RunStatJR command, at the bottom; a

record of your inputs is also kept under

Template > Set inputs (via the black bar at

the top), allowing you to automatically

populate the inputs boxes with your previous

choices (see later section); the RunStatJR

command, on the other hand, can be used to

call Stat-JR via a command line

If, at any point,

you want to re-

specify all your

inputs, then

press Start

again

This is the name given to any

outputted dataset (e.g. MCMC

chains produced by the model run)

(We’ve skipped a

screen or two where

we were asked about

this input – some

have default values,

and we’ve changed a

few…)

We’ve now

completed all the

inputs, and so we

press Next for the

final time…

11

3.3 Stage 3: Outputting the files to run the desired execution
 Once you’re pressed Next after the final input, Stat-JR returns a number of initial outputs

which you can view in the output pane at the bottom of the window.

 Note that Stat-JR hasn’t done everything you want it to do yet: it’s just producing

preliminary files telling you what it’s going to do, and how it’s going to do it.

 To select particular content to view in the output pane, use the drop-down menu just above

it.

 The Popout button, just above the output pane, allows you to view its contents in a new

browser tab.

 Pressing Run performs the executions described by the scripts, etc, returned in the output

pane.

Press Run to perform the executions…

You can choose what to view in the

output panel (here we’ve chosen to

view the equation for the model we’ve

specified), via this selection box

Via the Edit button, you can

directly edit scripts and macros,

e.g.to change model specification,

plot characteristics, etc…

Click here to view the contents of the output pane, below,

in a new browser tab…

12

3.4 Stage 4: Running the execution
 Once you’re pressed Run, the executions specified by you are peformed.

 Depending on your choices, this may take anything from a second or two (e.g. to produce a

simple plot, fit a model using a non-iterative method of estimation, produce summary data,

etc.), to many minutes (e.g. to run MCMC chains for a large number of iterations).

 If appropriate (e.g. if the template supports inter-operability, and if you have chosen to

employ it when prompted), externally-authored software packages (e.g. R, MLwiN,

WinBUGS, SPSS, etc.) are opened, run, then closed, and the results are returned to Stat-JR.

 Whilst the execution runs, you may see a lot of activity in the black command window,

which may help you keep a track of progress.

You may see a

lot of activity

in the

command

window as the

execution is

performed…

Whilst it performs these executions,

the progress gauge indicates that

Stat-JR is still working…

13

3.5 Stage 5: The results
 Once the executions have run, the progress guage, in the top-right corner, will change

from “Working” to “Ready”, and the drop-down list, just above the output pane, will

now be populated with more results.

 Depending on the template, a range of buttons / boxes appear above the output pane

allowing you to e.g. Download the results, Add to ebook, and run chains for Extra

iterations.

 If applicable, an outputted dataset now appears in the list of datasets (see Dataset >

Choose, via the top bar).

This ends the quick start guide. In the next chapter we describe the operation of TREE in more detail,

and work through examples.

Here you can add, to an

eBook, the inputs you have

just entered, the details of the

template and dataset you

have just chosen, and the

outputs you would like to be

displayed…

You can Download

results, and run for

Extra iterations …

The results (e.g. plots, model estimates, etc.) are

added to the list of outputs; here we’ve chosen to

display a summary table of results…

The outputted dataset (which we

earlier chose to call ‘my_output’)

will now appear in the list of

datasets (see Dataset > Choose)

allowing us to investigate it

further by matching it up with

another template …

Stat-JR indicates it has finished running

these executions, by being “Ready” again…

14

4 A detailed guide with worked examples

4.1 The structure and layout of the TREE interface

Stat-JR can be thought of as a system that manages the use of a set of templates written either by

the developers, and supplied with the software, or by users themselves. Each template will perform

a specific function: for example, fitting a specific family of models, summarising a dataset, or plotting

a graph. The Stat-JR system therefore allows the user to select and use specific templates with their

datasets, and to capture and display the outputs that result.

Returning to our start-up of the software, when the line http://0.0.0.0:50215/ appears, and after

refreshing the web browser, the browser window should appear as follows:

This is the start screen for the TREE interface to Stat-JR, and contains information on funders,

authors, and a link to the Stat-JR website which contains further guidance, such as answers to

frequently asked questions, and a user forum.

Pressing Begin returns the following screen:

At the top you’ll see a black title bar. From left to right, this contains:

 a link (Stat-JR:TREE) back to the opening page;

15

 an option (Start again) to clear all inputs the user has chosen for the current template;

 a Dataset menu allowing the user to choose, drop (from temporary memory cache), return

summary statistics for the current dataset, view (the entire dataset; see below), return a list

of datasets, upload / download (see Section 4.5) datasets. For example, selecting Dataset >

Choose returns a scrollable list of all the datasets that the system is aware of: i.e. those

which appear in the datasets subdirectory of this installation of Stat-JR. This pane can be

used to change the selected dataset via the Use button; for inputting your own data set you

can use the Upload button.

 the name of the currently-selected dataset (in the grey box) – if you hover your cursor over

this name, it returns a textual description of the dataset;

 a Template menu allowing the user to choose, list (described below), upload individual

templates not already uploaded in the current session or set the template inputs as a list. If

you select Template > Choose, a box appears which contains a scrollable list of all the

templates that the system is aware of: i.e. those which appear in the templates subdirectory

of this installation of Stat-JR. This can be used to change the selected template via the Use

button. As we anticipate there being many templates, each template has defined ‘tags’

which are terms to describe what it does. These appear as blue phrases in the ‘cloud’ above

the list of templates, whereas the estimation engines supported by each template appear in

the cloud in red. When you select a template, its name and description appear to the right of

the list. Clicking on the symbol that looks like a baggage label returns the tags for that

template, whereas clicking on the ‘cog’ symbol returns a list of engines that particular

template supports;

 the name of the currently-selected template (in the grey box) – again, if you hover your

cursor over this name, it also returns a description of the template;

 a progress gauge indicating whether Stat-JR is “Ready”, “Working”, “Idle” or whether it has

encountered an “Error”;

 a link to a page containing options to change a variety of Settings (discussed further below);

 a Debug button; this produces a drop-down list from which one can choose to reload the

templates, datasets or packages, allowing users upload changes to files they make outside

the TREE interface, without having to start-up Stat-JR again. For example, a user could paste

a new dataset into the datasets directory, or modify a template in the templates directory,

and reload them so that they appear in their lists in the browser window.

The Settings window, accessible via the black title bar, displays a number of settings that the

program uses with each possible software package: some of these are relatively straightforward,

such as where the executables for each package are found, and some are relatively advanced, such

as for the eStat engine, optimisation, starting values and standalone code options.

16

We will now look at The View dataset window:

Select Dataset > Choose from the menu in the black title bar.

Scroll down the dataset list, towards the bottom, and click on rats; its name and description will

appear to the right of the list.

Click on the Use button, and the name of the current dataset (in the grey box in the black title bar at

the top) should have changed accordingly.

Select Dataset > View; this will open a new tab in your browser: if you click on this you will be able

to see the dataset we have just selected, as follows:

The rats dataset is a small, longitudinal animal growth dataset which contains the weights of 30

laboratory rats on 5 weekly occasions from 8 days of age (see Gelfand et al (1990) for more details).

The five measurements are labelled y8, y15, y22, y29 and y36, respectively, and the dataset also

contains a constant column – a set of 1’s,named cons, and a rat identifier column, rat. Initially, we

are going to perform a regression analysis of the initial weight (y8) on the final weight (y36),

including an intercept (cons). The boxes above the data allow the user to quickly add a new variable

or delete an existing variable from the dataset. We can also view a summary of the dataset:

To view a summary of the dataset, click on the Summary tab in the tabs above the data and the

screen will look as follows:

17

Here we get a very short summary of the dataset, giving, for each variable, the minimum value,

maximum value, mean and standard deviation. If the dataset has had descriptions added or has

categorical variables then they will appear in the last two columns. More extensive summaries are

available by using specific templates to summarise datasets, as we will see later.

Let’s now look at the Template menu:

Back on the main page, if you click on Template > List the following screen will appear in a new tab:

18

This rather busy screen (we don’t reproduce it all here, due to its length) contains, in the two

columns on the left, a tabular list of all the templates that are available with a short description of

what each template does. The other three columns are of more interest to advanced users, but

contain a list of functions in the template code, tags that identify the template type, and the engines

that are supported by the template.

