
Multiple Imputation for Multilevel Models with Missing Data Using 

Stat-JR 

Introduction 
In this document we introduce a Stat-JR super-template for 2-level data that allows for missing 

values in explanatory or response variables, and can handle normal or categorical variables.  This 

covers similar content to the DEEP eBook accompanying the template (the eBook further allows you 

to enter your inputs as you proceed through worked examples). 

Stat-JR super-templates are so-called because they call other templates; the super-template 

documented here, 2LevelImpute, allows the user separately to specify the imputation and model of 

interest (MOI). The multiply-imputed datasets are then produced, and the MOI fitted to each (via a 

variety of other Stat-JR templates 2LevelImpute calls); these are combined using Rubin's rules, and 

the results for the final MOI fit are then returned (together with results from a complete case 

analysis, for comparison). If your computer has multiple processors, these will be used in parallel for 

the imputation models. 

It will be assumed that you have a knowledge of the basics of methods for missing data using a joint 

modelling approach. If not, you might like to look at the above reference and for a general 

background overview the missing data web site http://missingdata.lshtm.ac.uk/ that has references 

to papers and recent developments. 

The template we will be using incorporates the existing REALCOM procedures, but provides a very 

much faster implementation.  

Authors of templates:  Core team templates written by Chris Charlton and William Browne 

Authors of documentation: Harvey Goldstein and Richard Parker 

Below, we run through the following: 

1. Using the TREE interface 

2. Overview of inputs 

3. Worked example 

Using the TREE interface 
For details of how to install Stat-JR see http://www.bristol.ac.uk/cmm/software/statjr/order-statjr/ 

Below we have a screenshot from TREE, in which we have selected the template 2LevelImpute and 

the dataset tutmiss (as used in this example), and have started to specify our inputs. For details of 

how to select templates and datasets when using Stat-JR’s TREE interface, see A Beginner’s Guide to 

Stat-JR’s TREE interface (http://www.bristol.ac.uk/cmm/media/migrated/1-0-1/manual-tree-

beginners.pdf). 

http://www.bristol.ac.uk/cmm/software/statjr/
http://missingdata.lshtm.ac.uk/
http://www.bristol.ac.uk/cmm/software/realcom/
http://www.bristol.ac.uk/cmm/software/statjr/order-statjr/
http://www.bristol.ac.uk/cmm/media/migrated/1-0-1/manual-tree-beginners.pdf
http://www.bristol.ac.uk/cmm/media/migrated/1-0-1/manual-tree-beginners.pdf


 

You can, of course, upload your own dataset in TREE as well. If it is already saved as a .dta file, then 

you can do so via (i) Dataset > Upload, which will upload it into the temporary memory cache, or by 

(ii) saving your dataset in the StatJR/datasets folder, and then selecting Debug > Reload datasets 

(see top-right of the screen, in the black bar). If, instead, you have it (iii) saved as a .txt file, you can 

use Stat-JR's LoadTextFile template to save it into the temporary memory cache. In the case of 

option (i) and (iii) the dataset will be available for use in the current session, but you then need to 

download it (as a .dta file) via Dataset > Download (e.g. saving it into the StatJR/datasets folder) for 

use in the future sessions too. 

In the screenshot below, we have specified all the inputs, and after pressing the Next button a final 

time the Run button will appear, along with some other outputs in the pane at the bottom of the 

browser window (not shown here). 



 



Overview of inputs 

Here we give a brief overview of the inputs Stat-JR requires in order to run the 2LevelImpute super-

template: 

Multilevel or not? 

 You are first asked if either the model of interest (MOI) and/or imputation have two levels 

(or just one). In general, you would want to fit the same number of levels in your imputation 

model as in the MOI, but there may be some situations where for simplicity, where the level 

2 random effects are small, the MOI might be a single level model, but you would still wish 

to fit a 2-level imputation model. In such a case you will still need to specify the level 2 ID. 

About your MOI 

 You are then asked a few questions about the structure of your MOI, including whether it is 

a 2-level model or not (see note, above), the distribution you would like to use to model the 

response variable, whether you would like to fit a random slope (or coefficient) model or not 

(if applicable), and your response and explanatory variables. 

