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1. About Stat-JR 

1.1 Stat-JR:  software for scaling statistical heights. 
 

The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an 

increase in the availability and complexity of data sources, and an increase in the sophistication of 

statistical methods that can be used. For the novice practitioner of statistical modelling it can seem 

like you are stuck at the bottom of a mountain, and current statistical software allows you to 

progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR 

package is to assist practitioners in making their initial steps up the mountain, but also to cater for 

more advanced practitioners who have already journeyed high up the path, but want to assist their 

novice colleagues in making their ascent as well. 

 

One issue with complex statistical modelling is that using the latest techniques can involve having to 

learn new pieces of software. This is a little like taking a particular path up a mountain with one 

piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of 

statistical model), and then having to descend again and take another path, with another piece of 

software, all the way up again to eventually get there, when ideally you’d just jump across!  In Stat-

JR we aim to circumvent this problem via our interoperability features so that the same user 

interface can sit on top of several software packages thus removing the need to learn multiple 

packages. To aid understanding, the interface will allow the curious user to look at the syntax files 

for each package to learn directly how each package fits their specific problem. 

 

To complete the picture, the final group of users to be targeted by Stat-JR are the statistical 

algorithm writers. These individuals are experts at creating new algorithms for fitting new models, or 

better algorithms for existing models, and can be viewed as sitting high on the peaks with limited 

links to the applied researchers who might benefit from their expertise. Stat-JR will build links by 

incorporating tools to allow this group to connect their algorithmic code to the interface through 

template-writing, and hence allow it to be exposed to practitioners. They can also share their code 

with other algorithm developers, and compare their algorithms with other algorithms for the same 

problem. A template is a pre-specified form that has to be completed for each task: some run 

models, others plot graphs, or provide summary statistics; we supply a number of commonly used 

templates and advanced users can use their own – see the Advanced User’s Guide. It is the use of 

templates that allows a building block, modular approach to analysis and model specification. 

 

At the outset it is worth stressing that there a number of other features of the software that should 

persuade you to adopt it, in addition to interoperability. The first is flexibility – it is possible to fit a 

very large and growing number of different types of model. Second, we have paid particular 

attention to speed of estimation and therefore in comparison tests, we have found that the package 

compares well with alternatives. Third it is possible to embed the software’s templates inside an e-

book which is exceedingly helpful for training and learning, and also for replication. Fourth, it 

provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain 

Monte Carlo procedures for calculating model estimates and functions of model estimates, via its   

eStat engine. The eStat engine is a newly-developed estimation engine with the advantage of being 

transparent in that all the algebra, and even the program code, is available for inspection.  
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While this is a beginner’s guide – it is a beginner’s guide to the software. We presume that you have 

a good understanding of statistical models which can be gained from for example the LEMMA online 

course (http://www.bristol.ac.uk/cmm/learning/online-course/index.html) . It also pre-supposes 

familiarity with MCMC estimation and Bayesian modelling – the early chapters of Browne (2012) 

available at http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-

33/mcmc-web.pdf provide a practical introduction to this material.  

 

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in 

Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this 

software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of 

the Stat-JR community: either through the creation of your own templates that can be shared with 

others, or simply by providing feedback on existing templates. 

 

Happy Modelling, 

 

The Stat-JR team. 

  

http://www.bristol.ac.uk/cmm/learning/online-course/index.html
http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-33/mcmc-web.pdf
http://www.bristol.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-33/mcmc-web.pdf
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1.2 About the Beginner’s guide 
 

We have written three initial guides to go with the software: this Beginner’s Guide will cover how to 

start up and run the software, with a particular focus on the TREE (Template Reading and Execution 

Environment) interface. It will provide some simple examples and is designed for the researcher who 

wishes to be able to use the software package without worrying too much about how the 

mathematics behind the modelling works. As such, it does not go into detail on how users can 

contribute to extending the software themselves: that is covered in the second, Advanced User’s, 

guide, designed for those who want to understand in greater detail how the system works. There is 

also a third, E-book User’s, guide which deals with the software’s alternative DEEP (Documents with 

Embedded Execution and Provenance) E-book interface. 

As well as these three Guides, we also publish support, such as answers to frequently asked 

questions, on our website ( http://www.bristol.ac.uk/cmm/software/statjr), where you can also find 

our forum in which users can discuss the software. 

In this Beginner’s Guide we first describe how to install Stat-JR, and then provide a ‘Quick-start’ 

guide as a quick visual overview, with brief notes, of the basics of how to work with Stat-JR via TREE. 

There then follows more detailed sections which provide further explanation, together with point-

and-click examples for you to work through. 

We look at an example application taken from education research, fitting a Normal response model 

for a continuous outcome. Here our aim is more to illustrate how to use the software than primarily 

how to do the best analysis of the dataset in question, and we will demonstrate the interoperability 

features with the other software packages that link to Stat-JR as well. We will then look at a second 

example from demography that illustrates binomial response models for a discrete outcome.  

2 Installing and Starting Stat-JR 

2.1 Installing Stat-JR  
 

Stat-JR has a dedicated website (http://www.bristol.ac.uk/cmm/software/statjr) from which you can 

request a copy of the software, and which contains instructions for installation. 

 

2.2 The use of third party software and licenses 
 

Stat-JR is written primarily in the Python package but also makes use of many other third party 

software packages. We are grateful to the developers of these programs for allowing us to use their 

products within our package. When you have installed Stat-JR you will find a directory entitled 

licences in which you can find subdirectories for each package detailing the licensing agreement for 

each. The list of software packages that we are using can be found in the Appendix to this document. 

 

http://www.bristol.ac.uk/cmm/software/statjr
http://www.bristol.ac.uk/cmm/software/statjr
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2.3 Starting up TREE 
 

Stat-JR’s interface is viewed and operated via a web browser, but it is started by running an 

executable file. 

To start Stat-JR select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the 

start up menu. This action opens a command prompt window in the background to which 

commands are printed out. This window is useful for viewing what the system is doing: for example, 

on the machine on which we have run TREE, you can see commands like the following: 

WARNING:root:Failed to load package GenStat_model (GenStat not found) 
WARNING:root:Failed to load package Minitab_model (Minitab not found) 
WARNING:root:Failed to load package Minitab_script (Minitab not found) 
WARNING:root:Failed to load package SABRE (Sabre not found) 
http://0.0.0.0:55534/ 
 

The most important command when starting up is the final line (the precise five-digit number 

written out towards the end of the line will likely differ, though). This only appears when the 

program has successfully performed all its initial set-up routines. This may take a while, particularly 

the first time you use the program. You should then be able to view the start page of TREE in your 

browser; if you can’t, then try refreshing the browser window, or typing localhost:55534 (in this 

example) into the address bar. The lines such as WARNING:root:Failed to load package GenStat 

model (GenStat not found) are not necessarily problematic but are warning you that the Genstat 

statistical package has not be found and loaded on your particular machine. 
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3 Quick-start guide 
This section provides an overview ‘quick-start’ guide to using Stat-JR, via the TREE application; for 

more detailed instructions, together with worked point-and-click examples, see later sections. We’re 

assuming you’ve installed Stat-JR, and can see the opening page of the TREE application in your 

browser (see Section 2). 

When operating Stat-JR through TREE, you generally proceed through the following five stages: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stat-JR writes commands, 

etc., to perform 

requested function on 

dataset (displayed in 

browser window / 

available for download) 

Template 

Dataset 

Stat-JR 

prompts user 

for input 

needed by 

template to 

perform 

function 

Function 

performed 

(If applicable) 

external 

software 

opened, run, 

then closed, 

with results 

returned to 

Stat-JR. 

Results of function 

produced (displayed 

in browser window / 

available for 

download) 

(If applicable) results outputted as dataset… 

Equations 

(LaTeX) Scripts 

Macros 

1 4 

 

2 3 5 

Stage 1. Firstly, choose the 

dataset you want to analyse / plot 

/ summarise / etc., and the 

template you want to use to do 

so. Each template contains 

commands to perform certain 

functions: some run models, 

others plot graphs, or provide 

summary statistics, and so on… 

Stage 2. You will be asked for 

further template-specific input: 

e.g. which variables from your 

dataset you would like to include 

in your model / which variables 

you would like to plot / 

summarise / etc. 

Stage 3. Once you’ve answered 

all the input queries, Stat-JR 

generates all the commands, 

scripts, macros, equations, and 

instructions necessary to 

perform, or describe, the 

function you’ve requested. You 

can view these within TREE, and 

can download them too… 

 

Stage 4. Stat-JR then runs 

these commands / scripts / 

macros, employing 

externally-authored 

software (e.g. R, MLwiN, 

WinBUGS, SPSS, Stata, etc.), 

or in-house software (such 

as the eStat engine), as 

appropriate. 

 

Stage 5. Finally, the results are returned; 

depending on the template these can 

include model estimates, graphs, 

summary tables, and so on. Again, these 

can be viewed within TREE, and are also 

downloadable. The output may also 

include datasets (e.g. MCMC chains), 

which you can then feed back into the 

system by matching them up with a 

template back in Stage 1. 

 

 

myModel<- glm(normexam~ 
Summary(myModel) 
plot(myModel,1) 

Point & click 

instructions 

Select Open Worksheet 
Select datafile.dta 

Select Equations  from Fi  

Results 

tables 

Charts 

Results 

Model: 
DIC: 9766.506 

Parameters: 
Beta1: 0.594 
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Below we briefly highlight the main features, with screenshots, of each of these five stages. 

3.1 Stage 1: Selecting a template & dataset 
 On opening Stat-JR, the page below, containing introductory information, will be displayed 

in a web browser. To proceed to choosing a template and dataset, click on the Begin button. 

 

 

 

 

 

 Having pressed Begin, the page below will be displayed. Note that here, and on other 

screens, wherever you see the question mark symbols, context-specific help is revealed if 

you hover your cursor over them. Hover-over help can appear elsewhere too: e.g. describing 

the options along the top navigation bar. 

