R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ############################################################################
> #     MLwiN User Manual
> #
> # 9   Logistic Models for Binary and Binomial Responses . . . . . . . . .117
> #
> #     Rasbash, J., Steele, F., Browne, W. J. and Goldstein, H. (2012).
> #     A User's Guide to MLwiN, v2.26. Centre for Multilevel Modelling,
> #     University of Bristol.
> ############################################################################
> #     R script to replicate all analyses using R2MLwiN
> #
> #     Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J.
> #     Centre for Multilevel Modelling, 2012
> #     http://www.bristol.ac.uk/cmm/software/R2MLwiN/
> ############################################################################
> 
> library(R2MLwiN)

R2MLwiN: A package to run models implemented in MLwiN from R
Copyright 2013-2017 Zhengzheng Zhang, Christopher M. J. Charlton, Richard M. A. Parker, William J. Browne and George Leckie

Support provided by the Economic and Social Research Council (ESRC)
(Grants RES-149-25-1084, RES-576-25-0032 and ES/K007246/1)

To cite R2MLwiN in publications use:

  Zhengzheng Zhang, Richard M. A. Parker, Christopher M. J. Charlton,
  George Leckie, William J. Browne (2016). R2MLwiN: A Package to Run
  MLwiN from within R. Journal of Statistical Software, 72(10), 1-43.
  doi:10.18637/jss.v072.i10

A BibTeX entry for LaTeX users is

  @Article{,
    title = {{R2MLwiN}: A Package to Run {MLwiN} from within {R}},
    author = {Zhengzheng Zhang and Richard M. A. Parker and Christopher M. J. Charlton and George Leckie and William J. Browne},
    journal = {Journal of Statistical Software},
    year = {2016},
    volume = {72},
    number = {10},
    pages = {1--43},
    doi = {10.18637/jss.v072.i10},
  }

The MLwiN_path option is currently set to C:/Program Files/MLwiN v3.05/
To change this use: options(MLwiN_path="<path to MLwiN>")
> # MLwiN folder
> mlwin <- getOption("MLwiN_path")
> while (!file.access(mlwin, mode = 1) == 0) {
+   cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n")
+   mlwin <- scan(what = character(0), sep = "\n")
+   mlwin <- gsub("\\", "/", mlwin, fixed = TRUE)
+ }
> options(MLwiN_path = mlwin)
> 
> 
> # 9.1 Introduction and description of the example data . . . . . . . . . 117
> 
> data(bang, package = "R2MLwiN")
> summary(bang)
     woman           district            use      
 Min.   :   1.0   Min.   : 1.00   Not_using:1728  
 1st Qu.: 717.5   1st Qu.:14.00   Using    :1139  
 Median :1434.0   Median :29.00                   
 Mean   :1434.0   Mean   :29.25                   
 3rd Qu.:2150.5   3rd Qu.:45.00                   
 Max.   :2867.0   Max.   :61.00                   
                       use4                 lc            age          
 Sterilization           : 302   None        : 774   Min.   :-14.0000  
 Modern_reversible_method: 555   One_child   : 517   1st Qu.: -8.0000  
 Traditional_method      : 282   Two_children: 461   Median : -2.0000  
 Not_using_contraception :1728   Three_plus  :1115   Mean   : -0.3279  
                                                     3rd Qu.:  6.0000  
                                                     Max.   : 19.0000  
   urban                       educ         hindu          d_lit       
 Rural:2063   None               :1806   Muslim:2480   Min.   :0.0000  
 Urban: 804   Lower_primary      : 357   Hindu : 387   1st Qu.:0.0850  
              Upper_primary      : 265                 Median :0.1100  
              Secondary_and_above: 439                 Mean   :0.1115  
                                                       3rd Qu.:0.1400  
                                                       Max.   :0.3000  
     d_pray            cons  
 Min.   :0.1000   Min.   :1  
 1st Qu.:0.2900   1st Qu.:1  
 Median :0.4100   Median :1  
 Mean   :0.4253   Mean   :1  
 3rd Qu.:0.5500   3rd Qu.:1  
 Max.   :0.7800   Max.   :1  
> 
> # 9.2 Single-level logistic regression . . . . . . . . . . . . . . . . . 119
> 
> # Link functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
> 
> # Interpretation of coeficients . . . . . . . . . . . . . . . . . . . . .120
> 
> # Fitting a single-level logit model in MLwiN . . . . . . . . . . . . . .121
> 
> addmargins(with(bang, table(lc, use)))
              use
lc             Not_using Using  Sum
  None               584   190  774
  One_child          283   234  517
  Two_children       234   227  461
  Three_plus         627   488 1115
  Sum               1728  1139 2867
> 
> (mymodel1 <- runMLwiN(logit(use) ~ 1 + lc, D = "Binomial", data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
Estimation algorithm:  IGLS MQL1        Elapsed time : 0.05s 
Number of obs:  2867 (from total 2867)        The model converged after 4 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc
Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                    Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept        -1.12288     0.08348   -13.45    3.05e-41   ***     -1.28650    -0.95926 
lcOne_child       0.93275     0.12156     7.67   1.676e-14   ***      0.69450     1.17100 
lcTwo_children    1.09250     0.12509     8.73   2.466e-18   ***      0.84733     1.33768 
lcThree_plus      0.87224     0.10302     8.47   2.523e-17   ***      0.67033     1.07416 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> if (!require(car)) {
+   warning("car package required to use linearHypothesis() function")
+ } else {
+   linearHypothesis(mymodel1, "FP_lcOne_child = FP_lcTwo_children")
+ }
Loading required package: car
Loading required package: carData
Linear hypothesis test