About your imputation model 

 After that, you are prompted for the level 1 variables to be used as responses in the 

imputation model, and to specify their distribution and explanatory variables. Then, if 

applicable, you are asked about the variables at level 2 in the imputation model as well. 

 Typically these response variables are any that have missing values. Those variables without 

missing values, if they are to be used in the MOI, can be declared as either response or 

explanatory variables in the imputation model. In addition you may wish to include 

'auxiliary' variables (not in the MOI) in the imputation model if these are associated with the 

propensity to be missing. 

 You may have a different set of explanatory variables for each response. This may be useful 

where you wish to have auxiliary variables relevant to certain responses only. 

Estimation options 

 Finally, you are asked various questions about the estimation procedures, including the 

number of imputed datasets to use, the interval between iterations (to ensure approximate 

independence) at which to impute a complete dataset and, for the MOI, the burn in and 

number of iterations. 

Note that all variables are stored as vectors of the same length as those in the full data set. Where 

these are declared as level 2 variables the first one in each level 2 unit is chosen. In fact the 

template checks to determine whether such values are actually constant within each level 2 unit 

and the user will be notified if not. 



Worked example 

Dataset 

In the following example we will consider the tutorial dataset that has been used many times as an 

example of a 2-level educational dataset. See the MLwiN manual, for example.1 

The dataset consists of a sample of records of school achievement for 4059 pupils within 65 schools - 

some missing values have been randomly introduced.  

The dataset (saved as tutmiss) is summarised in the table below. 

Column name N Missing Min Max Description 

school 4059 0 1 65 Numeric school identifier 

student 4059 0 1 198 Numeric student identifier 

normexam 4059 0 -3.67 3.67 Students' exam score at age 16, normalised to have 
approximately a standard Normal distribution. 

cons 4059 0 1 1 A column of ones. If included as an explanatory 
variable in a regression model, its coefficient is the 
intercept. 

standlrt 4059 0 -2.93 3.02 Students' score at age 11 on the London Reading Test 
(LRT), standardised using Z-scores. 

girl 4059 0 0 1 Students' gender: 0=boy; 1=girl 

Schgend 4059 0 1 3 School gender: 1=mixed; 2=boys' school; 3=girls' 
school 

Avslrt 4059 0 -0.76 0.64 Average LRT score in school 

Schav 4059 0 1 3 Average LRT score in school, coded into 3 categories: 
1=bottom 25%; 2=middle 50%; 3=top 25% 

Vrband 4059 0 1 3 Students' score in test of verbal reasoning at age 11, 
coded into 3 categories: 1=top 25%; 2=middle 50%; 
3=bottom 25% 

schgendmiss 4059 439 0 2 As schgend, but with missing values randomly 
introduced. 

Avslrtmiss 4059 431 -0.76 0.64 As avslrt, but with missing values randomly 
introduced. 

standlrtmiss 4059 400 -2.93 3.02 As standlrt, but with missing values randomly 
introduced. 

Girlmiss 4059 435 0 1 As girl, but with missing values randomly introduced. 

Working through the inputs 

In this guided example, using the dataset described above, we will be fitting a 2-level model. 

1. Specifying the number of levels, and structure of MOI 

 First you will be asked if either the MOI or imputation model has two levels; we're going to 

fit a 2-level MOI, so will answer Yes. 

 Note that normally you will wish to have the same number of levels or classifications for the 

MOI and the imputation model. In some situations, however, for example if level 2 effects 

are very small, you may want to fit a 1 level MOI for simplicity, while still carrying out 

                                                           
1 Rasbash, J., Steele, F., Browne, W.J. and Goldstein, H. (2012). A user's guide to MLwiN Version 2.27. 

Centre for Multilevel Modelling, University of Bristol. 



imputation at 2 levels. If either the MOI or the imputation model is at 2 levels, you will be 

asked for the level 2 ID. 

 You will then be asked to enter the level 2 ID, which in this example is school; this will be 

used in the MOI and/or imputation model, as appropriate. 