 Here you can specify the template and dataset you want to use, and then begin to specify 

your inputs. 

 Selecting Dataset > Choose or Template > Choose from the top bar will reveal lists of 

available datasets and templates. For each, find the one you want from the list, and then 

press Use. 

 Note, when choosing a template, you can use the cloud terms to help your search: the blue 

tags describe functional aspects of the templates, whilst the red terms describe which 

engines / packages the templates support (you can combine search terms by clicking on 

more than one, and cancel your selections by pressing [reset]). 

A link to the Stat-JR webpages 

which contain further support, 

including frequently asked 

questions & a user forum 

Click here to progress to the 

next screen where you can 

choose a template & dataset, 

and can start specifying your 

inputs… 

This link, available on all subsequent pages 

of TREE too, allows you to change settings 

such as paths to data and template folders, 

paths to interoperating software, and 

optimisation settings for generated code. 

If you have modified any files in the 

templates, datasets or packages 

folders, then you can reload their 

contents into the current session via 

the Debug menu here, which is also 

available on all subsequent pages of 

TREE. 
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Wherever you see these 

(question mark) symbols, 

context-specific help is revealed 

if you hover your cursor over 

them. Hover-over help can 

appear elsewhere too: e.g. 

describing the options along the 

top navigation bar. 

You can select one 

or more of these 

terms to help you 

find relevant 

templates; the blue 

tags describe the 

functional aspects 

of a template, 

whilst the red terms 

describe the 

engines / packages 

supported by a 

template. To 

unselect terms, 

press [reset] 

Here you can see which dataset and template are currently selected. Hovering 

your cursor over these names will reveal a description of each (if available). 

…and likewise for 

the Template… 

Clicking on the down arrow symbol just to the right of the Dataset heading in 

the top bar will bring up a menu. Select Choose to bring up the window, 

below, allowing you to nominate a dataset other than that currently 

selected… 

Clicking the ‘label’ symbol 

brings up a list of tags, whilst 

clicking the ‘cog’ symbol brings 

up a list of supported engines / 

packages. 
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3.2 Stage 2: Providing template-specific input 
 Once your desired Dataset and Template is selected, you can start answering the input 

questions back on the main page. These are required by Stat-JR to allow the template to 

perform the appropriate executions with your dataset; these inputs vary between 

templates, and also within templates too, depending on your earlier choices as you progress 

through the screens. 

 For multi-choice lists you can de-select variables by simply clicking on their name in the list 

of selected items. 

 Press Next each time you’ve completed the input questions on the current page. 

 Then, if applicable, more inputs will be revealed, and those you have already selected will be 

greyed-out. However, you can still change each input via the remove button which you’ll see 

next to each one. Alternatively, to re-specify all your inputs, press Start again (in the top 

bar). 

 When asked for the Name of the output results, this will be the name given to any 

outputted dataset which results from running the template (see Stage 5). 

 

 

 

  

Choose your 

inputs 
Once you’re 

happy with your 

choices, press 

Next… 
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For multi-select lists, 

you can de-select 

variables by clicking 

on their name here 

You can remove 

specific inputs via 

these buttons 

here 

Again, once you’re 

happy with your 

inputs, press Next 

As you progress through the screens, you can 

see your choices reflected in the input string 

and the RunStatJR command, at the bottom; a 

record of your inputs is also kept under 

Template > Set inputs (via the black bar at 

the top), allowing you to automatically 

populate the inputs boxes with your previous 

choices (see later section); the RunStatJR 

command, on the other hand, can be used to 

call Stat-JR via a command line 

If, at any point, 

you want to re-

specify all your 

inputs, then 

press Start 

again 

This is the name given to any 

outputted dataset (e.g. MCMC 

chains produced by the model run) 

(We’ve skipped a 

screen or two where 

we were asked about 

this input – some 

have default values, 

and we’ve changed a 

few…) 

We’ve now 

completed all the 

inputs, and so we 

press Next for the 

final time… 
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3.3 Stage 3: Outputting the files to run the desired execution  
 Once you’re pressed Next after the final input, Stat-JR returns a number of initial outputs 

which you can view in the output pane at the bottom of the window. 

 Note that Stat-JR hasn’t done everything you want it to do yet: it’s just producing 

preliminary files telling you what it’s going to do, and how it’s going to do it. 

 To select particular content to view in the output pane, use the drop-down menu just above 

it. 

 The Popout button, just above the output pane, allows you to view its contents in a new 

browser tab. 

 Pressing Run performs the executions described by the scripts, etc, returned in the output 

pane. 

 

 

  

Press Run to perform the executions… 

You can choose what to view in the 

output panel (here we’ve chosen to 

view the equation for the model we’ve 

specified), via this selection box 

Via the Edit button, you can 

directly edit scripts and macros, 

e.g.to change model specification, 

plot characteristics, etc… 

Click here to view the contents of the output pane, below, 

in a new browser tab… 
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3.4 Stage 4: Running the execution  
 Once you’re pressed Run, the executions specified by you are peformed. 

 Depending on your choices, this may take anything from a second or two (e.g. to produce a 

simple plot, fit a model using a non-iterative method of estimation, produce summary data, 

etc.), to many minutes (e.g. to run MCMC chains for a large number of iterations). 

 If appropriate (e.g. if the template supports inter-operability, and if you have chosen to 

employ it when prompted), externally-authored software packages (e.g. R, MLwiN, 

WinBUGS, SPSS, etc.) are opened, run, then closed, and the results are returned to Stat-JR. 

 Whilst the execution runs, you may see a lot of activity in the black command window, 

which may help you keep a track of progress. 

 

  

You may see a 

lot of activity 

in the 

command 

window as the 

execution is 

performed… 

Whilst it performs these executions, 

the progress gauge indicates that 

Stat-JR is still working… 
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3.5 Stage 5: The results 
 Once the executions have run, the progress guage, in the top-right corner, will change 

from “Working” to “Ready”, and the drop-down list, just above the output pane, will 

now be populated with more results. 

 Depending on the template, a range of buttons / boxes appear above the output pane 

allowing you to e.g. Download the results, Add to ebook, and run chains for Extra 

iterations. 

 If applicable, an outputted dataset now appears in the list of datasets (see Dataset > 

Choose, via the top bar). 

 

This ends the quick start guide. In the next chapter we describe the operation of TREE in more detail, 

and work through examples. 

  

Here you can add, to an 

eBook, the inputs you have 

just entered, the details of the 

template and dataset you 

have just chosen, and the 

outputs you would like to be 

displayed… 

You can Download 

results, and run for 

Extra iterations … 

The results (e.g. plots, model estimates, etc.) are 

added to the list of outputs; here we’ve chosen to 

display a summary table of results… 

The outputted dataset (which we 

earlier chose to call ‘my_output’) 

will now appear in the list of 

datasets (see Dataset > Choose) 

allowing us to investigate it 

further by matching it up with 

another template … 

Stat-JR indicates it has finished running 

these executions, by being “Ready” again… 
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4 A detailed guide with worked examples 

4.1 The structure and layout of the TREE interface 
 

Stat-JR can be thought of as a system that manages the use of a set of templates written either by 

the developers, and supplied with the software, or by users themselves. Each template will perform 

a specific function: for example, fitting a specific family of models, summarising a dataset, or plotting 

a graph. The Stat-JR system therefore allows the user to select and use specific templates with their 

datasets, and to capture and display the outputs that result. 

Returning to our start-up of the software, when the line  http://0.0.0.0:50215/ appears, and after 

refreshing the web browser, the browser window should appear as follows: 

 

This is the start screen for the TREE interface to Stat-JR, and contains information on funders, 

authors, and a link to the Stat-JR website which contains further guidance, such as answers to 

frequently asked questions, and a user forum. 

Pressing Begin returns the following screen: 

 

At the top you’ll see a black title bar. From left to right, this contains: 

 a link (Stat-JR:TREE) back to the opening page; 
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 an option (Start again) to clear all inputs the user has chosen for the current template; 

 

 a Dataset menu allowing the user to choose, drop (from temporary memory cache), return 

summary statistics for the current dataset, view (the entire dataset; see below), return a list 

of datasets, upload / download (see Section 4.5) datasets. For example, selecting Dataset > 

Choose returns a scrollable list of all the datasets that the system is aware of: i.e. those 

which appear in the datasets subdirectory of this installation of Stat-JR. This pane can be 

used to change the selected dataset via the Use button; for inputting your own data set you 

can use the Upload button. 

 

 the name of the currently-selected dataset (in the grey box) – if you hover your cursor over 

this name, it returns a textual description of the dataset; 

 

 a Template menu allowing the user to choose, list (described below), upload individual 

templates not already uploaded in the current session or set the template inputs as a list. If 

you select Template > Choose, a box appears which contains a scrollable list of all the 

templates that the system is aware of: i.e. those which appear in the templates subdirectory 

of this installation of Stat-JR. This can be used to change the selected template via the Use 

button. As we anticipate there being many templates, each template has defined ‘tags’ 

which are terms to describe what it does. These appear as blue phrases in the ‘cloud’ above 

the list of templates, whereas the estimation engines supported by each template appear in 

the cloud in red. When you select a template, its name and description appear to the right of 

the list. Clicking on the symbol that looks like a baggage label returns the tags for that 

template, whereas clicking on the ‘cog’ symbol returns a list of engines that particular 

template supports; 

 

 the name of the currently-selected template (in the grey box) – again, if you hover your 

cursor over this name, it also returns a description of the template; 

 

 a progress gauge indicating whether Stat-JR is “Ready”, “Working”, “Idle” or whether it has 

encountered an “Error”; 

 

 a link to a page containing options to change a variety of Settings (discussed further below); 

 

 a Debug button; this produces a drop-down list from which one can choose to reload the 

templates, datasets or packages, allowing users upload changes to files they make outside 

the TREE interface, without having to start-up Stat-JR again. For example, a user could paste 

a new dataset into the datasets directory, or modify a template in the templates directory, 

and reload them so that they appear in their lists in the browser window. 