Hypothesis:
FP_lcOne_child - FP_lcTwo_children = 0

Model 1: restricted model
Model 2: logit(use) ~ 1 + lc

  Res.Df Df  Chisq Pr(>Chisq)
1   2863                     
2   2862  1 1.5481     0.2134
> 
> # A probit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
> 
> (mymodel2 <- runMLwiN(probit(use) ~ 1 + lc, D = "Binomial", data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
Estimation algorithm:  IGLS MQL1        Elapsed time : 0.05s 
Number of obs:  2867 (from total 2867)        The model converged after 4 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
probit(use) ~ 1 + lc
Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                    Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept        -0.68879     0.04915   -14.01   1.299e-44   ***     -0.78513    -0.59245 
lcOne_child       0.56972     0.07396     7.70   1.328e-14   ***      0.42476     0.71468 
lcTwo_children    0.66976     0.07631     8.78    1.69e-18   ***      0.52018     0.81933 
lcThree_plus      0.53191     0.06195     8.59   8.977e-18   ***      0.41049     0.65332 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> (mymodel3 <- runMLwiN(logit(use) ~ 1 + lc + age, D = "Binomial", data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
Estimation algorithm:  IGLS MQL1        Elapsed time : 0.06s 
Number of obs:  2867 (from total 2867)        The model converged after 4 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age
Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                    Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept        -1.25598     0.09776   -12.85   8.821e-38   ***     -1.44758    -1.06438 
lcOne_child       0.99131     0.12376     8.01    1.15e-15   ***      0.74874     1.23388 
lcTwo_children    1.22356     0.13480     9.08    1.12e-19   ***      0.95935     1.48777 
lcThree_plus      1.11655     0.13824     8.08   6.649e-16   ***      0.84560     1.38750 
age              -0.01629     0.00609    -2.67    0.007514   **      -0.02823    -0.00435 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> # 9.3 A two-level random intercept model . . . . . . . . . . . . . . . . 128
> 
> # Model specification . . . . . . . . . . . . . . . . . . . . . . . . . .128
> 
> # Estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . .128
> 
> # Fitting a two-level random intercept model in MLwiN . . . . . . . . . .129
> 
> (mymodel4 <- runMLwiN(logit(use) ~ 1 + lc + age + (1 | district), D = "Binomial", data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min     mean max N_complete min_complete mean_complete max_complete
district 60   3 47.78333 173         60            3      47.78333          173
Estimation algorithm:  IGLS MQL1        Elapsed time : 0.08s 
Number of obs:  2867 (from total 2867)        The model converged after 5 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age + (1 | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                    Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept        -1.36711     0.12338   -11.08   1.557e-28   ***     -1.60893    -1.12529 
lcOne_child       0.98998     0.12643     7.83   4.869e-15   ***      0.74218     1.23777 
lcTwo_children    1.27523     0.13816     9.23   2.711e-20   ***      1.00443     1.54603 
lcThree_plus      1.21568     0.14245     8.53   1.413e-17   ***      0.93648     1.49487 
age              -0.01878     0.00625    -3.00    0.002659   **      -0.03102    -0.00653 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                  Coef.   Std. Err. 
var_Intercept   0.27409     0.07138 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> (mymodel5 <- runMLwiN(logit(use) ~ 1 + lc + age + (1 | district), D = "Binomial", estoptions = list(nonlinear = c(N = 1,
+   M = 2), startval = list(FP.b = mymodel4@FP, FP.v = mymodel4@FP.cov, RP.b = mymodel4@RP, RP.v = mymodel4@RP.cov)),
+   data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
JOIN -1.3671107908183 0.989975145198351 1.27523297062681 1.21567634144111 -0.0187756435513459 '_FP_b'
JOIN 0.0152221068761287 -0.00857801335032769 0.0159844374382819 -0.010151723167991 0.00868106697570791 0.0190895131628167 -0.0124154753668934 0.0096459226360998 0.012442006063399 0.0202921736477393 0.000326589121711455 -0.000146849092291606 -0.000325928858650572 -0.000596278835798142 3.9048334047441e-05 '_FP_v'
JOIN 0.274088563383711 1 '_RP_b'
JOIN 0.0050956166989184 0 0 '_RP_v'
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min     mean max N_complete min_complete mean_complete max_complete
district 60   3 47.78333 173         60            3      47.78333          173
Estimation algorithm:  IGLS PQL2        Elapsed time : 0.1s 
Number of obs:  2867 (from total 2867)        The model converged after 5 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age + (1 | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                    Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept        -1.46602     0.12791   -11.46   2.059e-30   ***     -1.71671    -1.21532 
lcOne_child       1.06285     0.12882     8.25   1.575e-16   ***      0.81037     1.31533 
lcTwo_children    1.37010     0.14167     9.67   4.014e-22   ***      1.09242     1.64778 
lcThree_plus      1.30391     0.14595     8.93   4.104e-19   ***      1.01786     1.58997 
age              -0.02005     0.00640    -3.13    0.001747   **      -0.03260    -0.00749 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                  Coef.   Std. Err. 
var_Intercept   0.30776     0.07899 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
>  if (!require(car)) {
+   warning("car package required to use linearHypothesis() function")
+ } else {
+   linearHypothesis(mymodel5, "RP2_var_Intercept = 0")
+ }
Linear hypothesis test