 

 Next, you will be asked a series of questions about your MOI model: whether you want to 

model 1 or 2 levels (we're modelling 2 levels in this example), the distribution you would like 

to use to model the response variable in your MOI (Normal, in our example), and finally 

whether you would like to fit random slopes / coefficients or not (we'll answer No; note, as 

indicated in the hover-over help available for this input, if you would like to fit a random 

slope/coefficicent(s) model, make sure that you include the response(s) in your MOI, AND 

the variables whose coefficients you wish to randomly-vary at level 2, as responses in the 

imputation model). 

 

 The 2LevelImpute template takes this input, and uses it to choose the best Stat-JR template 

to fit your MOI. If you make the choices suggested above, it will choose a template called 

2LevelMod, which fits random intercept models for Normal, binomial and Poisson 

responses. 

2. Specifying the variables in the MOI  

You will then be asked for the response and explanatory variables for the MOI. In this worked 

example we suggest a simple 2 level variance components model with: 

 normexam as the response; 

 

 cons, schgendmiss, standlrtmiss and girlmiss as explanatory variables (as you click on these 

you'll see that they appear in the box beneath; to deselect any chosen in error, simply click 

on the variable name in the lower box); remember to specify that schgendmiss is categorical 

(you can do so by using the checkboxes which appear below the input box when you select 

your explanatory variables). 

3. Specifying the imputation model 

Once you have specified the MOI, you will then, for each level, be asked to enter the responses for 

the imputation model; we'll work through each of the two levels in the sections below. 

 Note that all explanatory variables must have no missing values - if any variable does, then 

include it as a response.  

Level 1 

 Given our MOI, we suggest the variables normexam, standlrtmiss and girlmiss for level 1; 

you'll then need to specify their distributions, here as Normal, Normal, and Binary, 

respectively. 



 You will also be asked to enter the explanatory (predictor) variables for each of these as 

follows:  

o for normexam just use an intercept cons; 

 

o for standlrtmiss use cons and also vrband (making sure that you tick the box that 

asks whether vrband should be treated as categorical - this will then use appropriate 

dummy variables where the final category is taken as the reference) – see note 

below; 

 

o for girlmiss use cons. 

 Since we have selected values to be missing purely at random the use of a second predictor 

for standlrtmiss is not necessary, but you can include it to demonstrate that, as an auxiliary 

variable (not in the MOI) it can be used to help ensure missingness at random (MAR).  

 Finally, you'll be asked if there are any responses at level 2 for the imputation model; we'll 

answer Yes. 

Level 2 

 Next, you'll be asked to enter the responses for the imputation model at this level. We 

suggest using the variable schgendmiss which is coded 0 for mixed schools, 1 for boy's 

school and 2 for girl's school: i.e. when asked, indicate that it has an Unordered distribution, 

with 3 categories (note, as indicated in the hover-over help available for this input, your 

categories, as represented in your dataset, need to be numbered from zero, sequentially in 

steps of one (i.e. 0,1,2 if you had 3 categories); if they are not, an error message will be 

returned). 

 You will then be asked for explanatory variables for each category dummy - we suggest you 

use cons for each. 

 Note: If we have a response at level 2, it is not meaningful, in general, to have explanatory 

variables at level 1. So you should not specify these for any level 2 responses in the 

imputation model. You may, of course, specify level 2 explanatory variables for level 1 

responses in the imputation model: this may be particularly useful for auxiliary variables.  

 

A note about the latent normal model 
 

Multiple imputation theory strictly applies only where the set of (response plus explanatory) 
variables for which we wish to impute missing values have a joint multivariate normal distribution 
for the variables all treated as responses. Where we have categorical data this is clearly not the case 
and we therefore use a latent normal formulation (See: Goldstein, H., Carpenter, J., Kenward, M. and 
Levin, K. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 
9(3), 173-197). This works as follows: 

http://dx.doi.org/10.1177/1471082X0800900301


 
 For a binary response we utilise a probit model where we assume that the (0,1) response is 

derived from an underlying standard normal distribution with a mean value (determined by 
whatever explanatory variable predictors are in the imputation model for this response) that 
acts as a threshold - values above which are observed as a '1' and below which as a '0'. The 
MCMC algorithm incorporates a step that takes a random draw from the corresponding part 
of the standard normal distribution according to whether a '1' or '0' is observed, or imputes 
randomly if a value is missing. 
 