 

The Settings window, accessible via the black title bar, displays a number of settings that the 

program uses with each possible software package: some of these are relatively straightforward, 

such as where the executables for each package are found, and some are relatively advanced, such 

as for the eStat engine, optimisation, starting values and standalone code options. 
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We will now look at The View dataset window: 

Select Dataset > Choose from the menu in the black title bar. 

Scroll down the dataset list, towards the bottom, and click on rats; its name and description will 

appear to the right of the list. 

Click on the Use button, and the name of the current dataset (in the grey box in the black title bar at 

the top) should have changed accordingly. 

Select Dataset > View; this will open a new tab in your browser: if you click on this you will be able 

to see the dataset we have just selected, as follows: 

 

The rats dataset is a small, longitudinal animal growth dataset which contains the weights of 30 

laboratory rats on 5 weekly occasions from 8 days of age (see Gelfand et al (1990) for more details).  

The five measurements are labelled y8, y15, y22, y29 and y36, respectively, and the dataset also 

contains a constant column – a set of 1’s,named cons, and a rat identifier column, rat. Initially, we 

are going to perform a regression analysis of the initial weight (y8) on the final weight (y36), 

including an intercept (cons). The boxes above the data allow the user to quickly add a new variable 

or delete an existing variable from the dataset. We can also view a summary of the dataset: 

To view a summary of the dataset, click on the Summary tab in the tabs above the data and the 

screen will look as follows:  
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Here we get a very short summary of the dataset, giving, for each variable, the minimum value, 

maximum value, mean and standard deviation. If the dataset has had descriptions added or has 

categorical variables then they will appear in the last two columns. More extensive summaries are 

available by using specific templates to summarise datasets, as we will see later.  

 

Let’s now look at the Template menu:  

 

Back on the main page, if you click on Template > List the following screen will appear in a new tab: 
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This rather busy screen (we don’t reproduce it all here, due to its length) contains, in the two 

columns on the left, a tabular list of all the templates that are available with a short description of 

what each template does. The other three columns are of more interest to advanced users, but 

contain a list of functions in the template code, tags that identify the template type, and the engines 

that are supported by the template. 

We will next demonstrate running a template, using the default Regression1 template that fits a 1-

level Normal response regression model, this is appropriate as the response, the weights of the rats, 

is a continuous measure  

 

Return to the main menu screen, which should look as follows: 

 

 
 

In the middle of the screen you can see the inputs required for this template (these are template-

specific, and may change when you use a different template).  Since some inputs are conditional (i.e. 

are only required when earlier inputs take specific values), the opportunity to specify inputs 

proceeds through sequential steps. Here we see the two initially-required inputs for the Regression1 

template are the Response variable and Explanatory variables.  Since this template only allows for 1 

response variable to be specified, a pull-down list is displayed, but since it allows for several 

explanatory variables to be specified, a multiple selection list is displayed for that input. In the case 

of the latter, variables are selected by clicking on their name in the left-hand list; to de-select them, 

click on their name in the right-hand list. 

 

The Start again link (in the top black bar) will clear any inputs the user has already selected and 

return you  to the first template input screen (i.e. the current screen, in this case), whilst the Next 

button will allow the user to move on and specify further inputs once those on the current screen 

have all been chosen. 

 

Use the input controls and the Next button(s) to fill in the screen as follows: 
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Note that an option to remove appears next to each input previously submitted; this will remove the 

current input, but keep the other inputs you have specified (as far as it can; if they are conditional on 

the input you have removed, then they will be, out of necessity, removed too). 

 

So, here we are performing a regression of the initial weight (y8) on the final weight (y36), including 

an intercept (cons). 

 

The other inputs refer to the Monte Carlo Markov chain (MCMC) estimation procedures in Stat-JR.  

MCMC estimation methods are simulation-based, and so require certain parameters to be set. The 

methods involve taking a series of random (dependent) draws from the posterior distribution of the 

model parameters in order to summarise each parameter. The inputs required here are as follows: 

 

 the number of chains: this is the number of starting points from which we will take random 

draws; 

 random seed: the value from which random numbers are initially drawn. This allows 

repeatability, as a run using the same starting values and random seed will give the same 

answers. When multiple chains are used this seed is generally multiplied by the chain 

number to give a unique seed for each chain; 

 length of the burnin: the initial length of the chain (i.e. the number of iterations at the start) 

which are excluded from the parameter summaries (the rationale for this is explained a little 

further in the example, below, with the tutorial dataset); 

 number of iterations: the length of chain following the burnin, from which the parameter 

summaries are drawn; 

 thinning: this determines how often the values are stored: i.e. store every nth iteration. 
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By answering ‘Yes’ to the question use default algorithm settings, we have used defaults for other 

settings for which we will therefore not be prompted to complete. By answering ‘No’ to generate 

prediction dataset we have chosen not to generate a dataset of predictions from our model. By 

answering ‘Yes’ to use default starting values we have chosen not to start the chain at values of our 

choosing, instead accepting Stat-JR’s defaults.  We will discuss MCMC estimation in slightly more 

detail in the applications in the next section. The final input we’re asked for is the name of output 

results: this is the name (here we’ve chosen out) given to any dataset of parameter chains 

thatresults from running the template. 

 

You will notice, towards the bottom of the window, a box with a rather long text string labelled 

Current input string above it and another labelled as Command below it. The input string allows the 

user to specify all the inputs directly and this is done via the Set Inputs option in the Template pull 

down list, without having to point-and-click through the list as we have done. These have to be 

formatted in a certain way, however, as illustrated by the current (Input String) text string which 

Stat-JR has written for us as a result of our inputs.  

 

 
 

This (i.e. the string between, and including, the curly brackets: in this example {‘burnin’:’1000’… 

‘makepred’: ’No’} ) can be copied and pasted into the box labelled input string in the above window, 

and the Use button pressed (following any edits you would like to make to the input values), in order 

to specify inputs directly.  Alternatively one can use the history feature to revert to older inputs. 

Returning to the main window, the second text string (labelled Command) can be used by the 

command driven version of Stat-JR to perform the same operations, although we will not discuss this 

further here. 

 

Clicking on the Next button will now pre-process the template inputs, and will result in the following 

new pane at the bottom of the window: 
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The object currently specified in the pull-down list (equation.tex is selected by default here) appears 

in the pane below it. These objects are any outputs constructed by Stat-JR before and during the 

execution of the template, so here we see a nice mathematical description of the model. If we now  

select the object model.txt from the list we see a description of the regression model that we wish to 

fit in the language that is used by the eStat engine: 

 

 

 
 

At this point we haven’t actually run the template, and so the objects that can be selected from the 

pull down list are those present pre-model run, and include computer code to actually fit the model. 

 

Click the Run button to run the template. 

Once the progress gauge, towards the right of the black title bar, has changed from “Working” (blue) 

to “Ready” (green), select ModelResults from the pull-down list. 

 

The screen will then look as follows: 



22 
 

 
 

Here we see parameter estimates, along with standard deviations (SDs), as a measure of precision 

for each parameter. We will explain these further in the next section. At the top of the screen shot 

above (which is in fact the middle of the full window, vertically-speaking) we now have a few 

additional buttons. The Extra Iterations box, along with the More button, will allow us to run for 

longer (i.e. for a number of iterations additional to those we have already run for).  The Download 

button will produce a zipped file that contains a folder with files for many of the objects contained in 

the two pull-down lists whilst the Add to ebook button can be used if one wants to construct an 

ebook to be used with the DEEP eBook interface into Stat-JR. 

 

You’ll recall that we earlier named the output results ‘out’, so if we choose this from the pull-down 

list just above the output pane, we’ll be able to view it, as follows: 
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Here we see columns containing the chains of values for each parameter in the model. As well as 

being able to view this file here, it is also a dataset (stored in temporary memory) and so will appear 

in the dataset list (at least for the duration of our current session using the software) accessible via 

the Dataset menu in the top title bar (emboldened to indicate that it has been created in this run of 

the software). This means that we can string templates together, as we can select out as a dataset 

and perform operations on it using another template. 

 

This ends our whistle-stop tour of many of the windows in Stat-JR. We will next look at a practical 

application. 
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4.2 Application 1: Analysis of the tutorial dataset using the eStat 

engine 

4.2.1 Summarising the dataset and graphs 

 

In this section we will look at performing some analysis of an example dataset from education. The 

dataset in question is known as the tutorial dataset, and is used as an example in the MLwiN 

software manuals (see, for example, Browne 2012).  In fact, much of the material here owes a lot to 

Browne (2012), which employs similar analysis but using MLwiN. 

Let us start by looking at the tutorial dataset. 

Select tutorial via Dataset > Choose (see the title bar), then click Use. 

If you then select Dataset > View, and click on the Summary tab the following should appear in a 
new tab in the browser window containing summary information, as follows: 

 

 
 

The tutorial dataset contains data on exam scores of 4059 secondary school children from 65 

schools at age 16. These exam scores have been normalised to have a mean of zero and a standard 

deviation of one and are named normexam. There are several predictor variables, including a 

(standardised) reading test (standlrt) taken at age 11, the pupils gender (girl), and the school’s 

gender (schgend) which takes values 1 for mixed, 2 for boys and 3 for girls. Each variable is described 

in the Description column and if you hover over any of the variables that say “Yes” in the value labels 

column, the category labels will be displayed. 

 

We can explore the dataset in more detail, prior to fitting any models, by using the many data 

manipulation templates available in Stat-JR.  We will first look at some plots of the data: 
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Select Template > Choose and then select Histogram from the template list that appears and click 

Use. 

Fill in the inputs as shown below and click Next and then Run and select histogram.svg from the 

output list. 