We will next demonstrate running a template, using the default Regression1 template that fits a 1-

level Normal response regression model, this is appropriate as the response, the weights of the rats,

is a continuous measure

Return to the main menu screen, which should look as follows:

In the middle of the screen you can see the inputs required for this template (these are template-

specific, and may change when you use a different template). Since some inputs are conditional (i.e.

are only required when earlier inputs take specific values), the opportunity to specify inputs

proceeds through sequential steps. Here we see the two initially-required inputs for the Regression1

template are the Response variable and Explanatory variables. Since this template only allows for 1

response variable to be specified, a pull-down list is displayed, but since it allows for several

explanatory variables to be specified, a multiple selection list is displayed for that input. In the case

of the latter, variables are selected by clicking on their name in the left-hand list; to de-select them,

click on their name in the right-hand list.

The Start again link (in the top black bar) will clear any inputs the user has already selected and

return you to the first template input screen (i.e. the current screen, in this case), whilst the Next

button will allow the user to move on and specify further inputs once those on the current screen

have all been chosen.

Use the input controls and the Next button(s) to fill in the screen as follows:

19

Note that an option to remove appears next to each input previously submitted; this will remove the

current input, but keep the other inputs you have specified (as far as it can; if they are conditional on

the input you have removed, then they will be, out of necessity, removed too).

So, here we are performing a regression of the initial weight (y8) on the final weight (y36), including

an intercept (cons).

The other inputs refer to the Monte Carlo Markov chain (MCMC) estimation procedures in Stat-JR.

MCMC estimation methods are simulation-based, and so require certain parameters to be set. The

methods involve taking a series of random (dependent) draws from the posterior distribution of the

model parameters in order to summarise each parameter. The inputs required here are as follows:

 the number of chains: this is the number of starting points from which we will take random

draws;

 random seed: the value from which random numbers are initially drawn. This allows

repeatability, as a run using the same starting values and random seed will give the same

answers. When multiple chains are used this seed is generally multiplied by the chain

number to give a unique seed for each chain;

 length of the burnin: the initial length of the chain (i.e. the number of iterations at the start)

which are excluded from the parameter summaries (the rationale for this is explained a little

further in the example, below, with the tutorial dataset);

 number of iterations: the length of chain following the burnin, from which the parameter

summaries are drawn;

 thinning: this determines how often the values are stored: i.e. store every nth iteration.

20

By answering ‘Yes’ to the question use default algorithm settings, we have used defaults for other

settings for which we will therefore not be prompted to complete. By answering ‘No’ to generate

prediction dataset we have chosen not to generate a dataset of predictions from our model. By

answering ‘Yes’ to use default starting values we have chosen not to start the chain at values of our

choosing, instead accepting Stat-JR’s defaults. We will discuss MCMC estimation in slightly more

detail in the applications in the next section. The final input we’re asked for is the name of output

results: this is the name (here we’ve chosen out) given to any dataset of parameter chains

thatresults from running the template.

You will notice, towards the bottom of the window, a box with a rather long text string labelled

Current input string above it and another labelled as Command below it. The input string allows the

user to specify all the inputs directly and this is done via the Set Inputs option in the Template pull

down list, without having to point-and-click through the list as we have done. These have to be

formatted in a certain way, however, as illustrated by the current (Input String) text string which

Stat-JR has written for us as a result of our inputs.

This (i.e. the string between, and including, the curly brackets: in this example {‘burnin’:’1000’…

‘makepred’: ’No’}) can be copied and pasted into the box labelled input string in the above window,

and the Use button pressed (following any edits you would like to make to the input values), in order

to specify inputs directly. Alternatively one can use the history feature to revert to older inputs.

Returning to the main window, the second text string (labelled Command) can be used by the

command driven version of Stat-JR to perform the same operations, although we will not discuss this

further here.

Clicking on the Next button will now pre-process the template inputs, and will result in the following

new pane at the bottom of the window:

21

The object currently specified in the pull-down list (equation.tex is selected by default here) appears

in the pane below it. These objects are any outputs constructed by Stat-JR before and during the

execution of the template, so here we see a nice mathematical description of the model. If we now

select the object model.txt from the list we see a description of the regression model that we wish to

fit in the language that is used by the eStat engine:

At this point we haven’t actually run the template, and so the objects that can be selected from the

pull down list are those present pre-model run, and include computer code to actually fit the model.

Click the Run button to run the template.

Once the progress gauge, towards the right of the black title bar, has changed from “Working” (blue)

to “Ready” (green), select ModelResults from the pull-down list.

The screen will then look as follows:

22

Here we see parameter estimates, along with standard deviations (SDs), as a measure of precision

for each parameter. We will explain these further in the next section. At the top of the screen shot

above (which is in fact the middle of the full window, vertically-speaking) we now have a few

additional buttons. The Extra Iterations box, along with the More button, will allow us to run for

longer (i.e. for a number of iterations additional to those we have already run for). The Download

button will produce a zipped file that contains a folder with files for many of the objects contained in

the two pull-down lists whilst the Add to ebook button can be used if one wants to construct an

ebook to be used with the DEEP eBook interface into Stat-JR.

You’ll recall that we earlier named the output results ‘out’, so if we choose this from the pull-down

list just above the output pane, we’ll be able to view it, as follows:

23

Here we see columns containing the chains of values for each parameter in the model. As well as

being able to view this file here, it is also a dataset (stored in temporary memory) and so will appear

in the dataset list (at least for the duration of our current session using the software) accessible via

the Dataset menu in the top title bar (emboldened to indicate that it has been created in this run of

the software). This means that we can string templates together, as we can select out as a dataset

and perform operations on it using another template.

This ends our whistle-stop tour of many of the windows in Stat-JR. We will next look at a practical

application.

24

4.2 Application 1: Analysis of the tutorial dataset using the eStat

engine

4.2.1 Summarising the dataset and graphs

In this section we will look at performing some analysis of an example dataset from education. The

dataset in question is known as the tutorial dataset, and is used as an example in the MLwiN

software manuals (see, for example, Browne 2012). In fact, much of the material here owes a lot to

Browne (2012), which employs similar analysis but using MLwiN.

Let us start by looking at the tutorial dataset.

Select tutorial via Dataset > Choose (see the title bar), then click Use.

If you then select Dataset > View, and click on the Summary tab the following should appear in a
new tab in the browser window containing summary information, as follows:

The tutorial dataset contains data on exam scores of 4059 secondary school children from 65

schools at age 16. These exam scores have been normalised to have a mean of zero and a standard

deviation of one and are named normexam. There are several predictor variables, including a

(standardised) reading test (standlrt) taken at age 11, the pupils gender (girl), and the school’s

gender (schgend) which takes values 1 for mixed, 2 for boys and 3 for girls. Each variable is described

in the Description column and if you hover over any of the variables that say “Yes” in the value labels

column, the category labels will be displayed.

We can explore the dataset in more detail, prior to fitting any models, by using the many data

manipulation templates available in Stat-JR. We will first look at some plots of the data:

25

Select Template > Choose and then select Histogram from the template list that appears and click

Use.

Fill in the inputs as shown below and click Next and then Run and select histogram.svg from the

output list.

Here you will see, in the output pane, a histogram plot that shows that the response variable we will

model, normexam, appears Normally-distributed.

Select Template > Choose and this time select XYPlot from the template list, then click Use.

Fill in the inputs as shown below and click Next and then Run and select graphxy.svg from the list.

26

Here we see that there appears to be a positive relationship between normexam and standlrt, with

pupils that have higher intake scores performing better, on average, at age 16.

We can display the graph in a separate tab in the browser window by clicking on the Popout button

next to the pull down list:

27

For the sake of brevity, for the remainder of this documentation we will assume you now know how

to change template/dataset, and also how to display output in separate tabs, so we’ll refrain from

repeating this information in detail again.