 For an ordered categorical response a similar procedure is used with additionally a set of 
thresholds defined on the standard normal scale that delineate the ordered categories. 
 

 For an unordered categorical variable with p categories a (p-1) dimensional multivariate 
normal distribution is generated. 
 

 For each of these the underlying normal distributions condition on the other responses (and 
explanatory variables) so that a joint multivariate normal is finally generated. 
 

 

4. Specifying the number of iterations, etc., and fitting the model 

 Next, you will be asked if you want to use the conditional algorithm or not; we suggest 

answering Yes, since the conditional algorithm is faster. 

 

 You will then be asked to specify the number of imputed datasets to use, the interval before 

the first imputation (this includes any burn-in period), the interval before any subsequent 

imputations (to ensure approximate independence) and, for the MOI, the burn in and 

number of iterations. Obviously the numbers you enter here will depend on the 

characteristics of your data, etc. 

 After clicking on the last Next button, and then the Run button if using the template via the 

Stat-JR:TREE interface. The template will then run (the progress gauge in the black bar will 

change from Ready to Working to indicate it is busy). 

If your computer has more than one core processor, the imputation models and associated MOIs will 

in fact be run with parallel chains.  

Inspecting the results 

Once it has finished, and all the results have been returned, you can view the outputted files in the 

pane towards the bottom of the browser window, or press ‘Popout’ to view the selected output in 

another browser tab (see below for details of the various outputs returned). 

For example, to view the imputed datasets, choose 

"Imputation_Model_impute_datafile_chain0_iter1000", 

"Imputation_Model_impute_datafile_chain1_iter1000", etc. Note that the nomenclature here will 



depend on both the inputs you have chosen, and the number of processors on your machine. For 

example, if I chose: 

 Number of imputed data sets: 5 

 Number of iterations before first imputation: 1000 

 Number of iterations between subsequent imputations: 500 

on my machine with four processors, then I would see: 

 "...chain0_iter1000" 

 "...chain1_iter1000" 

 "...chain2_iter1000" 

 "...chain3_iter1000" 

 "...chain0_iter1500" 

 "...chain1_iter1500" 

 "...chain2_iter1500" 

 "...chain3_iter1500" 

Here it has ran a chain / thread on each of the four available processors, and derived a dataset from 

each after the 1000th iteration (as stated earlier, this interval includes the burn-in). However, since 

this number is less than the requested 5 imputed datasets I asked for, it has also constructed four 

more datasets following a further 500 iterations (since I specified Number of iterations between 

subsequent imputations: 500). However, it will only use the first of these ("...chain0_iter1500") to 

make up the five datasets it needs. 

The imputed datasets are available in the list of datasets accessible via Dataset > Choose in the black 

bar at the top. You can download these (as Stata format *.dta files) by first selecting the relevant 

dataset from the list, pressing the neighbouring Use button, and then downloading via Dataset > 

Download (again via the black bar at the top; note that both 

Imputation_Model_impute_datafile_chain0_iter1000, etc. and impute_datafile_chain0_iter1000, 

etc. will appear in this list, but there's no need to download both (they're the same, but simply saved 

twice, with and without the Imputation_Model prefix; also, don't confuse these with the level 2 

datasets (e.g. impute__L2Data_chain0_iter1000 or 

Imputation_Model_impute__L2Data_chain0_iter1500). 

Alternatively, one can press the green Download button to download all these outputted files (now 

supported for the 2LevelImpute template from Stat-JR version 1.0.2). Note that this may take some 

time, as Stat-JR prepares all the outputs for downloading; you may see a flurry of activity in the 

corresponding command prompt window as it does so. Note also that the downloaded dataset files 

lack the .dta file extension, so this will need to be added manually. 

What is returned in the results pane? 

ResultsTable:Imputation 

Estimates generated using Rubin's rules 



ResultsTable:CompleteCases 

Estimates from a complete cases model which is simply ran for comparison. Since, in the worked 

example above, the data were set missing at random we would not expect the estimates to differ 

much from the estimates returned in ResultsTable:Imputation, although the standard errors tend to 

be increased for the complete case analysis where 30% of the records have at least one variable in 

the MOI missing and have been deleted. 