 

 
  

Here you will see, in the output pane, a histogram plot that shows that the response variable we will 

model, normexam, appears Normally-distributed. 

 

Select Template > Choose and this time select XYPlot from the template list, then click Use. 

Fill in the inputs as shown below and click Next and then Run and select graphxy.svg from the list. 
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Here we see that there appears to be a positive relationship between normexam and standlrt, with 

pupils that have higher intake scores performing better, on average, at age 16.  

 

We can display the graph in a separate tab in the browser window by clicking on the Popout button 

next to the pull down list: 
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For the sake of brevity, for the remainder of this documentation we will assume you now know how 

to change template/dataset, and also how to display output in separate tabs, so we’ll refrain from 

repeating this information in detail again. 

 

Next, we might like to examine how correlated the two variables, normexam and standlrt, actually 

are: 

 

Select AverageandCorrelation as the template, and complete the inputs as follows before clicking on 

Next and Run and selecting table from the outputs: 
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Here we see that the correlation is 0.592, so fairly strong and positive. We might also like to look at 

how exam score varies by gender: 

 

Select Tabulate as the template, and complete the inputs as follows, before clicking on Next and 

Run and selecting table from the output list: 

 
 

We have to enter variables for column values and row values, and so here we have specified column 

values as girl (taking value 1 for girls and 0 for boys) and row values as cons (which is a constant), 

and then we get 2 columns in the output  labelled 0 and 1 for boys and girls, respectively . Looking at 

the means, it appears that girls do slightly better than boys, and looking at the standard deviations 

(sds) they are slightly less variable than boys in their scores.  Let us now consider performing some 

statistical modelling on the dataset. 
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4.2.2 Single-level Regression 

As in the last chapter, with the rats dataset, we will start by fitting a simple linear regression model 

to the tutorial dataset. Here we will regress normexam on standlrt by using a modelling template.  

Select Regression1 as the template and fill it in as follows: 

 

 
 

Here we are fitting a linear regression, and so have standlrt as an explanatory variable, but also cons 

(which is a column of 1s) as we would like to include an intercept as well. For now we have set-up 

the MCMC estimation options as we did for the rats dataset, and we will overwrite the output file 

out. 

 

Clicking on the Next button will populate a pull down list of objects created by Stat-JR at the bottom 

of the screen and by default we see the object equation.tex : 
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In the pane we find a mathematical representation of the chosen model. Note that the file is a LaTeX 

file that is being rendered in the browser by a piece of software called MathJaX (v2.3, 2013), so if 

you are a LaTeX-user you can copy this file straight into a document. If we instead choose model.txt 

from the list we see the following: 

 

 
 

Here we see the text file that represents the model we wish to fit in the language that the algebra 

system used by the built-in eStat engine requires. The Regression1 template only uses the eStat 

MCMC-based estimation engine, so as you can see in the mathematical formulae in equation.tex we 

are fitting a Bayesian version of a linear regression, and the last four lines of the output are prior 

distributions for the unknown parameters, β0, β1 and the precision τ (where τ=1/σ2). 

 

Whilst we will keep our description of Bayesian statistics and MCMC estimation to a minimum, and 

recommend Chapter 1 of Browne (2012) for more details, in brief we are interested in the joint 

posterior distribution of all unknown parameters given the data (and the prior distributions 

specified). In practice, in complex models, this distribution has many dimensions (in our simple 

regression we have 3 dimensions) and is hard to evaluate analytically. Instead, MCMC algorithms 

work by simulating random draws from a series of conditional posterior distributions (which can be 

evaluated). It can then be shown (by some mathematics) that after a period of time (required for the 

simulations to move from their possibly arbitrary starting point) that the draws will be a dependent 

sample from the joint posterior distribution of interest. It is common, therefore, to throw away the 

first n draws which are deemed a burn-in period. 

 

For the simple linear regression, it is a mathematical exercise to show that the conditional posterior 

distributions have standard forms and are Normal (for the fixed effect) and Gamma (for the 

precision = 1 /variance). The eStat engine has a built in algebra system which takes the text file 

(model.txt) in the left-hand pane and returns the conditional posterior distributions; you can view 

these as follows: 

 

Select algorithm.tex from the list and click on the Popout button and the algebra steps will appear in 

a new tab as follows: 
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The eStat engine then takes these posterior distributions and wraps them up into computer code 

(C++) which it will compile and run for the model.  By default this will be several pieces of code that 

are linked together by Stat-JR, although the Settings screen (accessible via a link towards the top of 

the main menu screen, as we saw earlier) has an option to output completely standalone code that 

can be taken away and run separately from the Stat-JR system; this is, however, a topic for more 

advanced users. 

 

Returning to the tab, in the browser window, containing the model template, click on the Run 

button and wait for the model to run. 

Then select ModelResults from the pull down list and pop it out into a separate tab. 

 

 
 

Here the model results can be split into two parts:  
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The first part of the results (under the heading ‘Parameters’) contains the actual parameter 

estimates. Here, for each parameter, we get 3 numbers: a posterior mean estimate (mean), a 

posterior standard deviation (sd), and an effective sample size (ESS).   

 

Here we see that beta_0 has a mean estimate of approximately 0, which we would expect as both 

the response and predictor have been normalised, or standardised. The slope beta_1 has mean 

0.595 with standard deviation 0.013, and is highly significant, as it’s mean estimate  is many times 

it’s standard deviation ( a Bayesian equivalent of a standard error) The value 0.595 represents the 

average increase in the normexam score for a 1-point (1 sd, due to standardising) increase in 

standlrt. The residual variance, sigma2, has value 0.649 showing that, as the initial response variance 

was 1.0, standlrt has explained 35.1% of the variability. 

 

The ESS is a diagnostic which reflects the simulation-based (stochastic) nature of the MCMC 

estimation procedure: we have based our results on the 5,000 iterations post burn-in, but we know 

that the method produces dependent samples, and so the ESS gives an equivalent number of 

independent samples for the parameters involved; in effect a measure of the information content of 

the chain In this case, all parameters have ESS of > 4000, and so the chains are almost independent.  

 

The second part (under the heading ‘Model’) refers to the model fit for this particular model and the 

DIC diagnostic (Spiegelhalter et al. 2002). The DIC diagnostic is an information criterion which is a 

measure of how good a specific model is, consisting of a combination of how well the model fits the 

data (here defined by the model deviance) and how complex the model is (here defined by pD: the 

effective number of parameters).  Basically the better fitting the model is, the better the model is, 

but it has to be penalised by how complex it is. The DIC statistic is defined as the deviance of the 

mean + 2pD. In this example the deviance at the mean (D(thetabar)) is 9760.5 and pD is ~3 

(reflecting the three parameters of the model that are being estimated) and so we have a DIC value 

of 9766.4. This number is not particularly interesting in isolation but it is when we compare values 

for several models. 

 

We can also get more information from the diagnostic plots that are available in the list of objects  

 

Return to the model run tab in the browser window, and select beta_1.svg from the pull-down list 

above the output pane and pop it out into a separate tab. 
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This “sixway” plot gives several graphs that are constructed from the chain of 5,000 values produced 

for beta_1. The top-left graph shows the values plotted against iteration number, and is useful to 

confirm that the chain is ‘mixing well’, meaning that it visits most of the posterior distribution in few 

iterations. The top-right graph contains a kernel density plot which is like a smoothed histogram and 

represents the posterior distribution for this parameter. Here the shape is symmetric and looks like a 

Normal distribution which we expect given theory for fixed effects in a normal model. 

 

The two graphs in the middle row are time series plots known as the autocorrelation (ACF) and 

partial autocorrelation (PACF) functions. The ACF indicates the level of correlation within the chain; 

this is calculated by moving the chain by a number of iterations (called the lag) and looking at the 

correlation between this shifted chain and the original. In this case, the autocorrelation is very small 

for all lags. The PACF picks up the degree of auto-regression in the chain. By definition a Markov 

chain should act like an autoregressive process of order 1, as the Markov definition is that the future 

state of the chain is independent of all the past states of the chain given the current value. If, for 

example, in reality the chain had additional dependence on the past 2 values, then we would see a 

significant PACF at lag 2. In this case all PACF values are negligible. All of this suggests that we have 

good mixing and it would be appropriate to proceed to the interpretation of the parameters. 

 

The bottom-left plot is the estimated Monte Carlo standard error (MCSE) plot for the posterior 

estimate of the mean. As MCMC is a simulation-based approach this induces (Monte Carlo) 

uncertainty due to the random numbers it uses. This uncertainty reduces with more iterations, and 

is measured by the MCSE, and so this graph details how long the chain needs to be run to achieve a 

specific MCSE. The sixth (bottom-right) plot is a multiple chains diagnostic and doesn’t make much 
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sense when we have run only one chain, and we will therefore consider running multiple chains in 

the next section. 

 

We can also get some other diagnostics and summary statistics for the model as follows: 

 

Click on the Template pull down list at the top of the screen and select Choose and SummaryStats 

as the template. 

Next click on the Dataset pull down list and select Choose and out as the dataset. 

Run the SummaryStats template and select the inputs as follows before clicking on Run: 

 

 
 

 

Now select table from the drop-down list of outputs, and display it in a separate tab: 

 

 
 

Here we see a more extensive summary of the three parameters of interest. This summary table 

includes various quantiles of the distribution which are calculated by sorting the chain and picking 

the values that lie x% into the sorted chain (where x is 2.5, 5, 50 etc.).  These allow for accurate 

interval estimates that do not rely on a Normal distribution assumption. The inter-quartile range 

(IQR) is similarly calculated by picking the values that lie 25% and 75% through the sorted list and 

calculating the distance between them. 
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The final statistic is an MCMC diagnostic designed to suggest a length of chain to be run. The Brooks-

Draper diagnostic is based on measuring the mean estimate to a particular accuracy (number of 

significant figures set to 2 by default). For example, it states that to quote sigma2 as 0.65 with some 

desired accuracy only requires 32 iterations. The anomaly here is beta_0, however, since the true 

value is 0 we have difficulty quoting such a value to 2 significant figures! 