Hypothesis:
RP2_var_Intercept = 0

Model 1: restricted model
Model 2: logit(use) ~ 1 + lc + age + (1 | district)

  Res.Df Df  Chisq Pr(>Chisq)    
1   2861                         
2   2860  1 15.181  9.769e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> 
> # Variance partition coeficient . . . . . . . . . . . . . . . . . . . . .131
> 
> set.seed(1)
> 
> invlogit <- function(x) exp(x)/(1 + exp(x))
> 
> u <- sqrt(coef(mymodel5)["RP2_var_Intercept"]) * qnorm(runif(5000))
> 
> p1 <- invlogit(coef(mymodel5)["FP_Intercept"] + u)
> 
> p2 <- invlogit(coef(mymodel5)["FP_Intercept"] + coef(mymodel5)["FP_lc3plus"] + coef(mymodel5)["FP_age"] * -9.7 + u)
> 
> p3 <- invlogit(coef(mymodel5)["FP_Intercept"] + coef(mymodel5)["FP_age"] * 15.3 + u)
> 
> v1 <- p1 * (1 - p1)
> lev2var1 <- sd(p1)^2
> lev1var1 <- mean(v1)
> 
> v2 <- p2 * (1 - p2)
> lev2var2 <- sd(p2)^2
> lev1var2 <- mean(v2)
> 
> v3 <- p3 * (1 - p3)
> lev2var3 <- sd(p3)^2
> lev1var3 <- mean(v3)
> 
> cat(paste0("VPC = ", lev2var1/(lev2var1 + lev1var1)))
VPC = 0.0491754301807682> 
> cat(paste0("VPC for a young women with 3+ children (low probability use) = ", lev2var2/(lev2var2 + lev1var2)))
VPC for a young women with 3+ children (low probability use) = NA> 
> cat(paste0("VPC for an old woman with no children (high probability use) = ", lev2var3/(lev2var3 + lev1var3)))
VPC for an old woman with no children (high probability use) = 0.0419272279288916> 
> # Adding further explanatory variables . . . . . . . . . . . . . . . . . 134
> 
> table(bang$educ)

