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1. About Stat-JR

1.1 Stat-JR: software for scaling statistical heights.

The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an
increase in the availability and complexity of data sources, and an increase in the sophistication of
statistical methods that can be used. For the novice practitioner of statistical modelling it can seem
like you are stuck at the bottom of a mountain, and current statistical software allows you to
progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR
package is to assist practitioners in making their initial steps up the mountain, but also to cater for
more advanced practitioners who have already journeyed high up the path, but want to assist their
novice colleagues in making their ascent as well.

One issue with complex statistical modelling is that using the latest techniques can involve having to
learn new pieces of software. This is a little like taking a particular path up a mountain with one
piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of
statistical model), and then having to descend again and take another path, with another piece of
software, all the way up again to eventually get there, when ideally you’d just jump across! In Stat-
JR we aim to circumvent this problem via our interoperability features so that the same user
interface can sit on top of several software packages thus removing the need to learn multiple
packages. To aid understanding, the interface will allow the curious user to look at the syntax files
for each package to learn directly how each package fits their specific problem.

To complete the picture, the final group of users to be targeted by Stat-IR are the statistical
algorithm writers. These individuals are experts at creating new algorithms for fitting new models, or
better algorithms for existing models, and can be viewed as sitting high on the peaks with limited
links to the applied researchers who might benefit from their expertise. Stat-JR will build links by
incorporating tools to allow this group to connect their algorithmic code to the interface through
template-writing, and hence allow it to be exposed to practitioners. They can also share their code
with other algorithm developers, and compare their algorithms with other algorithms for the same
problem. A template is a pre-specified form that has to be completed for each task: some run
models, others plot graphs, or provide summary statistics; we supply a number of commonly used
templates and advanced users can use their own — see the Advanced User’s Guide. It is the use of
templates that allows a building block, modular approach to analysis and model specification.

At the outset it is worth stressing that there a number of other features of the software that should
persuade you to adopt it, in addition to interoperability. The first is flexibility — it is possible to fit a
very large and growing number of different types of model. Second, we have paid particular
attention to speed of estimation and therefore in comparison tests, we have found that the package
compares well with alternatives. Third it is possible to embed the software’s templates inside an e-
book which is exceedingly helpful for training and learning, and also for replication. Fourth, it
provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain
Monte Carlo procedures for calculating model estimates and functions of model estimates, via its
eStat engine. The eStat engine is a newly-developed estimation engine with the advantage of being
transparent in that all the algebra, and even the program code, is available for inspection.



While this is a beginner’s guide — it is a beginner’s guide to the software. We presume that you have
a good understanding of statistical models which can be gained from for example the LEMMA online
course (http://www.bristol.ac.uk/cmm/learning/online-course/index.html) . It also pre-supposes
familiarity with MCMC estimation and Bayesian modelling — the early chapters of Browne (2012)
available at http://www.bristol.ac.uk/cmm/software/mlwin/download/2-26/mcmc-web.pdf provide

a practical introduction to this material.

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in

Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this
software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of
the Stat-JR community: either through the creation of your own templates that can be shared with
others, or simply by providing feedback on existing templates.

Happy Modelling,

The Stat-JR team.


http://www.bristol.ac.uk/cmm/learning/online-course/index.html
http://www.bristol.ac.uk/cmm/software/mlwin/download/2-26/mcmc-web.pdf

1.2 About the Beginner’s guide

We have written three initial guides to go with the software: this Beginner’s Guide will cover how to
start up and run the software, with a particular focus on the TREE (Template Reading and Execution
Environment) interface. It will provide some simple examples and is designed for the researcher who
wishes to be able to use the software package without worrying too much about how the
mathematics behind the modelling works. As such, it does not go into detail on how users can
contribute to extending the software themselves: that is covered in the second, Advanced User’s,
guide, designed for those who want to understand in greater detail how the system works. There is
also a third, E-book User’s, guide which deals with the software’s alternative DEEP (Documents with
Embedded Execution and Provenance) E-book interface.

As well as these three Guides, we also publish support, such as answers to frequently asked
questions, on our website ( http://www.bristol.ac.uk/cmm/software/statjr ), where you can also find

our forum in which users can discuss the software.

In this Beginner’s Guide we first describe how to install Stat-JR, and then provide a ‘Quick-start’
guide as a quick visual overview, with brief notes, of the basics of how to work with Stat-JR via TREE.
There then follows more detailed sections which provide further explanation, together with point-
and-click examples for you to work through.