 

4.2.3 Multiple chains 

 
MCMC methods are more complicated to deal with than classical methods as we have to specify 

many estimation parameters, including how long to run the MCMC chains for.  The idea of running 

chains for a longer period is to counteract the fact that the chains are serially-correlated, and 

therefore are not independent samples from the distribution. Another issue that might cause 

problems is that the posterior distribution of interest may have several possible maxima (i.e. may be 

multimodal). This is not usually an issue in the models we cover in this book, but it is still a good idea 

to start off the estimation procedure from several places, or with several runs with different random 

number seeds, to confirm we get the same answers. 

From the top bar change Template and Dataset using the respective pull down lists and Choose so 

you have Regression1 as the template and tutorial as the dataset. 

This time fill in the screen as follows: 

 

 

Click on the Next and Run buttons. 
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When the model has run select beta_1.svg from the outputs list and pop it out to view it in a new 

tab. 

 

Here we see the three chains superimposed on each other in the top-left pane – note the chain looks 

primarily red simply because this chain (chain 3) has been plotted on top of the other two, and due 

to good mixing obscures them. Each chain has its own kernel plot in the top-right pane and this also 

suggests that, by the similarity of shape and position, the chains are mixing well. 

We have previously described what all the graphs here mean in Section 4.2.2, apart from the Brooks-

Gelman-Rubin diagnostic plot (BGRD; Brooks and Gelman, 1998) in the bottom-right corner.  This 

plot looks at mixing across the chains: the green and blue lines measure variability between and 

within the chains, and the red is their ratio. For good convergence this red line should be close to 

1.0, and here the values get close to 1.0 fairly quickly.  We can have a lot of faith in the estimates of 

our model. 

4.2.4 Adding gender to the model 

 
We have so far been more focused on understanding the MCMC methods but now we will return to 

modelling. We next wish to look at whether gender has an additional effect on normexam on top of 

that we have observed for intake score (standlrt). 

To do this, click on the remove link next to explanatory variables in the browser window, and fill-in 

the template as follows: 
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Click on Next and then Run to run the model. 

After the model finishes running select ModelResults from the drop-down list of outputs, and display 

in a new tab. 

 

 

This new model has one additional fixed effect parameter (beta_2) associated with gender, and we 

see it has a positive effect (0.170) which appears highly-significant (at least twice its sd, which is 

0.025). Note that in our earlier tabulation we saw that the difference in gender means was 0.093- (-
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0.140) = 0.233 and so the effect here is somewhat smaller, probably due to correlation between 

gender and intake score. 

Looking at the DIC diagnostic to assess whether this model is better we see this has dropped from 

9766.4 to 9724.9, which is a big drop, and so the model with gender is indeed much better. 

Finally we see that the ESS for two of the parameters is lower (beta_0 and beta_2), at around 1600, 

so the model doesn’t mix quite as well; however, these ESS are still large enough not to require 

further iterations. Here is the graph for beta_2.svg, displayed in a new tab: 

 

We see reasonable mixing, and can clearly see the significance of the effect as well (as the kernel 

density plot in the top-right corner indicates that 0 is nowhere near the posterior distribution). From 

a modelling perspective we have thus far ignored the fact that our data is a two-stage sample and 

that we should account for the clustering of the pupils within secondary schools. To do this we need 

to fit a 2-level model, and use a different template. 

 

4.2.5 Including school effects 

 
Stat-JR contains many different model-fitting templates some of which can fit whole families of 

models and some of which can fit just one or two specific models. We have thus far looked at the 

rather restrictive Regression1 template that only fits single level normal response models. To include 

school effects we will now look at the 2LevelMod template, which not only includes a set of random 
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effects but also supports different response types and estimation engines, features that we will look 

at later. 

On the Template pull down list at the top of the screen select Choose and select 2LevelMod as the 

template and stick with tutorial for the dataset. 

Set-up the inputs as shown below: 

 

 

Press Next and then Run to fit the model.  Note that running will take a while as we are storing all 65 

school effects and so for each one the software needs to construct diagnostic plots. 

When the model finishes select ModelResults, from the output list, and show the results in a 

separate tab. 

 



40 
 

 

Here if you scroll down we see that the DIC value for the two-level model is 9245, compared with 

9725 for the simpler model, showing that it is important to account for the two levels in the data. If 

you scroll down to the beta fixed effect parameters, as shown in the table below, you will find that 

their mean estimates have changed little. 

Parameter Single level 

Mean(sd) 

Single level  

ESS 

2level  

Mean(sd) 

2level 

ESS 

beta_0 -0.103 (0.0196) 1615 -0.091 (0.0429) 319 

beta_1 0.590 (0.0126) 5488 0.560 (0.0126) 4951 

beta_2 0.170 (0.0254) 1623 0.170 (0.0330) 775 

 

The standard deviations for beta_0 and beta_2 have increased due to taking account of the 

clustering, and the ESS values have reduced due to correlation in estimating the fixed effects and 

level 2 residuals.  

4.2.6 Caterpillar plot  

The random effects in the 2-level model are also interesting to look at, and one graph that is often 

used is a caterpillar plot. This can be produced in Stat-JR using a template specifically designed for 

producing this plot. This template requires the user to select all the ‘u’s to be displayed in the plot, 

which can be time-consuming if there are many of them: 

From the top bar we need to select Choose for Template and Dataset. 

Choose CaterpillarPlot95 as the template and out2level as the dataset. 
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You need now to select all the u’s from u0 to u64 which is best done by clicking on u0 and holding 

down the mouse and scrolling down to multiselect all the u’s together 

Once all are selected press the Next and Run buttons. 

Select caterpillar.svg in the pull down list and view in a new tab as follows: 

 

 

This graph shows the schools in order of ascending mean whilst the bars give a 95% confidence 

interval around each mean. The school in the middle with the wide confidence interval (i.e. very 

large bars) has only 2 pupils and so there is much greater uncertainty in the estimate.  

In this chapter we have explored fitting three models to the tutorial dataset. This has illustrated how 

the Stat-JR system works, how to interpret the output from MCMC and eStat, and how to compare 

models via the DIC diagnostic. There are better models that can be fitted to the dataset: for 

example, we could look at treating the effect of intake score (standlrt) as random, and fit a random 

slopes model using the template 2LevelRS; in the future we may add material on this subject to this 

manual, but for now we leave this as an exercise for the reader. Next we turn to the interoperability 

features of Stat-JR. 
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4.3 Interoperability – a brief introduction 
 

In this section we look at interoperability with other software packages. In order to run this section 

you will need to have installed the other packages and told Stat-JR where they are. For more details 

look at the Stat-JR website (www.bristol.ac.uk/cmm/software/statjr/).  

4.3.1 So why are we offering Interoperability? 

There are many motivations that could be given for the benefits of having an interoperability 

interface. First and foremost it opens up functionality in other software packages through a common 

interface.  

One important feature that the template, Regression1AML, which we cover at the end of this 

chapter, shows is that not all model templates need to use the built-in eStat engine. It would be 

perfectly reasonable for a user to construct a template that fitted a specific family of models in the  

WinBUGS software and then novice users would have access to a user-friendly interface to such 

models without having to understand the subtleties of writing WinBUGS code; it can thus play an 

important role introducing packages, such as WinBUGS, to new users. This follows earlier work: for 

example the MLwiN-WinBUGS interface that we developed 10 years ago.  

It also offers an easy way of comparing different software packages for a multitude of examples, and 

we will return to this in Section 4.4.4. Finally it can be thought of as a teaching tool, so that a user 

familiar with one package can use Stat-JR and directly compare the script files, etc., required for the 

package with which they are familiar to those required for an alternative package. 

4.3.2 Regression in eStat revisited 

In Section 4.2 we looked at fitting a few models to the tutorial dataset using the built-in eStat 

engine: a newly-developed estimation engine with the advantage of being transparent in that all the 

algebra, and even the program code, is available for inspection. It is an MCMC-based estimation 

method, but is also rather quick. In this chapter we will stick with one simple example, the initial 

linear regression model that we fitted to the ‘tutorial’ dataset that we considered in Section 4.2. We 

will need to use a new template, Regression2, as the Regression1 template only supports the eStat 

engine. 

We will begin by setting-up the model and running it in eStat: 

From the top bar select Regression2 as the template, and tutorial as the dataset using the Choose 

options on the pull down lists for templates and datasets and set-up the inputs as follows: 

file:///C:/Bristol/estat/trunk/Documentation/www.bristol.ac.uk/cmm/software/statjr/


43 
 

 

 
 

Click on Next and Run to fit the model. 

Select ModelResults from the pull down list, and show this output in a new tab which should look as 

follows: 

 

 

 
 

These results are identical to those we obtained using Regression1 earlier, although we only looked 

at the plot for beta_1 in Section 4.2.3. We will use this as a benchmark, contrasting these results 

with those we obtain from the other packages, although it is worth noting that all packages will have 
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good mixing and converge quickly for this simple linear regression model. You might like to explore 

differences between engines / packages for other models yourself after reading this chapter. 

 

4.3.3 Interoperability with WinBUGS 

WinBUGS (Lunn et al., 2000) is an MCMC-based package developed (as BUGS – Bayesian inference 

Using Gibbs Sampling) originally in the early 1990s by a team of researchers at the MRC Biostatistics 

Unit in Cambridge. It is a very flexible package and can fit, in a Bayesian framework, most statistical 

models, provided you can describe them in its model specification language. In Stat-JR we have 

borrowed much of this language for our own algebra system, and so many templates feature 

interoperability with WinBUGS.  

To fit the current model using WinBUGS we can click on remove next to the Choose estimation 

engine input and set up the template inputs as follows: 

 

 

When we press Next the Stat-JR software will construct all the files required to run WinBUGS so for 

example we can choose model.txt from the list:  
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Here we see the model defined in the WinBUGS model specification language in the output pane. 