               None       Lower_primary       Upper_primary Secondary_and_above 
               1806                 357                 265                 439 
> 
> (mymodel6 <- runMLwiN(logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 | district), D = "Binomial", estoptions = list(nonlinear = c(N = 1,
+   M = 2), startval = list(FP.b = mymodel5@FP, FP.v = mymodel5@FP.cov, RP.b = mymodel5@RP, RP.v = mymodel5@RP.cov)),
+   data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
JOIN -1.46601726374528 1.06284833330899 1.37009902258045 1.30391318250182 -0.0200481959375968 0 0 0 0 0 '_FP_b'
JOIN 0.0163603695419892 -0.00890762958205187 0.0165943547340283 -0.0106419958708061 0.00897007438476784 0.0200716252826363 -0.0130375955794902 0.0100149271005426 0.0130197255583241 0.0213006854805154 0.000347319944589179 -0.000157647285641369 -0.000346447992241024 -0.00063025959287392 4.10233254113274e-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '_FP_v'
JOIN 0.307757058623237 1 '_RP_b'
JOIN 0.00623907692791556 0 0 '_RP_v'
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min     mean max N_complete min_complete mean_complete max_complete
district 60   3 47.78333 173         60            3      47.78333          173
Estimation algorithm:  IGLS PQL2        Elapsed time : 0.12s 
Number of obs:  2867 (from total 2867)        The model converged after 5 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                             Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept                 -2.05249     0.13819   -14.85   6.704e-50   ***     -2.32334    -1.78164 
lcOne_child                1.15141     0.13413     8.58    9.12e-18   ***      0.88853     1.41429 
lcTwo_children             1.51227     0.14734    10.26   1.026e-24   ***      1.22349     1.80105 
lcThree_plus               1.50191     0.15271     9.83   7.972e-23   ***      1.20260     1.80122 
age                       -0.01736     0.00665    -2.61    0.009033   **      -0.03039    -0.00433 
urbanUrban                 0.53306     0.10482     5.09   3.665e-07   ***      0.32762     0.73850 
educLower_primary          0.24654     0.12836     1.92     0.05478   .       -0.00505     0.49812 
educUpper_primary          0.72433     0.14380     5.04   4.731e-07   ***      0.44248     1.00618 
educSecondary_and_above    1.17020     0.12716     9.20   3.506e-20   ***      0.92096     1.41944 
hinduHindu                 0.43282     0.12765     3.39   0.0006973   ***      0.18263     0.68301 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                  Coef.   Std. Err. 
var_Intercept   0.23364     0.06534 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> # 9.4 A two-level random coeficient model . . . . . . . . . . . . . . . .135
> 
> (mymodel7 <- runMLwiN(logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 + urban | district), D = "Binomial",
+   estoptions = list(nonlinear = c(N = 1, M = 2), startval = list(FP.b = mymodel6@FP, FP.v = mymodel6@FP.cov, RP.b = mymodel6@RP,
+     RP.v = mymodel6@RP.cov)), data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
JOIN -2.0524878126349 1.1514091831992 1.51227328126239 1.50190931077976 -0.0173564094857298 0.533063022676533 0.246535751852934 0.724328418970923 1.17019898626514 0.432817014945708 '_FP_b'