We look at an example application taken from education research, fitting a Normal response model
for a continuous outcome. Here our aim is more to illustrate how to use the software than primarily
how to do the best analysis of the dataset in question, and we will demonstrate the interoperability
features with the other software packages that link to Stat-JR as well. We will then look at a second
example from demography that illustrates binomial response models for a discrete outcome.

2 Installing and Starting Stat-JR

2.1 Installing Stat-JR

Stat-JR has a dedicated website (http://www.bristol.ac.uk/cmm/software/statjr ) from which you

can request a copy of the software, and which contains instructions for installation.

2.2 The use of third party software and licenses

Stat-JR is written primarily in the Python package but also makes use of many other third party
software packages. We are grateful to the developers of these programs for allowing us to use their
products within our package. When you have installed Stat-JR you will find a directory entitled
licences in which you can find subdirectories for each package detailing the licensing agreement for
each. The list of software packages that we are using can be found in the Appendix to this document.


http://www.bristol.ac.uk/cmm/software/statjr
http://www.bristol.ac.uk/cmm/software/statjr

2.3 Starting up TREE

Stat-JR’s interface is viewed and operated via a web browser, but it is started by running an
executable file.

To start Stat-JR select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the
start up menu. This action opens a command prompt window in the background to which
commands are printed out. This window is useful for viewing what the system is doing: for example,
on the machine on which we have run TREE, you can see commands like the following:
WARNING:root:Failed to load package GenStat_model (GenStat not found)

WARNING:root:Failed to load package Minitab_model (Minitab not found)

WARNING:root:Failed to load package Minitab_script (Minitab not found)

WARNING:root:Failed to load package SABRE (Sabre not found)

http://0.0.0.0:55534/

The most important command when starting up is the final line (the precise five-digit number
written out towards the end of the line will likely differ, though). This only appears when the
program has successfully performed all its initial set-up routines. This may take a while, particularly
the first time you use the program. You should then be able to view the start page of TREE in your
browser; if you can’t, then try refreshing the browser window, or typing localhost:55534 (in this
example) into the address bar. The lines such as WARNING:root:Failed to load package GenStat
model (GenStat not found) are not necessarily problematic but are warning you that the Genstat
statistical package has not be found and loaded on your particular machine.



3 Quick-start guide

This section provides an overview ‘quick-start’ guide to using Stat-JR, via the TREE application; for
more detailed instructions, together with worked point-and-click examples, see later sections. We’'re
assuming you’ve installed Stat-JR, and can see the opening page of the TREE application in your
browser (see Section 2).

When operating Stat-JR through TREE, you generally proceed through the following five stages:

Stage 1. Firstly, choose the Stage 3. Once you’ve answered Stage 5. Finally, the results are returned;
dataset you want to analyse / plot all the input queries, Stat-JR depending on the template these can
/ summarise / etc., and the generates all the commands, include model estimates, graphs,
template you want to use to do scripts, macros, equations, and summary tables, and so on. Again, these
so. Each template contains instructions necessary to can be viewed within TREE, and are also
commands to perform certain perform, or describe, the downloadable. The output may also
functions: some run models, function you’ve requested. You include datasets (e.g. MCMC chains),
others plot graphs, or provide can view these within TREE, and which you can then feed back into the
summary statistics, and so on... can download them too... system by matching them up with a
template back in Stage 1.

4L 4L 4L

(If applicable) results outputted as dataset...

]

Stage 2. You will be asked for Stage 4. Stat-JR then runs

these commands / scripts /

normexam; ~ N(j;,o%)

1; = Bgeons;

further template-specific input:

e.g. which variables from your macros, employing

dataset you would like to include Boocl externally-authored
in your model / which variables ™ F(0,001,0.001) software (e.g. R, MLwiN,
o =1/1 _amm———

[mm——————————

you would like to plot / WinBUGS, SPSS, Stata, etc.),

or in-house software (such

Stat-JR writes commands, Function .
: - g Results of function
etc., to perform erforme .
P i P produced (displayed
requested function on . .
* dataset (displayed i in browser window /
ataset (displayed in .
b p dy / available for
rowser window
—> /]\ /I\ /]\ i download)
Stat-JR available for download)

prompts user .?‘ﬂ (If applicable) l_\
i H . d Charts -
for input = Point & click Macros . external = Results E
needed by @ instructions E software H tables E
: Equations :|  opened. run e :
templateto i seiprs  a7ex) 2| OPENEG U i Rediits - -t
perform ;o . then closed, . i Model: :
function - iSelect Open Worksheet :| withresults | :iDic:o766.506 L}
. ige%ect gatafge.dtaf . : returned to : i :a:arl'neotesrgsz:l :
» 1Select Equations from Fi = = | Betal: 0.594 . mmn .
Pt HauaTon e 3 Stat-IR. R S e - i
E:myModel<— glm(normexam~l5 E E
= iSummary (myModel) i: E :
? E iplot (myModel,1) —_______ n j ? ; J

i

summarise / etc.

as the eStat engine), as

appropriate.