Next, we might like to examine how correlated the two variables, normexam and standlrt, actually

are:

Select AverageandCorrelation as the template, and complete the inputs as follows before clicking on

Next and Run and selecting table from the outputs:

28

Here we see that the correlation is 0.592, so fairly strong and positive. We might also like to look at

how exam score varies by gender:

Select Tabulate as the template, and complete the inputs as follows, before clicking on Next and

Run and selecting table from the output list:

We have to enter variables for column values and row values, and so here we have specified column

values as girl (taking value 1 for girls and 0 for boys) and row values as cons (which is a constant),

and then we get 2 columns in the output labelled 0 and 1 for boys and girls, respectively . Looking at

the means, it appears that girls do slightly better than boys, and looking at the standard deviations

(sds) they are slightly less variable than boys in their scores. Let us now consider performing some

statistical modelling on the dataset.

29

4.2.2 Single-level Regression

As in the last chapter, with the rats dataset, we will start by fitting a simple linear regression model

to the tutorial dataset. Here we will regress normexam on standlrt by using a modelling template.

Select Regression1 as the template and fill it in as follows:

Here we are fitting a linear regression, and so have standlrt as an explanatory variable, but also cons

(which is a column of 1s) as we would like to include an intercept as well. For now we have set-up

the MCMC estimation options as we did for the rats dataset, and we will overwrite the output file

out.

Clicking on the Next button will populate a pull down list of objects created by Stat-JR at the bottom

of the screen and by default we see the object equation.tex :

30

In the pane we find a mathematical representation of the chosen model. Note that the file is a LaTeX

file that is being rendered in the browser by a piece of software called MathJaX (v2.3, 2013), so if

you are a LaTeX-user you can copy this file straight into a document. If we instead choose model.txt

from the list we see the following:

Here we see the text file that represents the model we wish to fit in the language that the algebra

system used by the built-in eStat engine requires. The Regression1 template only uses the eStat

MCMC-based estimation engine, so as you can see in the mathematical formulae in equation.tex we

are fitting a Bayesian version of a linear regression, and the last four lines of the output are prior

distributions for the unknown parameters, β0, β1 and the precision τ (where τ=1/σ2).

Whilst we will keep our description of Bayesian statistics and MCMC estimation to a minimum, and

recommend Chapter 1 of Browne (2012) for more details, in brief we are interested in the joint

posterior distribution of all unknown parameters given the data (and the prior distributions

specified). In practice, in complex models, this distribution has many dimensions (in our simple

regression we have 3 dimensions) and is hard to evaluate analytically. Instead, MCMC algorithms

work by simulating random draws from a series of conditional posterior distributions (which can be

evaluated). It can then be shown (by some mathematics) that after a period of time (required for the

simulations to move from their possibly arbitrary starting point) that the draws will be a dependent

sample from the joint posterior distribution of interest. It is common, therefore, to throw away the

first n draws which are deemed a burn-in period.

For the simple linear regression, it is a mathematical exercise to show that the conditional posterior

distributions have standard forms and are Normal (for the fixed effect) and Gamma (for the

precision = 1 /variance). The eStat engine has a built in algebra system which takes the text file

(model.txt) in the left-hand pane and returns the conditional posterior distributions; you can view

these as follows:

Select algorithm.tex from the list and click on the Popout button and the algebra steps will appear in

a new tab as follows:

31

The eStat engine then takes these posterior distributions and wraps them up into computer code

(C++) which it will compile and run for the model. By default this will be several pieces of code that

are linked together by Stat-JR, although the Settings screen (accessible via a link towards the top of

the main menu screen, as we saw earlier) has an option to output completely standalone code that

can be taken away and run separately from the Stat-JR system; this is, however, a topic for more

advanced users.

Returning to the tab, in the browser window, containing the model template, click on the Run

button and wait for the model to run.

Then select ModelResults from the pull down list and pop it out into a separate tab.

Here the model results can be split into two parts:

32

The first part of the results (under the heading ‘Parameters’) contains the actual parameter

estimates. Here, for each parameter, we get 3 numbers: a posterior mean estimate (mean), a

posterior standard deviation (sd), and an effective sample size (ESS).

Here we see that beta_0 has a mean estimate of approximately 0, which we would expect as both

the response and predictor have been normalised, or standardised. The slope beta_1 has mean

0.595 with standard deviation 0.013, and is highly significant, as it’s mean estimate is many times

it’s standard deviation (a Bayesian equivalent of a standard error) The value 0.595 represents the

average increase in the normexam score for a 1-point (1 sd, due to standardising) increase in

standlrt. The residual variance, sigma2, has value 0.649 showing that, as the initial response variance

was 1.0, standlrt has explained 35.1% of the variability.

The ESS is a diagnostic which reflects the simulation-based (stochastic) nature of the MCMC

estimation procedure: we have based our results on the 5,000 iterations post burn-in, but we know

that the method produces dependent samples, and so the ESS gives an equivalent number of

independent samples for the parameters involved; in effect a measure of the information content of

the chain In this case, all parameters have ESS of > 4000, and so the chains are almost independent.

The second part (under the heading ‘Model’) refers to the model fit for this particular model and the

DIC diagnostic (Spiegelhalter et al. 2002). The DIC diagnostic is an information criterion which is a

measure of how good a specific model is, consisting of a combination of how well the model fits the

data (here defined by the model deviance) and how complex the model is (here defined by pD: the

effective number of parameters). Basically the better fitting the model is, the better the model is,

but it has to be penalised by how complex it is. The DIC statistic is defined as the deviance of the

mean + 2pD. In this example the deviance at the mean (D(thetabar)) is 9760.5 and pD is ~3

(reflecting the three parameters of the model that are being estimated) and so we have a DIC value

of 9766.4. This number is not particularly interesting in isolation but it is when we compare values

for several models.

We can also get more information from the diagnostic plots that are available in the list of objects

Return to the model run tab in the browser window, and select beta_1.svg from the pull-down list

above the output pane and pop it out into a separate tab.

33

This “sixway” plot gives several graphs that are constructed from the chain of 5,000 values produced

for beta_1. The top-left graph shows the values plotted against iteration number, and is useful to

confirm that the chain is ‘mixing well’, meaning that it visits most of the posterior distribution in few

iterations. The top-right graph contains a kernel density plot which is like a smoothed histogram and

represents the posterior distribution for this parameter. Here the shape is symmetric and looks like a

Normal distribution which we expect given theory for fixed effects in a normal model.

The two graphs in the middle row are time series plots known as the autocorrelation (ACF) and

partial autocorrelation (PACF) functions. The ACF indicates the level of correlation within the chain;

this is calculated by moving the chain by a number of iterations (called the lag) and looking at the

correlation between this shifted chain and the original. In this case, the autocorrelation is very small

for all lags. The PACF picks up the degree of auto-regression in the chain. By definition a Markov

chain should act like an autoregressive process of order 1, as the Markov definition is that the future

state of the chain is independent of all the past states of the chain given the current value. If, for

example, in reality the chain had additional dependence on the past 2 values, then we would see a

significant PACF at lag 2. In this case all PACF values are negligible. All of this suggests that we have

good mixing and it would be appropriate to proceed to the interpretation of the parameters.

The bottom-left plot is the estimated Monte Carlo standard error (MCSE) plot for the posterior

estimate of the mean. As MCMC is a simulation-based approach this induces (Monte Carlo)

uncertainty due to the random numbers it uses. This uncertainty reduces with more iterations, and

is measured by the MCSE, and so this graph details how long the chain needs to be run to achieve a

specific MCSE. The sixth (bottom-right) plot is a multiple chains diagnostic and doesn’t make much

34

sense when we have run only one chain, and we will therefore consider running multiple chains in

the next section.

We can also get some other diagnostics and summary statistics for the model as follows:

Click on the Template pull down list at the top of the screen and select Choose and SummaryStats

as the template.

Next click on the Dataset pull down list and select Choose and out as the dataset.

Run the SummaryStats template and select the inputs as follows before clicking on Run:

Now select table from the drop-down list of outputs, and display it in a separate tab:

Here we see a more extensive summary of the three parameters of interest. This summary table

includes various quantiles of the distribution which are calculated by sorting the chain and picking

the values that lie x% into the sorted chain (where x is 2.5, 5, 50 etc.). These allow for accurate

interval estimates that do not rely on a Normal distribution assumption. The inter-quartile range

(IQR) is similarly calculated by picking the values that lie 25% and 75% through the sorted list and

calculating the distance between them.