JOIN 0.0190969057181895 -0.010249298461099 0.0179897690949509 -0.0123640566867248 0.00988274764015615 0.0217090961479245 -0.0151256474103302 0.0110367966927285 0.0143831177429424 0.0233214607718276 0.000362885872261872 -0.000160504805163484 -0.000363883885511234 -0.000670143247882038 4.41947424646325e-05 -0.00280269546137152 0.0005261144156233 0.000849328751980673 0.000702752807306554 -1.93563397557956e-05 0.0109869565822594 -0.00283420656434017 0.00036229338945785 0.000199158958934153 -0.000127364884113156 4.59999223868248e-05 -0.00059630716642084 0.0164773314339917 -0.00265716065127714 -0.000132304943914623 -1.94267258205956e-05 -0.00012744129452743 7.55732006752395e-05 -0.000986714124785436 0.00312301236770023 0.0206794937660382 -0.00433453673756542 0.00178163571915053 0.00218751328572626 0.00282048124886048 3.59899532831458e-05 -0.00290733241170694 0.00339389445448919 0.00374076332064882 0.0161709104496365 -0.00310427091118153 0.000291548581329297 0.000563339535587039 0.00123544577460758 -5.5691862556009e-05 6.03577341367192e-05 2.13428023572961e-05 -0.000294041097998737 0.000123287082941657 0.0162946578344111 '_FP_v'
JOIN 0.233641534263787 0 0 1 '_RP_b'
JOIN 0.00426981357741411 0 0 0 0 0 0 0 0 8.77180296005631e-36 '_RP_v'
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min     mean max N_complete min_complete mean_complete max_complete
district 60   3 47.78333 173         60            3      47.78333          173
Estimation algorithm:  IGLS PQL2        Elapsed time : 0.21s 
Number of obs:  2867 (from total 2867)        The model converged after 8 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 + urban | 
    district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                             Coef.   Std. Err.        z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept                 -2.09365     0.14823   -14.12   2.704e-45   ***     -2.38418    -1.80312 
lcOne_child                1.16597     0.13489     8.64    5.44e-18   ***      0.90159     1.43036 
lcTwo_children             1.52627     0.14841    10.28    8.31e-25   ***      1.23539     1.81715 
lcThree_plus               1.52278     0.15408     9.88   4.924e-23   ***      1.22079     1.82477 
age                       -0.01818     0.00670    -2.71     0.00667   **      -0.03131    -0.00504 
urbanUrban                 0.57420     0.13647     4.21    2.58e-05   ***      0.30674     0.84167 
educLower_primary          0.24518     0.12951     1.89     0.05834   .       -0.00866     0.49901 
educUpper_primary          0.73327     0.14533     5.05   4.523e-07   ***      0.44843     1.01811 
educSecondary_and_above    1.17969     0.12839     9.19   4.003e-20   ***      0.92804     1.43134 
hinduHindu                 0.50956     0.13292     3.83   0.0001263   ***      0.24904     0.77007 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                              Coef.   Std. Err. 
var_Intercept               0.35974     0.09867 
cov_Intercept_urbanUrban   -0.25801     0.11151 
var_urbanUrban              0.34896     0.17340 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> if (!require(car)) {
+   warning("car package required to use linearHypothesis() function")
+ } else {
+   linearHypothesis(mymodel7, "RP2_cov_Intercept_urbanUrban = 0")
+ }
Linear hypothesis test