This file is almost identical to that used by eStat aside from the expression length(normexam) being 

replaced here by its value 4059. Selecting script.txt from the list and popping out to a new tab gives 

the following: 

 

  

Here we see a list of the commands to be run in the WinBUGS language to fit the model. Note that 

this is done using a temporary directory and so this pathname appears in many commands. 

Return to the tab containing the main page and click on the Run button. 
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The WinBUGS package then pops up in its own window, runs the above script, and returns control to 

Stat-JR when it has finished estimating the model. If we look at the ModelResults output from the list 

and pop it out to its own tab we will see the following: 

 

 

These estimates, as one might expect, are very close to those from eStat, and again all ESS values are 

around 5,000-6,000.  We can also look at the log file from WinBUGS: 

Return to the template tab and choose log.txt in the outputs list. 

Scroll the log.txt file down to the bottom, and the screen should look as follows: 
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Here we see that the estimates and the DIC diagnostic are embedded in the log file, and take a 

similar value to eStat. WinBUGS required initial value files for each run (and these are stored in 3 

text files beginning with inits and the chain number), together with a data file as well as the model 

and script files already shown. All of these are available to view and to use again, thus Stat-JR is 

useful for learning how these other packages, such as WinBUGS, work. 

 

4.3.4 Interoperability with OpenBUGS 

 

Our next package to consider is OpenBUGS (Lunn et al., 2009). OpenBUGS was developed by 

members of the same team who developed WinBUGS, but differs in that it is open source so other 

coders may get access to the source code, and in theory develop new features in the software.  

To run OpenBUGS via Stat-JR click on the word remove next to the Choose Estimation engine input, 

set up the template as follows, and then click on Next : 
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This will have set-up the files required for OpenBUGS; these are similar, but not identical, to 

WinBUGS: the script file, in particular, is somewhat different and is split into 3 parts called 

initscript.txt, runscript.txt (shown below) and resultsscript.txt , (you can access this from the objects 

list): 

 

OpenBUGS allows us to change the working directory, and so there is no need for other commands 

to include the temporary directory path. Unlike WinBUGS, OpenBUGS will run in the background, 

and so will not appear when we click run. 

Clicking on Run and selecting ModelResults in its own tab gives the following: 
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Again, these results are very similar in terms of parameter estimates and ESS values to the other 

software packages.  

4.3.5 Interoperability with JAGS 

The third standalone MCMC estimation engine available, via Stat-JR, is JAGS (Just Another Gibbs 

Sampler), developed by Martyn Plummer (Plummer, 2003). JAGS also uses WinBUGS model 

language, but has a few differences in terms of script files and data files. 

To run JAGS via Stat-JR click on the remove text next to Choose estimation engine and set-up the 

template as follows, before clicking on Next : 
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This will set-up the files required for JAGS; for example, here you can see the script file (script.txt) 

which show some differences to those for WinBUGS (as to the initial value file formats): 

  

  

Like OpenBUGS, JAGS will run in the background (i.e. it will not open as a window on your screen). 

Clicking on Run, and placing ModelResults in a new tab, gives the following: 

 

 



51 
 

As you can see, we have similar estimates and effective sample sizes to the other estimation 

methods we’ve used. Whilst JAGS can be faster than WinBUGS and OpenBUGS, it fits a slightly 

smaller number of models.  

4.3.6 Interoperability with MLwiN 

MLwiN (Rasbash et al. 2009) is a software package specifically written to fit multilevel statistical 

models. It features two estimation engines (for MCMC and likelihood-based (IGLS) methods, 

respectively) with a menu-driven, point-and-click user interface. It also has an underlying macro 

language, however, and this is what we use to interoperate with Stat-JR. We will first consider the 

MCMC engine. As it is limited in the scope of models it fits, this means it is generally quicker than the 

other MCMC packages. MLwiN is a single chain program, but can be made into a multiple chain 

engine with Stat-JR, since the latter can start-up three separate instances of MLwiN. At present 

these are given different random number seeds, but the same starting values, however we will try 

and change this in future. 

To run MCMC in MLwiN, via Stat-JR, click on the remove text by Choose estimation engine input and 

set-up the template as follows before clicking on Next : 

 

 

You can see, in the pulldown list the dataset (in .dta format) that is used by MLwiN. There are also 

several MLwiN script files for the multiple chains and the several stages of model fitting. 

Clicking on the Run button will set off three instances of MLwiN (in the background) and Stat-JR will 

then collate the results together. Choosing ModelResults, and displaying them in a new tab, gives the 

following: 
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Once again here we have similar estimates, although the naming convention is slightly different for 

MLwiN. To show that we have multiple chains we can examine the chains for the slope (beta3), as 

shown below: 
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Stat-JR also offers the option of using the likelihood-based IGLS estimation engine in MLwiN. 

To do this in MLwiN, via Stat-JR, click once again on the remove text next to the Choose estimation 

engine input and set-up the template as follows, before clicking on Next: 

 

 

Again the dataset will appears in the output pane, and this time pressing Run will give the following 

in the ModelResults output: 

 

 

Here we get the Deviance (-2*Loglikelihood) value, together with parameter estimates with standard 

errors. The likelihood-based methods are far faster to run than the MCMC-based methods. 

4.3.7 Interoperability with R 

R (R Development Core Team, 2011) is another more general purpose package that can be used to 

fit many statistical models. R has many parallels with Stat-JR in that users can supply functions (like 

Stat-JR templates) which are then added to the library of R packages. We have thus far implemented 

interoperability features with R for several of these R functions; for example, for the template 

Regression2, we have implemented two R engines: R_MCMCglmm, which is MCMC-based, and 

R_glm, which is a standard regression modelling function. We will firstly demonstrate MCMCglmm. 

To run MCMC in R, via Stat-JR, click on the remove text by the Choose estimation engine input and 

set-up the template as follows, and click on Next: 
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After pressing Next, if we look at the script file, script.R, which we can select from the outputs list, 

we see the following: 

 

 

MCMCglmm can fit all forms of generalised linear mixed models, of which a linear regression is a 

rather trivial case. You will see that the script file contains some setup code which will actually 

download and install the MCMCglmm library the first time you execute the script (so ensure your 

machine is connected to the internet) before calling the MCMCglmm command and then producing 

summaries. 
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Clicking on Run in the main window will create several outputs. 

The ModelResults are similar to other software but we can also look at diagnostics plots that are 

specific to R by selecting DiagPlots1.png: 

 

Here R gives trace plots and kernel density plots for both the intercept and the slope parameter.  

Turning next to the glm package we can click on the remove text by Choose estimation engine and 

set-up the template as follows, before clicking on Next : 

 

 

Clicking on Run will this time run the MASS package and give results in ModelResults as usual. There 

are additional graphical plots that come back from R; for example, below is a plot of residuals of the 

model fit against fitted values (ResivsFitted.svg). 
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Before finishing with R, we will also demonstrate a non-model template developed with R called 

PlotsViaR that gives the Stat-JR user access to R’s lattice graphics package through the Stat-JR 

interface.  

Click on Choose from the Template pull down list at the top of the screen to get a list of all the 

templates. Note that the search cloud is useful with interoperability as it can be used to show which 

templates offer interoperability with a particular package (the engines are in red). 

Click on Plots and also R_script in the blue tag cloud. You’ll see that the list of templates, 

underneath, is accordingly reduced to just those that draw plots using R. 

Select PlotsViaR from the list, and click Use.  

Set up the template inputs as shown below: 
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These options will display kernel plots for the exam scores of pupils grouped by gender, with 

separate (panelled or trellise) plots for each school gender type. We can now press Run and show 

the plot (Plot1.svg) in a separate tab: 

 

 
Here (by coincidence) we have blue for boys and pink for girls! 
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4.3.8 Interoperability with AML 

We will next look at another software package that can fit many statistical models via likelihood-

based estimation. AML (Lillard & Panis, 2003) is very useful for fitting multi-process models, but as 

with other software packages can fit a simple regression as a special case. In our development work 

on Stat-JR we have written special templates for interoperability with AML as opposed to 

incorporating interoperability in the standard templates.  We therefore need to do the following: 

Click on the Choose option from the Template pull down list. 

Select Regression1AML from the template list and click on Use, and stick with the tutorial dataset. 

Note that if you have earlier clicked on Plots and R_script in the cloud of terms you will need to 

either unselect them or click on [reset] to see the required template. 

Fill in the inputs as follows, and press Next: 

 

 

 
 

Now click on Run to run the model in AML and select ModelResults from the list: 

 

 

Here we see the model results are similar to other packages.  AML has three input dataset 

(amlfit.raw, amlfit.aml and amlfit.r2a. There are also three additional output files from AML: 

amlfit.out, amlfit.tab and amlfit.sum. For more information on how AML works we recommend 

looking at the reference manual for the software. 

We also have interoperability support for a variety of other packages,  including GenStat, MATLAB, 

Minitab, Octave, Sabre, SAS, SPSS, Stan (via RStan) and Stata. These packages are either not installed 
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on the machine we are currently using, or are not supported by the Regression2 template that is 

being demonstrated, and so Stat-JR realises this and does not offer them.  

 

4.4 Application 2: Analysis of the Bangladeshi Fertility Survey 

dataset  
 

4.4.1 The Bangladeshi Fertility Survey dataset 

 

The Bangladeshi dataset (bang1) is an example dataset from the 1988 Bangladeshi Fertility Survey. It 

contains records from 1934 women based in 60 districts in Bangladesh, and we are planning to 

investigate variables that predict whether the women were using contraception or not at the time of 

the survey. Let us first look at the data and the variables we will consider. 

Select Choose and pick bang1 from the Dataset list and click on Use. 

Click on View from the Dataset list to view the data as follows: 

 

 

Here we see records for the first 24 women in district 1 displayed. The response variable use takes 

value 1 if the woman was using contraceptives during the time of the survey, and 0 if she was not. 