35

The final statistic is an MCMC diagnostic designed to suggest a length of chain to be run. The Brooks-

Draper diagnostic is based on measuring the mean estimate to a particular accuracy (number of

significant figures set to 2 by default). For example, it states that to quote sigma2 as 0.65 with some

desired accuracy only requires 32 iterations. The anomaly here is beta_0, however, since the true

value is 0 we have difficulty quoting such a value to 2 significant figures!

4.2.3 Multiple chains

MCMC methods are more complicated to deal with than classical methods as we have to specify

many estimation parameters, including how long to run the MCMC chains for. The idea of running

chains for a longer period is to counteract the fact that the chains are serially-correlated, and

therefore are not independent samples from the distribution. Another issue that might cause

problems is that the posterior distribution of interest may have several possible maxima (i.e. may be

multimodal). This is not usually an issue in the models we cover in this book, but it is still a good idea

to start off the estimation procedure from several places, or with several runs with different random

number seeds, to confirm we get the same answers.

From the top bar change Template and Dataset using the respective pull down lists and Choose so

you have Regression1 as the template and tutorial as the dataset.

This time fill in the screen as follows:

Click on the Next and Run buttons.

36

When the model has run select beta_1.svg from the outputs list and pop it out to view it in a new

tab.

Here we see the three chains superimposed on each other in the top-left pane – note the chain looks

primarily red simply because this chain (chain 3) has been plotted on top of the other two, and due

to good mixing obscures them. Each chain has its own kernel plot in the top-right pane and this also

suggests that, by the similarity of shape and position, the chains are mixing well.

We have previously described what all the graphs here mean in Section 4.2.2, apart from the Brooks-

Gelman-Rubin diagnostic plot (BGRD; Brooks and Gelman, 1998) in the bottom-right corner. This

plot looks at mixing across the chains: the green and blue lines measure variability between and

within the chains, and the red is their ratio. For good convergence this red line should be close to

1.0, and here the values get close to 1.0 fairly quickly. We can have a lot of faith in the estimates of

our model.

4.2.4 Adding gender to the model

We have so far been more focused on understanding the MCMC methods but now we will return to

modelling. We next wish to look at whether gender has an additional effect on normexam on top of

that we have observed for intake score (standlrt).

To do this, click on the remove link next to explanatory variables in the browser window, and fill-in

the template as follows:

37

Click on Next and then Run to run the model.

After the model finishes running select ModelResults from the drop-down list of outputs, and display

in a new tab.

This new model has one additional fixed effect parameter (beta_2) associated with gender, and we

see it has a positive effect (0.170) which appears highly-significant (at least twice its sd, which is

0.025). Note that in our earlier tabulation we saw that the difference in gender means was 0.093- (-

38

0.140) = 0.233 and so the effect here is somewhat smaller, probably due to correlation between

gender and intake score.

Looking at the DIC diagnostic to assess whether this model is better we see this has dropped from

9766.4 to 9724.9, which is a big drop, and so the model with gender is indeed much better.

Finally we see that the ESS for two of the parameters is lower (beta_0 and beta_2), at around 1600,

so the model doesn’t mix quite as well; however, these ESS are still large enough not to require

further iterations. Here is the graph for beta_2.svg, displayed in a new tab:

We see reasonable mixing, and can clearly see the significance of the effect as well (as the kernel

density plot in the top-right corner indicates that 0 is nowhere near the posterior distribution). From

a modelling perspective we have thus far ignored the fact that our data is a two-stage sample and

that we should account for the clustering of the pupils within secondary schools. To do this we need

to fit a 2-level model, and use a different template.

4.2.5 Including school effects

Stat-JR contains many different model-fitting templates some of which can fit whole families of

models and some of which can fit just one or two specific models. We have thus far looked at the

rather restrictive Regression1 template that only fits single level normal response models. To include

school effects we will now look at the 2LevelMod template, which not only includes a set of random

39

effects but also supports different response types and estimation engines, features that we will look

at later.

On the Template pull down list at the top of the screen select Choose and select 2LevelMod as the

template and stick with tutorial for the dataset.

Set-up the inputs as shown below:

Press Next and then Run to fit the model. Note that running will take a while as we are storing all 65

school effects and so for each one the software needs to construct diagnostic plots.

When the model finishes select ModelResults, from the output list, and show the results in a

separate tab.

40

Here if you scroll down we see that the DIC value for the two-level model is 9245, compared with

9725 for the simpler model, showing that it is important to account for the two levels in the data. If

you scroll down to the beta fixed effect parameters, as shown in the table below, you will find that

their mean estimates have changed little.

Parameter Single level

Mean(sd)

Single level

ESS

2level

Mean(sd)

2level

ESS

beta_0 -0.103 (0.0196) 1615 -0.091 (0.0429) 319

beta_1 0.590 (0.0126) 5488 0.560 (0.0126) 4951

beta_2 0.170 (0.0254) 1623 0.170 (0.0330) 775

The standard deviations for beta_0 and beta_2 have increased due to taking account of the

clustering, and the ESS values have reduced due to correlation in estimating the fixed effects and

level 2 residuals.

4.2.6 Caterpillar plot

The random effects in the 2-level model are also interesting to look at, and one graph that is often

used is a caterpillar plot. This can be produced in Stat-JR using a template specifically designed for

producing this plot. This template requires the user to select all the ‘u’s to be displayed in the plot,

which can be time-consuming if there are many of them:

From the top bar we need to select Choose for Template and Dataset.

Choose CaterpillarPlot95 as the template and out2level as the dataset.

41

You need now to select all the u’s from u0 to u64 which is best done by clicking on u0 and holding

down the mouse and scrolling down to multiselect all the u’s together

Once all are selected press the Next and Run buttons.

Select caterpillar.svg in the pull down list and view in a new tab as follows:

This graph shows the schools in order of ascending mean whilst the bars give a 95% confidence

interval around each mean. The school in the middle with the wide confidence interval (i.e. very

large bars) has only 2 pupils and so there is much greater uncertainty in the estimate.

In this chapter we have explored fitting three models to the tutorial dataset. This has illustrated how

the Stat-JR system works, how to interpret the output from MCMC and eStat, and how to compare

models via the DIC diagnostic. There are better models that can be fitted to the dataset: for

example, we could look at treating the effect of intake score (standlrt) as random, and fit a random

slopes model using the template 2LevelRS; in the future we may add material on this subject to this

manual, but for now we leave this as an exercise for the reader. Next we turn to the interoperability

features of Stat-JR.

42

4.3 Interoperability – a brief introduction

In this section we look at interoperability with other software packages. In order to run this section

you will need to have installed the other packages and told Stat-JR where they are. For more details

look at the Stat-JR website (www.bristol.ac.uk/cmm/software/statjr/).

4.3.1 So why are we offering Interoperability?

There are many motivations that could be given for the benefits of having an interoperability

interface. First and foremost it opens up functionality in other software packages through a common

interface.

One important feature that the template, Regression1AML, which we cover at the end of this

chapter, shows is that not all model templates need to use the built-in eStat engine. It would be

perfectly reasonable for a user to construct a template that fitted a specific family of models in the

WinBUGS software and then novice users would have access to a user-friendly interface to such

models without having to understand the subtleties of writing WinBUGS code; it can thus play an

important role introducing packages, such as WinBUGS, to new users. This follows earlier work: for

example the MLwiN-WinBUGS interface that we developed 10 years ago.

It also offers an easy way of comparing different software packages for a multitude of examples, and

we will return to this in Section 4.4.4. Finally it can be thought of as a teaching tool, so that a user

familiar with one package can use Stat-JR and directly compare the script files, etc., required for the

package with which they are familiar to those required for an alternative package.

4.3.2 Regression in eStat revisited

In Section 4.2 we looked at fitting a few models to the tutorial dataset using the built-in eStat

engine: a newly-developed estimation engine with the advantage of being transparent in that all the

algebra, and even the program code, is available for inspection. It is an MCMC-based estimation

method, but is also rather quick. In this chapter we will stick with one simple example, the initial

linear regression model that we fitted to the ‘tutorial’ dataset that we considered in Section 4.2. We

will need to use a new template, Regression2, as the Regression1 template only supports the eStat

engine.

We will begin by setting-up the model and running it in eStat:

From the top bar select Regression2 as the template, and tutorial as the dataset using the Choose

options on the pull down lists for templates and datasets and set-up the inputs as follows:

file:///C:/Bristol/estat/trunk/Documentation/www.bristol.ac.uk/cmm/software/statjr/

43

Click on Next and Run to fit the model.