Hypothesis:
RP2_cov_Intercept_urbanUrban = 0

Model 1: restricted model
Model 2: logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 + urban | 
    district)

  Res.Df Df  Chisq Pr(>Chisq)  
1   2854                       
2   2853  1 5.3534    0.02068 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> if (!require(car)) {
+   warning("car package required to use linearHypothesis() function")
+ } else {
+   linearHypothesis(mymodel7, "RP2_var_urbanUrban = 0")
+ }
Linear hypothesis test

Hypothesis:
RP2_var_urbanUrban = 0

Model 1: restricted model
Model 2: logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 + urban | 
    district)

  Res.Df Df  Chisq Pr(>Chisq)  
1   2854                       
2   2853  1 4.0499    0.04417 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> if (!require(car)) {
+   warning("car package required to use linearHypothesis() function")
+ } else {
+   linearHypothesis(mymodel7, c("RP2_cov_Intercept_urbanUrban = 0", "RP2_var_urbanUrban = 0"))
+ }
Linear hypothesis test

Hypothesis:
RP2_cov_Intercept_urbanUrban = 0
RP2_var_urbanUrban = 0

Model 1: restricted model
Model 2: logit(use) ~ 1 + lc + age + urban + educ + hindu + (1 + urban | 
    district)

  Res.Df Df  Chisq Pr(>Chisq)  
1   2855                       
2   2853  2 5.4717    0.06484 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> 
> (mymodel8 <- runMLwiN(logit(use) ~ 1 + lc + age + urban + educ + hindu + d_lit + d_pray + (1 + urban | district),
+   D = "Binomial", estoptions = list(nonlinear = c(N = 1, M = 2), startval = list(FP.b = mymodel7@FP, FP.v = mymodel7@FP.cov,
+     RP.b = mymodel7@RP, RP.v = mymodel7@RP.cov)), data = bang))
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
JOIN -2.09365114401487 1.16597447430765 1.52626872549308 1.52277975007742 -0.0181756030954108 0.574203474031062 0.245175315697699 0.733269026333489 1.17968787196353 0.509555790433903 0 0 '_FP_b'
JOIN 0.0219733196802088 -0.0104541888031348 0.0181959598975733 -0.0126078929973787 0.0100424237520441 0.0220256026701775 -0.0154396033053014 0.0112258857845742 0.0146092310342419 0.0237399309100986 0.000370979834478551 -0.000165444373814286 -0.000370526959534443 -0.000682628446709666 4.48870021916425e-05 -0.00767744730675773 0.000480161961342514 0.000870968622887474 0.000659233695422207 -2.36492406938521e-05 0.018622783474728 -0.00291720245689676 0.000407641708114746 0.00022877717133059 -7.54876972434869e-05 4.6508417010466e-05 -0.000705193071727363 0.0167726708681131 -0.0028148671892566 -2.73405942759159e-05 7.53379457881814e-05 -4.51502866793914e-05 7.59301974829547e-05 -0.00108779055559781 0.00324217544128519 0.0211210684327045 -0.00459151677866056 0.00186306059818434 0.00229861328230719 0.00297792844854554 3.349332574253e-05 -0.00294660060949399 0.00351102245403737 0.00388494224260141 0.0164852284249341 -0.00349614929466233 0.000407001163384805 0.000674570662564585 0.00135662192237635 -5.71220594618246e-05 -2.59130801425283e-05 2.33979892126268e-05 -0.000157509096792477 0.000341272982594661 0.0176668751018998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '_FP_v'
JOIN 0.359738458340248 -0.258012324937657 0.348955050974729 1 '_RP_b'
JOIN 0.00973512093334196 -0.00773262176575147 0.0124351943508086 0.00611415126486965 -0.0150050721588829 0.0300670987206531 0 0 0 0 '_RP_v'
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4
iteration 5