Imputation_Model_ModelParameters; Imputation_Model_ModelResults 

For this template these outputs return the same information (because there's no DIC) 

Objects with prefix CompleteCasesModel 

Everything with prefix CompleteCasesModel refers to the complete cases model which is simply ran 

for comparison. Most of these files won't be of much interest, although estimates from the 

complete cases model can be found in CompleteCasesModel_ModelParameters, 

CompleteCasesModel_ModelFit and CompleteCasesModel_ModelResults. 

Imputation_Model_impute_datafile_chainA_iterB 

Imputed level 1 datasets. As discussed above, the nomenclature here (i.e. for 'A' and 'B') will depend 

on both the inputs you have chosen, and the number of processors on your machine. 

Imputation_Model_impute__L2Data_chainA_iterB 

As above, but at level 2. 

Imputation_Model_out 

Chain dataset for the imputation model, length of which will depend on the estimation options 

chosen (replicated as out in the list of datasets). 

CombinedResults 

Chains for each imputation model, we 'pretend' that each MOI from each imputed dataset is a chain 

from a multiple chain model, which allows us to combine them to derive diagnostic graphs. 

Objects with the prefix Model1, Model2, etc. 

Everything with the prefix Model1, Model2, etc. (up to the number of imputed datasets requested), 

relates to the fitted MOI models (they are the outputs from the Stat-JR template called by 

2LevelImpute when it fits the MOI towards the end of the execution). 

*.svg 

MCMC diagnostic plots. The top-left graph shows the values plotted against iteration number, and is 

useful to confirm that the chain is mixing well, meaning that it visits most of the posterior 

distribution in few iterations. The top-right graph contains a kernel density plot representing the 

posterior distribution for this parameter. The two graphs in the middle row are time series plots 

known as the autocorrelation (ACF) and partial autocorrelation (PACF) functions. The ACF indicates 

the level of correlation within the chain; this is calculated by moving the chain by a number of 

iterations (called the lag) and looking at the correlation between this shifted chain and the original. 

The PACF picks up the degree of auto-regression in the chain. By definition a Markov chain should 

act like an autoregressive process of order 1, as the Markov definition is that the future state of the 

chain is independent of all the past states of the chain given the current value. If, for example, in 



reality the chain had additional dependence on the past 2 values, then we would see a significant 

PACF at lag 2. The bottom-left plot is the estimated Monte Carlo standard error (MCSE) plot for the 

posterior estimate of the mean. As MCMC is a simulation-based approach this induces (Monte Carlo) 

uncertainty due to the random numbers it uses. This uncertainty reduces with more iterations, and 

is measured by the MCSE, and so this graph details how long the chain needs to be run to achieve a 

specific MCSE. The sixth (bottom-right) plot is a multiple chains diagnostic: a Brooks-Gelman-Rubin 

diagnostic plot (BGRD; Brooks and Gelman, 1998). This plot looks at mixing across the chains: the 

green and blue lines measure variability between and within the chains, and the red is their ratio. 

For good convergence the red line should be close to 1.0. 

 

Note that the diagnostics the 2LevelImpute template automatically returns are derived in different 

ways: it returns separate trace plots (on the same graph) for each chain, separate kernel density 

plots (on same graph) for each chain, it joins together the chains for the ACF, PACF and MCSE, but 

treats the chains separately for the BGRD (which is a multiple chains diagnostic); it also adds 

together the ESS value for each chain to derive the ESS value returned in the results. 

script.py 

This is the internal script, written in Python, which runs the execution you have requested. 

*.cpp 

C++ code fragments used to fit the model. 

Inputs 

A list of inputs for internal purposes. 

Imputation_Model_equation.tex 

Currently not implemented for this template, but in some other templates this returns a LaTeX 

rendering of the model equation. 

Imputation_Model_algorithm.tex 

Since this template executes via custom C code, this isn't terribly informative here, but in some 

other templates it returns the algebra for the conditional posterior distributions. 

Imputation_Model_Chains 

An object used for internal purposes, doesn't actually render anything if selected in the output pane. 