Select ModelResults from the pull down list, and show this output in a new tab which should look as

follows:

These results are identical to those we obtained using Regression1 earlier, although we only looked

at the plot for beta_1 in Section 4.2.3. We will use this as a benchmark, contrasting these results

with those we obtain from the other packages, although it is worth noting that all packages will have

44

good mixing and converge quickly for this simple linear regression model. You might like to explore

differences between engines / packages for other models yourself after reading this chapter.

4.3.3 Interoperability with WinBUGS

WinBUGS (Lunn et al., 2000) is an MCMC-based package developed (as BUGS – Bayesian inference

Using Gibbs Sampling) originally in the early 1990s by a team of researchers at the MRC Biostatistics

Unit in Cambridge. It is a very flexible package and can fit, in a Bayesian framework, most statistical

models, provided you can describe them in its model specification language. In Stat-JR we have

borrowed much of this language for our own algebra system, and so many templates feature

interoperability with WinBUGS.

To fit the current model using WinBUGS we can click on remove next to the Choose estimation

engine input and set up the template inputs as follows:

When we press Next the Stat-JR software will construct all the files required to run WinBUGS so for

example we can choose model.txt from the list:

45

Here we see the model defined in the WinBUGS model specification language in the output pane.

This file is almost identical to that used by eStat aside from the expression length(normexam) being

replaced here by its value 4059. Selecting script.txt from the list and popping out to a new tab gives

the following:

Here we see a list of the commands to be run in the WinBUGS language to fit the model. Note that

this is done using a temporary directory and so this pathname appears in many commands.

Return to the tab containing the main page and click on the Run button.

46

The WinBUGS package then pops up in its own window, runs the above script, and returns control to

Stat-JR when it has finished estimating the model. If we look at the ModelResults output from the list

and pop it out to its own tab we will see the following:

These estimates, as one might expect, are very close to those from eStat, and again all ESS values are

around 5,000-6,000. We can also look at the log file from WinBUGS:

Return to the template tab and choose log.txt in the outputs list.

Scroll the log.txt file down to the bottom, and the screen should look as follows:

47

Here we see that the estimates and the DIC diagnostic are embedded in the log file, and take a

similar value to eStat. WinBUGS required initial value files for each run (and these are stored in 3

text files beginning with inits and the chain number), together with a data file as well as the model

and script files already shown. All of these are available to view and to use again, thus Stat-JR is

useful for learning how these other packages, such as WinBUGS, work.

4.3.4 Interoperability with OpenBUGS

Our next package to consider is OpenBUGS (Lunn et al., 2009). OpenBUGS was developed by

members of the same team who developed WinBUGS, but differs in that it is open source so other

coders may get access to the source code, and in theory develop new features in the software.

To run OpenBUGS via Stat-JR click on the word remove next to the Choose Estimation engine input,

set up the template as follows, and then click on Next :

48

This will have set-up the files required for OpenBUGS; these are similar, but not identical, to

WinBUGS: the script file, in particular, is somewhat different and is split into 3 parts called

initscript.txt, runscript.txt (shown below) and resultsscript.txt , (you can access this from the objects

list):

OpenBUGS allows us to change the working directory, and so there is no need for other commands

to include the temporary directory path. Unlike WinBUGS, OpenBUGS will run in the background,

and so will not appear when we click run.

Clicking on Run and selecting ModelResults in its own tab gives the following:

49

Again, these results are very similar in terms of parameter estimates and ESS values to the other

software packages.

4.3.5 Interoperability with JAGS

The third standalone MCMC estimation engine available, via Stat-JR, is JAGS (Just Another Gibbs

Sampler), developed by Martyn Plummer (Plummer, 2003). JAGS also uses WinBUGS model

language, but has a few differences in terms of script files and data files.

To run JAGS via Stat-JR click on the remove text next to Choose estimation engine and set-up the

template as follows, before clicking on Next :

50

This will set-up the files required for JAGS; for example, here you can see the script file (script.txt)

which show some differences to those for WinBUGS (as to the initial value file formats):

Like OpenBUGS, JAGS will run in the background (i.e. it will not open as a window on your screen).

Clicking on Run, and placing ModelResults in a new tab, gives the following:

51

As you can see, we have similar estimates and effective sample sizes to the other estimation

methods we’ve used. Whilst JAGS can be faster than WinBUGS and OpenBUGS, it fits a slightly

smaller number of models.

4.3.6 Interoperability with MLwiN

MLwiN (Rasbash et al. 2009) is a software package specifically written to fit multilevel statistical

models. It features two estimation engines (for MCMC and likelihood-based (IGLS) methods,

respectively) with a menu-driven, point-and-click user interface. It also has an underlying macro

language, however, and this is what we use to interoperate with Stat-JR. We will first consider the

MCMC engine. As it is limited in the scope of models it fits, this means it is generally quicker than the

other MCMC packages. MLwiN is a single chain program, but can be made into a multiple chain

engine with Stat-JR, since the latter can start-up three separate instances of MLwiN. At present

these are given different random number seeds, but the same starting values, however we will try

and change this in future.

To run MCMC in MLwiN, via Stat-JR, click on the remove text by Choose estimation engine input and

set-up the template as follows before clicking on Next :

You can see, in the pulldown list the dataset (in .dta format) that is used by MLwiN. There are also

several MLwiN script files for the multiple chains and the several stages of model fitting.

Clicking on the Run button will set off three instances of MLwiN (in the background) and Stat-JR will

then collate the results together. Choosing ModelResults, and displaying them in a new tab, gives the

following:

52

Once again here we have similar estimates, although the naming convention is slightly different for

MLwiN. To show that we have multiple chains we can examine the chains for the slope (beta3), as

shown below:

53

Stat-JR also offers the option of using the likelihood-based IGLS estimation engine in MLwiN.

To do this in MLwiN, via Stat-JR, click once again on the remove text next to the Choose estimation

engine input and set-up the template as follows, before clicking on Next:

Again the dataset will appears in the output pane, and this time pressing Run will give the following

in the ModelResults output:

Here we get the Deviance (-2*Loglikelihood) value, together with parameter estimates with standard

errors. The likelihood-based methods are far faster to run than the MCMC-based methods.

4.3.7 Interoperability with R

R (R Development Core Team, 2011) is another more general purpose package that can be used to

fit many statistical models. R has many parallels with Stat-JR in that users can supply functions (like

Stat-JR templates) which are then added to the library of R packages. We have thus far implemented

interoperability features with R for several of these R functions; for example, for the template

Regression2, we have implemented two R engines: R_MCMCglmm, which is MCMC-based, and

R_glm, which is a standard regression modelling function. We will firstly demonstrate MCMCglmm.

To run MCMC in R, via Stat-JR, click on the remove text by the Choose estimation engine input and

set-up the template as follows, and click on Next:

54

After pressing Next, if we look at the script file, script.R, which we can select from the outputs list,

we see the following:

MCMCglmm can fit all forms of generalised linear mixed models, of which a linear regression is a

rather trivial case. You will see that the script file contains some setup code which will actually

download and install the MCMCglmm library the first time you execute the script (so ensure your

machine is connected to the internet) before calling the MCMCglmm command and then producing

summaries.

55

Clicking on Run in the main window will create several outputs.

The ModelResults are similar to other software but we can also look at diagnostics plots that are

specific to R by selecting DiagPlots1.png:

Here R gives trace plots and kernel density plots for both the intercept and the slope parameter.

Turning next to the glm package we can click on the remove text by Choose estimation engine and

set-up the template as follows, before clicking on Next :

Clicking on Run will this time run the MASS package and give results in ModelResults as usual. There

are additional graphical plots that come back from R; for example, below is a plot of residuals of the

model fit against fitted values (ResivsFitted.svg).

56

Before finishing with R, we will also demonstrate a non-model template developed with R called

PlotsViaR that gives the Stat-JR user access to R’s lattice graphics package through the Stat-JR

interface.

Click on Choose from the Template pull down list at the top of the screen to get a list of all the

templates. Note that the search cloud is useful with interoperability as it can be used to show which

templates offer interoperability with a particular package (the engines are in red).