There are then several predictor variables, both woman-level and district-level.  Here we will focus 

on just two: the number of living children (lc), which is a categorical variable with four categories (no 

kids, one kid, two kids, three+kids), and the respondents’ age, which is measured to the nearest year 

and has been centred around its grand mean. We will now consider modelling the dataset. 
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4.4.2 Modelling the data using logistic regression 

 

We will firstly consider a simple linear regression model relating contraception use to the age of the 

woman. 

Choose the template 1LevelMod from the Template list and click on Use. 

Then setup the model with inputs as below. 

 

 

Clicking on Next and choosing equation.tex in the pull down list and we see the following: 

 

 

Here we the logistic regression model, in LaTeX, in the output pane. If we select model.txt we can 

then see the model code that the algebra system will interpret: 
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Now choosing algorithm.tex from the right-hand pane, and placing it in its own tab in the browser 

window, gives the following: 

 

 

Here we see that the eStat engine uses a different MCMC method, random walk Metropolis, for the 

steps for the fixed effects (beta0 and beta1) when fitting logistic regression models. We will come 

back to this modelling decision in Section 4.4.4 when we compare different software packages. 

Returning to the main pane and clicking on Run will now run the model. 

Once it has finished, if we select ModelResults from the list, and look at it in a new tab, we get the 

following: 
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Perhaps disappointedly and surprisingly, age doesn’t appear to have a significant effect (its estimate 

(0.0064) is similar in magnitude to its standard error (0.0051)). To see this more clearly we can look 

at the graph beta_1.svg in its own browser tab: 

 

 

Here, whilst the values on the x-axis overlap and therefore aren’t particularly clear, we can see that 

all three chains show strong support for the value 0.00 in the kernel density plot (i.e. it’s comfortably 

within the distribution). It might be the case, however, that contraceptive use has a non-linear 

relationship with age (possibly quadratic) and this could also be confounded by how far through 

their own family-formation process the woman is, which we will model via the variable lc. We might 

also be interested in accounting for any clustering effects of having women nested within districts. 

In order to fit a quadratic function to age we will need to construct the variable age2 which we can 

easily do by viewing the Dataset and use the variable creation tool. 
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Return to the main screen and select View from the Dataset pull-down list at the top of the page 

Click on the Add Variable tab and type the following: 

  

 

Here we are going to overwrite the existing dataset (at least in temporary memory) with a version in 

which we have appended an additional column to it. Clicking on Create and looking at the data by 

(clicking on the Data tab) below gives the following: 

 

 

Here you see age2 (age2 ) appearing in the column on the far right. Whilst we could explore adding 

further explanatory variables to this 1-level model, we are going to move straight into fitting a 2-

level model to account for districts. 

 

4.4.3 Multilevel modelling of the data 

We will now require a template that will fit a 2-level logistic regression model to our dataset.  In the 

earlier sections we looked at the template 2LevelMod and we will once again use it here and also 

illustrate how to fit categorical predictor variables. 

On the main tab, click on Choose in the Template pull down list and select 2LevelMod and click on 

Use button to run this template. 

 

Fill in the template inputs as follows: 
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Here we need to specify several extra inputs, including an input for the level 2 identifiers and also to 

let the software know which predictor variables are categorical. Continue with the inputs as follows: 

 

Clicking on Next will run the algebra system and set up code to fit the model.  If we select model.txt 

in the output list we will see the following: 



65 
 

 

 

Here we see the more complicated model code for this 2-level model in the left-hand pane. Note 

that the lc predictor is treated as categorical and thus appears as 3 dummy variables (lc_1 – lc_3) 

 If we select tau_u.xml in the output list we will see the following: 

 

 Here we see the algorithm step for the parameter tau_u. Although most parameters in this model 

are updated by Random Walk Metropolis sampling, this parameter is updated by Gibbs Sampling as 

its conditional posterior distribution has a standard form. 

If we now click on Run then after 52s (on a machine with Intel Core i7-3770S; this includes time for 

compiling and adapting) the model will have run and if we select sigma2_u.svg we will see the 

following: 
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Here we can see that convergence and mixing, for this parameter at least, are reasonable. In fact, if 

we look at the diagnostic plots for the other parameters, we see similar convergence there as well. 

Next we can look at ModelResults in its own tab to see the parameter estimates: 
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Here we see that beta_2 is significant and negative (and larger than beta_1) suggesting a quadratic 

fit to the age predictor.  As the data is centred around its mean, this implies that contraceptive use is 

reduced the further from the mean age the woman is.  We will look at this in more detail at the end 

of the chapter. 

The parameters beta_3-beta_5 are all significant, and positive (and of similar magnitude), which 

suggests that women with children are more likely to use contraceptives than those without. The 

parameter sigma2_u is fairly large, suggesting there are differences between districts in terms of 

contraceptive use. 

What is slightly disappointing here are the ESS values for all the fixed parameters. We have run each 

chain, after burnin, for 2,500 iterations resulting in a total of 7,500 actual iterations (i.e. from 3 

chains) but the effective sample sizes are of the order of 100-350. As this indicates, the default 

algorithm in eStat – random walk Metropolis – is not very efficient for this example. We will look at 

two possible solutions in the next two sections. 

4.4.4 Comparison between software packages 

 

Not all software packages fit the same MCMC algorithm for this model.  So here we will show how to 

fit the same model in another package, OpenBUGS, which uses a different method: namely 

multivariate updating for the fixed effects in a GLMM, as developed by Gamerman (1997). This 

method results in slower estimation, but, as we will see, far better ESS. We will then look at a table 

comparing all the possible MCMC algorithms in the different packages for this model, which you can 

verify for yourselves. 

To fit the model in OpenBUGS click on the remove text next to Choose estimation engine and set-up 

the model as follows: 
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Clicking on Next and Run will (after 2 min 18s on my machine) give the following, having selected 

ModelResults from the drop-down box above the output pane, and opening it in a new tab: 
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Here we see far better effective sample size values, with runs of 7,500 iterations translating into ESS 

values of between 2,500 and 5,500 for the beta parameters. 

We can repeat this analysis using WinBUGS, JAGS and MLwiN with the same run lengths. Note for 

JAGS you will need to edit the initial value files or it will not run. To do this view each in the output 

window and click on the Edit button. If you change the value for beta_2 (the fixed effect associated 

with age2) from 0.1 to 0.0 in all three initial values files and click Save each time then JAGS should 

run. It should also be noted here that results may vary a little if you have different versions of the 

third party software packages or have changed options in them. 

We could also fit the model using the MCMCglmm package in R, although here we would need to 

run a single chain and logistic regression models for binary data are the one GLMM where the 

answers can be a little different as it assumes over-dispersion which is inappropriate in this case. 

The table overleaf1 details the results of fitting many of these options: 

  

                                                           
1 This particular comparison used WinBUGS 1.4.3, OpenBUGS 3.2.3, JAGS 3.4.0, MLwiN 2.34, all run on 
Windows 64-bit machine with Intel Core i7-3770S; eStat times are of the form: including compiling time 
(excluding compiling time). 
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Para-

meter 

eStat WinBUGS OpenBUGS JAGS MLwiN eStat 

orthogonal 

Beta0 -0.761(0.183) -0.789(0.170) -0.790(0.173) -0.776(0.177) -0.835(0.170) -0.784(0.180) 

Beta0 

ESS 

92 396 2595 255 93 979 

Beta1 0.0076(0.0097) 0.0068(0.0090) 0.0066(0.0091) 0.0069(0.0090) 0.0050(0.0089) 0.0068(0.0096) 

Beta1 

ESS 

183 951 5031 550 247 1792 

Beta2  -0.0049(0.00074) -0.0048(0.00072) -0.0048(0.00073) -0.0048(0.00071) -0.0047(0.00071) -0.0048(0.00073) 

Beta2 

ESS 

319 1286 5057 926 315 1799 

Beta3  0.761(0.164) 0.779(0.160) 0.782(0.162) 0.778(0.163) 0.799(0.162) 0.779(0.165) 

Beta3 

ESS 

227 1117 5291 630 268 1686 

Beta4 0.809(0.192) 0.822(0.181) 0.826(0.186) 0.818(0.188) 0.856(0.183) 0.823(0.190) 

Beta4 

ESS 

169 780 5181 477 196 1726 

Beta5 0.805(0.192) 0.824(0.180) 0.828(0.184) 0.817(0.187) 0.863(0.177) 0.823(0.191) 

Beta5 

ESS 

114 547 4443 329 131 1666 

Sigma2u 0.320(0.099) 0.318(0.100) 0.317(0.100) 0.317(0.100) 0.328(0.103) 0.322(0.101) 

Sigma2u 

ESS 

807 1764 1753 1445 733 756 

Pd 42.96 42.44 42.66 42.16 43.08 43.21 

DIC 2394.03 2393.36 2394.0 2393.39 2393.65 2394.51 

Time (s) 40 (24) 195 138 176 7 36 (22) 

 

In summary we see that MLwiN is by far the fastest of the packages, with eStat quicker than the 

other three as well.  Both MLwiN and eStat use the simple random walk Metropolis algorithm, which 

is not the best method for this model and gives fairly poor ESS.  Interestingly, both WinBUGS and 

OpenBUGS use the Gamerman method, but in this case OpenBUGS performs better in terms of time 

taken and ESS.  This is somewhat puzzling as when each is run with a single chain, their performance 

is almost identical.  Finally, for this example, JAGS has a similar speed intermediate to the two BUGS 

packages but its performance is relatively disappointing with regard ESS; however, there have been 

many comparisons between JAGS and BUGS for different models, and which method is better varies 

from model to model, so we shouldn’t dismiss it based on just this one example. The final column 

shows another eStat method which we will discuss next. 
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4.4.5 Orthogonal parameterisation. 