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min     mean max N_complete min_complete mean_complete max_complete
district 60   3 47.78333 173         60            3      47.78333          173
Estimation algorithm:  IGLS PQL2        Elapsed time : 0.16s 
Number of obs:  2867 (from total 2867)        The model converged after 6 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use) ~ 1 + lc + age + urban + educ + hindu + d_lit + d_pray + 
    (1 + urban | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
                             Coef.   Std. Err.       z    Pr(>|z|)         [95% Conf.   Interval] 
Intercept                 -1.72295     0.26327   -6.54   5.976e-11   ***     -2.23896    -1.20695 
lcOne_child                1.17020     0.13503    8.67   4.462e-18   ***      0.90555     1.43486 
lcTwo_children             1.53401     0.14861   10.32     5.6e-25   ***      1.24273     1.82529 
lcThree_plus               1.52828     0.15425    9.91   3.857e-23   ***      1.22595     1.83061 
age                       -0.01814     0.00670   -2.71    0.006761   **      -0.03127    -0.00501 
urbanUrban                 0.52822     0.13814    3.82   0.0001314   ***      0.25747     0.79897 
educLower_primary          0.23770     0.12995    1.83     0.06738   .       -0.01700     0.49239 
educUpper_primary          0.74232     0.14559    5.10   3.421e-07   ***      0.45697     1.02768 
educSecondary_and_above    1.19596     0.12895    9.27   1.779e-20   ***      0.94323     1.44869 
hinduHindu                 0.50955     0.13249    3.85   0.0001201   ***      0.24987     0.76922 
d_lit                      2.07495     1.70615    1.22      0.2239           -1.26905     5.41894 
d_pray                    -1.40837     0.53393   -2.64    0.008346   **      -2.45486    -0.36188 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                              Coef.   Std. Err. 
var_Intercept               0.30501     0.08818 
cov_Intercept_urbanUrban   -0.23343     0.10549 
var_urbanUrban              0.35162     0.17408 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> 
> # 9.5 Modelling binomial data . . . . . . . . . . . . . . . . . . . . . .139
> 
> # Modelling district-level variation with district-level proportions . . 139
> 
> # Creating a district-level data set . . . . . . . . . . . . . . . . . . 140
> 
> if (!require(doBy)) {
+   warning("package doBy required to run this example")
+ } else {
+   bangshort <- summaryBy(use + cons ~ district + d_lit + d_pray, FUN = c(mean, sum), data = bang)
+   bangshort$use.sum <- NULL
+   colnames(bangshort) <- c("district", "d_lit", "d_pray", "use", "cons", "denom")
+   bangshort$use <- bangshort$use - 1
+ 
+   # Fitting the model . . . . . . . . . . . . . . . . . . . . . . . . . . .142
+ 
+   (mymodel9 <- runMLwiN(logit(use, denom) ~ 1 + d_lit + d_pray + (1 | district), D = "Binomial", data = bangshort))
+   print(mymodel9)
+ 
+   (mymodel10 <- runMLwiN(logit(use, denom) ~ 1 + d_lit + d_pray + (1 | district), D = "Binomial", estoptions = list(nonlinear = c(N = 1,
+     M = 2), startval = list(FP.b = mymodel9@FP, FP.v = mymodel9@FP.cov, RP.b = mymodel9@RP, RP.v = mymodel9@RP.cov)),
+     data = bangshort))
+ }
Loading required package: doBy
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min mean max N_complete min_complete mean_complete max_complete
district 60   1    1   1         60            1             1            1
Estimation algorithm:  IGLS MQL1        Elapsed time : 0.04s 
Number of obs:  60 (from total 60)        The model converged after 4 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use, denom) ~ 1 + d_lit + d_pray + (1 | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
               Coef.   Std. Err.       z   Pr(>|z|)         [95% Conf.   Interval] 
Intercept   -0.39797     0.23395   -1.70    0.08892   .       -0.85650     0.06056 
d_lit        3.75968     1.61790    2.32    0.02014   *        0.58865     6.93071 
d_pray      -1.19571     0.50106   -2.39    0.01702   *       -2.17777    -0.21366 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                  Coef.   Std. Err. 
var_Intercept   0.21061     0.05890 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
/nogui option ignored
ECHO    0


Echoing is ON
BATC 1

Batch mode is ON
MAXI 2
STAR
iteration 0
iteration 1

Convergence not achieved
JOIN -0.397970286407069 3.75968303276531 -1.19571286717458 '_FP_b'
JOIN 0.054731962557466 -0.164897319586594 2.61760668722093 -0.0718793179017356 -0.308613346250095 0.251058756151548 '_FP_v'
JOIN 0.210612498304647 1 '_RP_b'
JOIN 0.00346930817161946 0 0 '_RP_v'
TOLE 2
MAXI 20
NEXT
iteration 2
iteration 3
iteration 4

Convergence achieved
ECHO 0
Execution completed


-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.05)  multilevel model (Binomial) 
          N min mean max N_complete min_complete mean_complete max_complete
district 60   1    1   1         60            1             1            1
Estimation algorithm:  IGLS PQL2        Elapsed time : 0.06s 
Number of obs:  60 (from total 60)        The model converged after 5 iterations.
Log likelihood:      NA 
Deviance statistic:  NA 
--------------------------------------------------------------------------------------------------- 
The model formula:
logit(use, denom) ~ 1 + d_lit + d_pray + (1 | district)
Level 2: district     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
               Coef.   Std. Err.       z   Pr(>|z|)         [95% Conf.   Interval] 
Intercept   -0.42665     0.24072   -1.77    0.07633   .       -0.89845     0.04515 
d_lit        3.99760     1.68806    2.37    0.01788   *        0.68906     7.30614 
d_pray      -1.25083     0.52205   -2.40    0.01658   *       -2.27402    -0.22763 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the district level: 
                  Coef.   Std. Err. 
var_Intercept   0.22523     0.06234 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err. 
var_bcons_1   1.00000     0.00000 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
> ############################################################################
> 
> proc.time()
   user  system elapsed 
   4.03    0.81    7.85