Click on Plots and also R_script in the blue tag cloud. You’ll see that the list of templates,

underneath, is accordingly reduced to just those that draw plots using R.

Select PlotsViaR from the list, and click Use.

Set up the template inputs as shown below:

57

These options will display kernel plots for the exam scores of pupils grouped by gender, with

separate (panelled or trellise) plots for each school gender type. We can now press Run and show

the plot (Plot1.svg) in a separate tab:

Here (by coincidence) we have blue for boys and pink for girls!

58

4.3.8 Interoperability with AML

We will next look at another software package that can fit many statistical models via likelihood-

based estimation. AML (Lillard & Panis, 2003) is very useful for fitting multi-process models, but as

with other software packages can fit a simple regression as a special case. In our development work

on Stat-JR we have written special templates for interoperability with AML as opposed to

incorporating interoperability in the standard templates. We therefore need to do the following:

Click on the Choose option from the Template pull down list.

Select Regression1AML from the template list and click on Use, and stick with the tutorial dataset.

Note that if you have earlier clicked on Plots and R_script in the cloud of terms you will need to

either unselect them or click on [reset] to see the required template.

Fill in the inputs as follows, and press Next:

Now click on Run to run the model in AML and select ModelResults from the list:

Here we see the model results are similar to other packages. AML has three input dataset

(amlfit.raw, amlfit.aml and amlfit.r2a. There are also three additional output files from AML:

amlfit.out, amlfit.tab and amlfit.sum. For more information on how AML works we recommend

looking at the reference manual for the software.

We also have interoperability support for a variety of other packages, including GenStat, MATLAB,

Minitab, Octave, Sabre, SAS, SPSS, Stan (via RStan) and Stata. These packages are either not installed

59

on the machine we are currently using, or are not supported by the Regression2 template that is

being demonstrated, and so Stat-JR realises this and does not offer them.

4.4 Application 2: Analysis of the Bangladeshi Fertility Survey

dataset

4.4.1 The Bangladeshi Fertility Survey dataset

The Bangladeshi dataset (bang1) is an example dataset from the 1988 Bangladeshi Fertility Survey. It

contains records from 1934 women based in 60 districts in Bangladesh, and we are planning to

investigate variables that predict whether the women were using contraception or not at the time of

the survey. Let us first look at the data and the variables we will consider.

Select Choose and pick bang1 from the Dataset list and click on Use.

Click on View from the Dataset list to view the data as follows:

Here we see records for the first 24 women in district 1 displayed. The response variable use takes

value 1 if the woman was using contraceptives during the time of the survey, and 0 if she was not.

There are then several predictor variables, both woman-level and district-level. Here we will focus

on just two: the number of living children (lc), which is a categorical variable with four categories (no

kids, one kid, two kids, three+kids), and the respondents’ age, which is measured to the nearest year

and has been centred around its grand mean. We will now consider modelling the dataset.

60

4.4.2 Modelling the data using logistic regression

We will firstly consider a simple linear regression model relating contraception use to the age of the

woman.

Choose the template 1LevelMod from the Template list and click on Use.

Then setup the model with inputs as below.

Clicking on Next and choosing equation.tex in the pull down list and we see the following:

Here we the logistic regression model, in LaTeX, in the output pane. If we select model.txt we can

then see the model code that the algebra system will interpret:

61

Now choosing algorithm.tex from the right-hand pane, and placing it in its own tab in the browser

window, gives the following:

Here we see that the eStat engine uses a different MCMC method, random walk Metropolis, for the

steps for the fixed effects (beta0 and beta1) when fitting logistic regression models. We will come

back to this modelling decision in Section 4.4.4 when we compare different software packages.

Returning to the main pane and clicking on Run will now run the model.

Once it has finished, if we select ModelResults from the list, and look at it in a new tab, we get the

following:

62

Perhaps disappointedly and surprisingly, age doesn’t appear to have a significant effect (its estimate

(0.0064) is similar in magnitude to its standard error (0.0051)). To see this more clearly we can look

at the graph beta_1.svg in its own browser tab:

Here, whilst the values on the x-axis overlap and therefore aren’t particularly clear, we can see that

all three chains show strong support for the value 0.00 in the kernel density plot (i.e. it’s comfortably

within the distribution). It might be the case, however, that contraceptive use has a non-linear

relationship with age (possibly quadratic) and this could also be confounded by how far through

their own family-formation process the woman is, which we will model via the variable lc. We might

also be interested in accounting for any clustering effects of having women nested within districts.

In order to fit a quadratic function to age we will need to construct the variable age2 which we can

easily do by viewing the Dataset and use the variable creation tool.

63

Return to the main screen and select View from the Dataset pull-down list at the top of the page

Click on the Add Variable tab and type the following:

Here we are going to overwrite the existing dataset (at least in temporary memory) with a version in

which we have appended an additional column to it. Clicking on Create and looking at the data by

(clicking on the Data tab) below gives the following:

Here you see age2 (age2) appearing in the column on the far right. Whilst we could explore adding

further explanatory variables to this 1-level model, we are going to move straight into fitting a 2-

level model to account for districts.

4.4.3 Multilevel modelling of the data

We will now require a template that will fit a 2-level logistic regression model to our dataset. In the

earlier sections we looked at the template 2LevelMod and we will once again use it here and also

illustrate how to fit categorical predictor variables.

On the main tab, click on Choose in the Template pull down list and select 2LevelMod and click on

Use button to run this template.

Fill in the template inputs as follows:

64

Here we need to specify several extra inputs, including an input for the level 2 identifiers and also to

let the software know which predictor variables are categorical. Continue with the inputs as follows:

Clicking on Next will run the algebra system and set up code to fit the model. If we select model.txt

in the output list we will see the following:

65

Here we see the more complicated model code for this 2-level model in the left-hand pane. Note

that the lc predictor is treated as categorical and thus appears as 3 dummy variables (lc_1 – lc_3)

 If we select tau_u.xml in the output list we will see the following:

 Here we see the algorithm step for the parameter tau_u. Although most parameters in this model

are updated by Random Walk Metropolis sampling, this parameter is updated by Gibbs Sampling as

its conditional posterior distribution has a standard form.

If we now click on Run then after 52s (on a machine with Intel Core i7-3770S; this includes time for

compiling and adapting) the model will have run and if we select sigma2_u.svg we will see the

following:

66

Here we can see that convergence and mixing, for this parameter at least, are reasonable. In fact, if

we look at the diagnostic plots for the other parameters, we see similar convergence there as well.

Next we can look at ModelResults in its own tab to see the parameter estimates:

67

Here we see that beta_2 is significant and negative (and larger than beta_1) suggesting a quadratic

fit to the age predictor. As the data is centred around its mean, this implies that contraceptive use is

reduced the further from the mean age the woman is. We will look at this in more detail at the end

of the chapter.

The parameters beta_3-beta_5 are all significant, and positive (and of similar magnitude), which

suggests that women with children are more likely to use contraceptives than those without. The

parameter sigma2_u is fairly large, suggesting there are differences between districts in terms of

contraceptive use.

What is slightly disappointing here are the ESS values for all the fixed parameters. We have run each

chain, after burnin, for 2,500 iterations resulting in a total of 7,500 actual iterations (i.e. from 3

chains) but the effective sample sizes are of the order of 100-350. As this indicates, the default

algorithm in eStat – random walk Metropolis – is not very efficient for this example. We will look at

two possible solutions in the next two sections.

4.4.4 Comparison between software packages

Not all software packages fit the same MCMC algorithm for this model. So here we will show how to

fit the same model in another package, OpenBUGS, which uses a different method: namely

multivariate updating for the fixed effects in a GLMM, as developed by Gamerman (1997). This

method results in slower estimation, but, as we will see, far better ESS. We will then look at a table

comparing all the possible MCMC algorithms in the different packages for this model, which you can

verify for yourselves.

To fit the model in OpenBUGS click on the remove text next to Choose estimation engine and set-up

the model as follows:

68

Clicking on Next and Run will (after 2 min 18s on my machine) give the following, having selected

ModelResults from the drop-down box above the output pane, and opening it in a new tab:

69

Here we see far better effective sample size values, with runs of 7,500 iterations translating into ESS

values of between 2,500 and 5,500 for the beta parameters.