 

The reason eStat (and MLwiN) perform badly in terms of ESS in this instance is that they are 

performing single-site updating, and the parameters are correlated. So here we will consider a 

reparameterisation method that aims to fit parameters that are less correlated, and then translates 

them back to the original parameters. For this we construct a set of orthogonal vectors from the 

original predictor variables (see Browne et al. 2009 for details).  

We will therefore now look at the NLevelOrthogParamRS template in order to use orthogonalisation 

on our model. This template actually fits a larger family of models: those with any number of higher 

levels/classifications (hence ‘NLevel’), allowing for the possibility of random slopes at each of these 

levels (hence ‘RS’), and so our 2-level random intercept model is perhaps the simplest case that the 

template fits. 

Click on the Template pull down list and click Choose then select NLevelOrthogParamRS from the 

template list. 

 

Click on Use and fill in the template inputs as follows: 

 

Giving a name for the results and clicking on Next and selecting equation.tex in the pull down list 

(we’ve opened it in a new tab) will show the following: 
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Here we see that the model code is actually fitting a different set of predictors, each with the prefix 

‘orth’ and a corresponding set of coefficients. There is then a set of deterministic statements that 

translate these coefficient values to the coefficient values for the original predictors (again, see 

Browne et al. (2009) for details) 

Clicking on the Run button will run the model (which took 36s on this particular machine, including 

compiling), after which selecting ModelResults from the pull down list, and popping out into a new 

tab, gives the following: 
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The estimates, their ESS, and the time taken to run the model are all added to the end of the 

software comparison table we looked at above. It indicates that, compared to the other method we 

employed to fit the model in eStat, there is no obvious overhead incurred when performing the 

orthogonalising algorithm, and it is much faster than OpenBUGS, and the ESS are now much better 

(if still not as good as OpenBUGS). We therefore have two ways of fitting the model that are 

reasonably comparable in terms of ESS/s, with little to choose between them. This orthogonalising 

approach is also available in MLwiN: this will be faster again, and should have similar ESS to the 

method in eStat, and therefore may be the best overall in terms of ESS/s, but we leave this for the 

reader to investigate. 

4.4.6 Predictions from the model 

 

When we ran this model we discussed some interpretation of the fit, but it would be nice to plot 

some predictions from the model as well. In this latest version of Stat-JR we have added the option 

to store predictions when fitting the model. So hopefully in the last model fit you will have ticked yes 

to the generate prediction dataset question. This will generate a new dataset named 

prediction_datafile which contains the original data and several prediction columns formed from the 

model fit.  

To use this dataset we need to select Choose on the dataset list and select prediction_datafile from 

the list and click Use. 

In fact the dataset has a full prediction column called pred_full but this also contains the district 

random effects. We would here like to simply predict from the fixed part of the model so we can 

construct the variable pred_fixed as follows: 

Click on View from the Dataset menu, then choose Add variable, and input the new variable 

pred_fixed as indicated below. 

Click on Create to create the variable 
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This has created a variable on the fixed predictor scale but as we are fitting a logistic regression we 

need to take an anti-logistic transform to convert these predictions to probabilities. This can be done 

by creating another column in the dataset as shown below: 

 

 

In order to plot separate fitted curves for the various numbers of living children we can use the 

template XYGroupPlot as shown below: 

 

 

Clicking on Run and popping out graphxygroup.svg gives the following: 
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Here we see the four curves (although three of them are very close together) which clearly showing 

that the women with children have higher probabilities of using contraceptives, and that the peak 

for each group is around the average age of the sample, as discussed earlier. 

Hopefully this section has shown firstly that Stat-JR can fit models other than Normal response 

models; in fact there are a vast number of model templates which fit lots of other model classes. 

Secondly, we hope we’ve shown its utility in terms of comparing model-fitting across different 

software packages for different models, accessing each from a common hub. 

4.5 Miscellaneous other topics e.g. Data Input/Export 
Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in 

the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user 

name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black 

bar at the top of the browser window in the TREE interface). 

If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset > 

Upload (menu options in the black bar at the top of the browser window), which will upload it into 

the temporary memory cache, or by (ii) saving your dataset in the StatJR\datasets folder, and then 

selecting Debug > Reload datasets (again, accessible via the black bar at the top of the browser 

window). If, instead, you have it (iii) saved as a .txt file, you can use Stat-JR's LoadTextFile template 
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to save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user 

to specify more particulars, and can also handle string variables). 

In the case of options (i) and (iii) the dataset will be available for use in the current session, but you 

then need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the 

StatJR\datasets folder) for use in the future sessions too. 

So, via option (iii) (and downloading), Stat-JR will save your dataset as a .dta file, but you can also 

create .dta files via Stata, MLwiN and R (e.g. the foreign package in R). 
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6 Appendix: List of Third Party Software that are used by Stat-

JR 
 

Stat-JR makes use of several third party software products that are included within the distributed 

code or (in the case of MinGW) need to be downloaded separately. These software products each 

have a license file that can be viewed from the links in the table below and/or in the licences 

subdirectory of the installed code.  

 

Package Link Licence terms 

beautifulsoup http://bazaar.launchpad.

net/~leonardr/beautifuls

oup/bs4/view/head:/COP

YING.txt 

MIT 

BLAS http://www.netlib.org/blas/

faq.html#2 

Own licence 

(Netlib) 

Bootstrap https://github.com/twitter/b

ootstrap/blob/master/LICE

NSE 

MIT 

cssselect http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

cx_freeze http://cx-

freeze.readthedocs.org/e

n/latest/license.html 

PSF 

cycler https://opensource.org/li

censes/BSD-3-Clause 

BSD 

dateutil http://opensource.org/lic

enses/BSD-2-Clause 

Simplified BSD 

decorator https://micheles.googlec

ode.com/hg/decorator/d

ocumentation.html#licen

ce 

BSD 

keepalive https://github.com/wikie

r/keepalive/blob/master/

LICENSE 

LGPL 

html5lib https://github.com/html5

lib/html5lib-

python/blob/master/LICE

NSE 

MIT 

isodate http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

jqgrid http://www.trirand.com/

blog/?page_id=87 

Dual MIT/GPL(v2) 

jquery  http://jquery.org/license MIT 

http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/COPYING.txt
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://micheles.googlecode.com/hg/decorator/documentation.html%23licence
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/wikier/keepalive/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
http://www.trirand.com/blog/?page_id=87
http://www.trirand.com/blog/?page_id=87
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jquery-cookie https://github.com/carhartl

/jquery-

cookie/blob/master/jquery.

cookie.js 

MIT 

jQuery File 

Upload 

http://opensource.org/lic

enses/MIT 

MIT 

jQuery text align http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

jquery-treeview https://github.com/jzaeffer

er/jquery-treeview 

Dual MIT/GPL 

jquery-ui http://jquery.org/license MIT 

jQuery-xpath http://opensource.org/lic

enses/MIT 

MIT 

LAPACK http://www.netlib.org/lapa

ck/LICENSE.txt 

Modified BSD  

lxml http://lxml.de/index.html#li

cense 

BSD 

mako http://www.opensource.or

g/licenses/mit-license.php 

MIT 

markupsafe http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

MathJax http://cdn.mathjax.org/mat

hjax/2.0-latest/LICENSE 

Apache  

matplotlib http://matplotlib.sourcefor

ge.net/users/license.html 

Modified BSD 

MinGW http://www.mingw.org/lice

nse 

Not distributed with 

software directly 

networkx http://networkx.github.io/d

ocumentation/developme

nt/reference/legal.html 

BSD 

numexpr http://www.opensource.or

g/licenses/mit-license.php 

MIT 

numpy http://numpy.scipy.org/lice

nse.html#license 

BSD 

pandas http://pandas.pydata.org/p

andas-

docs/stable/overview.html

#license 

Modified BSD 

patsy https://github.com/pydata/

patsy/blob/master/LICEN

SE.txt 

BSD 

ply http://www.dabeaz.com/

ply/README.txt 

BSD 

prov https://github.com/trung

dong/prov/blob/master/L

ICENSE 

MIT 

provpy http://opensource.org/lic

enses/BSD-2-Clause 

BSD 

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://www.dabeaz.com/ply/README.txt
http://www.dabeaz.com/ply/README.txt
https://github.com/trungdong/prov/blob/master/LICENSE
https://github.com/trungdong/prov/blob/master/LICENSE
https://github.com/trungdong/prov/blob/master/LICENSE
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause


80 
 

pyparsing http://www.opensource.or

g/licenses/mit-license.php 

MIT 

pyquery http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

Python http://docs.python.org/lice

nse.html 

PSF 

pytz https://pypi.python.org/py

pi/pytz/ 

MIT 

rdflib http://www.opensource.or

g/licenses/bsd-

license.php 

BSD 

reset-fonts-grids http://yuilibrary.com/licens

e/  

BSD 

scipy http://www.scipy.org/Licen

se_Compatibility 

BSD 

setuptools http://docs.python.org/lice

nse.html /  

PSF 

six https://bitbucket.org/gut

worth/six/src/e3da7fd96

039a6ed89493f89d121c4

f3797e6713/LICENSE?at=

default  

MIT 

sparqlwrapper http://www.w3.org/Cons

ortium/Legal/2002/copyri

ght-software-20021231 

W3C 

statsmodels https://github.com/stats

models/statsmodels/blob

/master/LICENSE.txt 

Modified BSD 

tinymce https://github.com/tinym

ce/tinymce/blob/master/

LICENSE.TXT 

LGPL 

weave http://projects.scipy.org/sc

ipy/browser/trunk/Lib/wea

ve/LICENSE.txt?rev=151

1 

BSD 

web.py https://github.com/webpy/

webpy/blob/master/LICEN

SE.txt 

PSF  

  

   

   

  

   

  

  

http://yuilibrary.com/license/
http://yuilibrary.com/license/
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
https://github.com/tinymce/tinymce/blob/master/LICENSE.TXT
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