We can repeat this analysis using WinBUGS, JAGS and MLwiN with the same run lengths. Note for

JAGS you will need to edit the initial value files or it will not run. To do this view each in the output

window and click on the Edit button. If you change the value for beta_2 (the fixed effect associated

with age2) from 0.1 to 0.0 in all three initial values files and click Save each time then JAGS should

run. It should also be noted here that results may vary a little if you have different versions of the

third party software packages or have changed options in them.

We could also fit the model using the MCMCglmm package in R, although here we would need to

run a single chain and logistic regression models for binary data are the one GLMM where the

answers can be a little different as it assumes over-dispersion which is inappropriate in this case.

The table overleaf1 details the results of fitting many of these options:

1 This particular comparison used WinBUGS 1.4.3, OpenBUGS 3.2.3, JAGS 3.4.0, MLwiN 2.34, all run on
Windows 64-bit machine with Intel Core i7-3770S; eStat times are of the form: including compiling time
(excluding compiling time).

70

Para-

meter

eStat WinBUGS OpenBUGS JAGS MLwiN eStat

orthogonal

Beta0 -0.761(0.183) -0.789(0.170) -0.790(0.173) -0.776(0.177) -0.835(0.170) -0.784(0.180)

Beta0

ESS

92 396 2595 255 93 979

Beta1 0.0076(0.0097) 0.0068(0.0090) 0.0066(0.0091) 0.0069(0.0090) 0.0050(0.0089) 0.0068(0.0096)

Beta1

ESS

183 951 5031 550 247 1792

Beta2 -0.0049(0.00074) -0.0048(0.00072) -0.0048(0.00073) -0.0048(0.00071) -0.0047(0.00071) -0.0048(0.00073)

Beta2

ESS

319 1286 5057 926 315 1799

Beta3 0.761(0.164) 0.779(0.160) 0.782(0.162) 0.778(0.163) 0.799(0.162) 0.779(0.165)

Beta3

ESS

227 1117 5291 630 268 1686

Beta4 0.809(0.192) 0.822(0.181) 0.826(0.186) 0.818(0.188) 0.856(0.183) 0.823(0.190)

Beta4

ESS

169 780 5181 477 196 1726

Beta5 0.805(0.192) 0.824(0.180) 0.828(0.184) 0.817(0.187) 0.863(0.177) 0.823(0.191)

Beta5

ESS

114 547 4443 329 131 1666

Sigma2u 0.320(0.099) 0.318(0.100) 0.317(0.100) 0.317(0.100) 0.328(0.103) 0.322(0.101)

Sigma2u

ESS

807 1764 1753 1445 733 756

Pd 42.96 42.44 42.66 42.16 43.08 43.21

DIC 2394.03 2393.36 2394.0 2393.39 2393.65 2394.51

Time (s) 40 (24) 195 138 176 7 36 (22)

In summary we see that MLwiN is by far the fastest of the packages, with eStat quicker than the

other three as well. Both MLwiN and eStat use the simple random walk Metropolis algorithm, which

is not the best method for this model and gives fairly poor ESS. Interestingly, both WinBUGS and

OpenBUGS use the Gamerman method, but in this case OpenBUGS performs better in terms of time

taken and ESS. This is somewhat puzzling as when each is run with a single chain, their performance

is almost identical. Finally, for this example, JAGS has a similar speed intermediate to the two BUGS

packages but its performance is relatively disappointing with regard ESS; however, there have been

many comparisons between JAGS and BUGS for different models, and which method is better varies

from model to model, so we shouldn’t dismiss it based on just this one example. The final column

shows another eStat method which we will discuss next.

71

4.4.5 Orthogonal parameterisation.

The reason eStat (and MLwiN) perform badly in terms of ESS in this instance is that they are

performing single-site updating, and the parameters are correlated. So here we will consider a

reparameterisation method that aims to fit parameters that are less correlated, and then translates

them back to the original parameters. For this we construct a set of orthogonal vectors from the

original predictor variables (see Browne et al. 2009 for details).

We will therefore now look at the NLevelOrthogParamRS template in order to use orthogonalisation

on our model. This template actually fits a larger family of models: those with any number of higher

levels/classifications (hence ‘NLevel’), allowing for the possibility of random slopes at each of these

levels (hence ‘RS’), and so our 2-level random intercept model is perhaps the simplest case that the

template fits.

Click on the Template pull down list and click Choose then select NLevelOrthogParamRS from the

template list.

Click on Use and fill in the template inputs as follows:

Giving a name for the results and clicking on Next and selecting equation.tex in the pull down list

(we’ve opened it in a new tab) will show the following:

72

Here we see that the model code is actually fitting a different set of predictors, each with the prefix

‘orth’ and a corresponding set of coefficients. There is then a set of deterministic statements that

translate these coefficient values to the coefficient values for the original predictors (again, see

Browne et al. (2009) for details)

Clicking on the Run button will run the model (which took 36s on this particular machine, including

compiling), after which selecting ModelResults from the pull down list, and popping out into a new

tab, gives the following:

73

The estimates, their ESS, and the time taken to run the model are all added to the end of the

software comparison table we looked at above. It indicates that, compared to the other method we

employed to fit the model in eStat, there is no obvious overhead incurred when performing the

orthogonalising algorithm, and it is much faster than OpenBUGS, and the ESS are now much better

(if still not as good as OpenBUGS). We therefore have two ways of fitting the model that are

reasonably comparable in terms of ESS/s, with little to choose between them. This orthogonalising

approach is also available in MLwiN: this will be faster again, and should have similar ESS to the

method in eStat, and therefore may be the best overall in terms of ESS/s, but we leave this for the

reader to investigate.

4.4.6 Predictions from the model

When we ran this model we discussed some interpretation of the fit, but it would be nice to plot

some predictions from the model as well. In this latest version of Stat-JR we have added the option

to store predictions when fitting the model. So hopefully in the last model fit you will have ticked yes

to the generate prediction dataset question. This will generate a new dataset named

prediction_datafile which contains the original data and several prediction columns formed from the

model fit.

To use this dataset we need to select Choose on the dataset list and select prediction_datafile from

the list and click Use.

In fact the dataset has a full prediction column called pred_full but this also contains the district

random effects. We would here like to simply predict from the fixed part of the model so we can

construct the variable pred_fixed as follows:

Click on View from the Dataset menu, then choose Add variable, and input the new variable

pred_fixed as indicated below.

Click on Create to create the variable

74

This has created a variable on the fixed predictor scale but as we are fitting a logistic regression we

need to take an anti-logistic transform to convert these predictions to probabilities. This can be done

by creating another column in the dataset as shown below:

In order to plot separate fitted curves for the various numbers of living children we can use the

template XYGroupPlot as shown below:

Clicking on Run and popping out graphxygroup.svg gives the following:

75

Here we see the four curves (although three of them are very close together) which clearly showing

that the women with children have higher probabilities of using contraceptives, and that the peak

for each group is around the average age of the sample, as discussed earlier.

Hopefully this section has shown firstly that Stat-JR can fit models other than Normal response

models; in fact there are a vast number of model templates which fit lots of other model classes.

Secondly, we hope we’ve shown its utility in terms of comparing model-fitting across different

software packages for different models, accessing each from a common hub.

4.5 Miscellaneous other topics e.g. Data Input/Export
Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in

the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user

name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black

bar at the top of the browser window in the TREE interface).

If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >

Upload (menu options in the black bar at the top of the browser window), which will upload it into

the temporary memory cache, or by (ii) saving your dataset in the StatJR\datasets folder, and then

selecting Debug > Reload datasets (again, accessible via the black bar at the top of the browser

window). If, instead, you have it (iii) saved as a .txt file, you can use Stat-JR's LoadTextFile template

76

to save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user

to specify more particulars, and can also handle string variables).

In the case of options (i) and (iii) the dataset will be available for use in the current session, but you

then need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the

StatJR\datasets folder) for use in the future sessions too.

So, via option (iii) (and downloading), Stat-JR will save your dataset as a .dta file, but you can also

create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

5 References

Brooks, S.P. and Gelman, A. (1998) General Methods for Monitoring Convergence of Iterative
Simulations. Journal of Computational and Graphical Statistics, 7: 434-455.

Browne, W.J. (2012) MCMC Estimation in MLwiN, v2.26. Centre for Multilevel Modelling, University
of Bristol.

Browne, W.J., Steele F., Golalizadeh, M., and Green M.J. (2009) The use of simple
reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel
models with applications to discrete time survival models Journal of Royal Statistical Society, Series
A. 172: 579-598

Gamerman, D. (1997). Sampling from the posterior distribution ingeneralized linear mixed models.
Statistics and Computing, 7, 57-68.

Gelfand, A.E., Hills, S.E., Racine-Poon, A. and Smith, A.F.M. (1990). Illustration of Bayesian inference
in Normal data models using Gibbs Sampling. Journal of the American Statistical Association, 85:972-
985.

Lillard, L.A. and Panis C.W.A. (2003) aML Multilevel Multiprocess Statistical Software, Version 2.0.
EconWare, Los Angeles, California.

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling

framework: concepts, structure, and extensibility. Statistics and Computing, 10: 325--337.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique, and

future directions, Statistics in Medicine, 28, 3049-3067.

Plummer, Martyn (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs

Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC

2003), March 20–22, Vienna, Austria. ISSN 1609-395X.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

Rasbash, J., Charlton, C., Browne, W.J., Healy, M. and Cameron, B. (2009). MLwiN Version

2.1. Centre for Multilevel Modelling, University of Bristol.

77

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002). Bayesian measures of model

complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64: 191-232.

78

6 Appendix: List of Third Party Software that are used by Stat-

JR

Stat-JR makes use of several third party software products that are included within the distributed

code or (in the case of MinGW) need to be downloaded separately. These software products each

have a license file that can be viewed from the links in the table below and/or in the licences

subdirectory of the installed code.

Package Link Licence terms

beautifulsoup http://bazaar.launchpad.

net/~leonardr/beautifuls

oup/bs4/view/head:/COP

YING.txt

MIT

BLAS http://www.netlib.org/blas/

faq.html#2

Own licence

(Netlib)

Bootstrap https://github.com/twitter/b

ootstrap/blob/master/LICE

NSE

MIT

cssselect http://www.opensource.or

g/licenses/bsd-

license.php

BSD

cx_freeze http://cx-

freeze.readthedocs.org/e

n/latest/license.html

PSF

cycler https://opensource.org/li

censes/BSD-3-Clause

BSD

dateutil http://opensource.org/lic

enses/BSD-2-Clause

Simplified BSD

decorator https://micheles.googlec

ode.com/hg/decorator/d

ocumentation.html#licen

ce

BSD

keepalive https://github.com/wikie

r/keepalive/blob/master/

LICENSE

LGPL

html5lib https://github.com/html5

lib/html5lib-

python/blob/master/LICE

NSE

MIT

isodate http://www.opensource.or

g/licenses/bsd-

license.php

BSD

jqgrid http://www.trirand.com/

blog/?page_id=87

Dual MIT/GPL(v2)

jquery http://jquery.org/license MIT

http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
http://www.trirand.com/blog/?page_id=87
http://www.trirand.com/blog/?page_id=87

79

jquery-cookie https://github.com/carhartl

/jquery-

cookie/blob/master/jquery.

cookie.js

MIT

jQuery File

Upload

http://opensource.org/lic

enses/MIT

MIT

jQuery text align http://www.opensource.or

g/licenses/bsd-

license.php

BSD

jquery-treeview https://github.com/jzaeffer

er/jquery-treeview

Dual MIT/GPL

jquery-ui http://jquery.org/license MIT

jQuery-xpath http://opensource.org/lic

enses/MIT

MIT

LAPACK http://www.netlib.org/lapa

ck/LICENSE.txt

Modified BSD

lxml http://lxml.de/index.html#li

cense

BSD

mako http://www.opensource.or

g/licenses/mit-license.php

MIT

markupsafe http://www.opensource.or

g/licenses/bsd-

license.php

BSD

MathJax http://cdn.mathjax.org/mat

hjax/2.0-latest/LICENSE

Apache

matplotlib http://matplotlib.sourcefor

ge.net/users/license.html

Modified BSD

MinGW http://www.mingw.org/lice

nse

Not distributed with

software directly

networkx http://networkx.github.io/d

ocumentation/developme

nt/reference/legal.html

BSD

numexpr http://www.opensource.or

g/licenses/mit-license.php

MIT

numpy http://numpy.scipy.org/lice

nse.html#license

BSD

pandas http://pandas.pydata.org/p

andas-

docs/stable/overview.html

#license

Modified BSD

patsy https://github.com/pydata/

patsy/blob/master/LICEN

SE.txt

BSD

ply http://www.dabeaz.com/

ply/README.txt

BSD

prov https://github.com/trung

dong/prov/blob/master/L

ICENSE

MIT

provpy http://opensource.org/lic

enses/BSD-2-Clause

BSD

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://www.dabeaz.com/ply/README.txt
http://www.dabeaz.com/ply/README.txt
https://github.com/trungdong/prov/blob/master/LICENSE
https://github.com/trungdong/prov/blob/master/LICENSE
https://github.com/trungdong/prov/blob/master/LICENSE
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause

80

pyparsing http://www.opensource.or

g/licenses/mit-license.php

MIT

pyquery http://www.opensource.or

g/licenses/bsd-

license.php

BSD

Python http://docs.python.org/lice

nse.html

PSF

pytz https://pypi.python.org/py

pi/pytz/

MIT

rdflib http://www.opensource.or

g/licenses/bsd-

license.php

BSD

reset-fonts-grids http://yuilibrary.com/licens

e/

BSD

scipy http://www.scipy.org/Licen

se_Compatibility

BSD

setuptools http://docs.python.org/lice

nse.html /

PSF

six https://bitbucket.org/gut

worth/six/src/e3da7fd96

039a6ed89493f89d121c4

f3797e6713/LICENSE?at=

default

MIT

sparqlwrapper http://www.w3.org/Cons

ortium/Legal/2002/copyri

ght-software-20021231

W3C

statsmodels https://github.com/stats

models/statsmodels/blob

/master/LICENSE.txt

Modified BSD

tinymce https://github.com/tinym

ce/tinymce/blob/master/

LICENSE.TXT

LGPL

weave http://projects.scipy.org/sc

ipy/browser/trunk/Lib/wea

ve/LICENSE.txt?rev=151

1

BSD

web.py https://github.com/webpy/

webpy/blob/master/LICEN

SE.txt

PSF

http://yuilibrary.com/license/
http://yuilibrary.com/license/
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT

	1. About Stat-JR
	1.1 Stat-JR: software for scaling statistical heights.
	1.2 About the Beginner’s guide

	2 Installing and Starting Stat-JR
	2.1 Installing Stat-JR
	2.2 The use of third party software and licenses
	2.3 Starting up TREE

	3 Quick-start guide
	3.1 Stage 1: Selecting a template & dataset
	3.2 Stage 2: Providing template-specific input
	3.3 Stage 3: Outputting the files to run the desired execution
	3.4 Stage 4: Running the execution
	3.5 Stage 5: The results

	4 A detailed guide with worked examples
	4.1 The structure and layout of the TREE interface
	4.2 Application 1: Analysis of the tutorial dataset using the eStat engine
	4.2.1 Summarising the dataset and graphs
	4.2.2 Single-level Regression
	4.2.3 Multiple chains
	4.2.4 Adding gender to the model
	4.2.5 Including school effects
	4.2.6 Caterpillar plot

	4.3 Interoperability – a brief introduction
	4.3.1 So why are we offering Interoperability?
	4.3.2 Regression in eStat revisited
	4.3.3 Interoperability with WinBUGS
	4.3.4 Interoperability with OpenBUGS
	4.3.5 Interoperability with JAGS
	4.3.6 Interoperability with MLwiN
	4.3.7 Interoperability with R
	4.3.8 Interoperability with AML

	4.4 Application 2: Analysis of the Bangladeshi Fertility Survey dataset
	4.4.1 The Bangladeshi Fertility Survey dataset
	4.4.2 Modelling the data using logistic regression
	4.4.3 Multilevel modelling of the data
	4.4.4 Comparison between software packages
	4.4.5 Orthogonal parameterisation.
	4.4.6 Predictions from the model

	4.5 Miscellaneous other topics e.g. Data Input/Export

	5 References
	6 Appendix: List of Third Party Software that are used by Stat-JR