Below we briefly highlight the main features, with screenshots, of each of these five stages.

3.1 Stage 1: Selecting a template & dataset
e On opening Stat-JR, the page below, containing introductory information, will be displayed
in a web browser. To proceed to choosing a template and dataset, click on the Begin button.

If you have modified any files in the
templates, datasets or packages
folders, then you can reload their

This link, available on all subsequent pages contents into the current session via
of TREE too, allows you to change settings the Debug menu here, which is also
such as paths to data and template folders, available on all subsequent pages of
paths to interoperating software, and TREE.

optimisation settings for generated code.

A link to the Stat-JR webpages
which contain further support,
including frequently asked

Welcome to Stat-JR 1.0.1 questions & a user forum

Thank you for using our software. Stat-JR has been developed by a team of programmers D%t the Universities of
Bristol and Southampton and funded by several grants from the UK Economics and Social Scie

Research council
(ESRC). For more information on the software, including downloadable manuals, please visit ol f@

If you use this software for your research, then please cite It as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A_, Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, Al
Goldstein, H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2013) Stat-JR version 1.0. Centre for Multilevel
£ iversity of Bristol & Electronics and Computer Science, University of Southampton.

\ Click here to progress to the
next screen where you can
choose a template & dataset,
and can start specifying your
inputs...

e Having pressed Begin, the page below will be displayed. Note that here, and on other
screens, wherever you see the question mark symbols, context-specific help is revealed if
you hover your cursor over them. Hover-over help can appear elsewhere too: e.g. describing
the options along the top navigation bar.

e Here you can specify the template and dataset you want to use, and then begin to specify
your inputs.

e Selecting Dataset > Choose or Template > Choose from the top bar will reveal lists of
available datasets and templates. For each, find the one you want from the list, and then
press Use.

o Note, when choosing a template, you can use the cloud terms to help your search: the blue
tags describe functional aspects of the templates, whilst the red terms describe which
engines / packages the templates support (you can combine search terms by clicking on
more than one, and cancel your selections by pressing [reset]).



Here you can see which dataset and template are currently selected. Hovering
your cursor over these names will reveal a description of each (if available).

Regression1

school
student
normexam

Wherever you see these © Explanatory variabl
(question mark) symbols,
context-specific help is revealed
if you hover your cursor over
them. Hover-over help can
appear elsewhere too: e.g.
describing the options along the

top navigation bar.

nt input string:

Set
Command: RunStat)R(template='Regressiond’, datas8="tutorial’, invars = {J, estoptions = {3)
Clicking on the down arrow symbol just to the right of the Dataset heading in ...and likewise for
the top bar will bring up a menu. Select Choose to bring up the window, the Template...

below, allowing you to nominate a dataset other than that currently

selected...

Change dataset

Name: bang
|
Description: From the 1988
antilongzarc hive Bangladesh Fertility
bang Survey; see MLWIN
MCMC manual
(Browne, 2012)

o [

You can select one Change template

or more Ofthese ’ 1-Level 2-level 3ievel Alternative MCMC methods aML Averages

Binomial CAR Categorical predictors Causal Censored Changepoint
Cluster analysis Complementary loglog Complex level 1 ConvergingC
Comelated classifications Comelation CustomC Data manipulation
Diagnostics eBook eStat Factoranalysis GenStat_model gretl_model
Informative priors  Interactions JAGS Logit MATLAB_script MDS
Measurement emor  Minitab_model Missing data MIXREGLS Mixture
MLwiN:point & click MLwiN_IGLS MLwiN_MCMC muLwin_script
Model muitiple imputation M ultiple membership M ulfivariate response
Negative binomial  N-Level Normal octawe_scipt OpenBUGS
Ordered Orthogonal PCA Plats Poisson
Population ecology Predictions Probit Pyscript Python_PymMC
Python_script Quiz R _CARBayes R gm RINLA R_me4
R_MASS R_MCMCgimm R_MCMCpack R_mgcv R_RStan R_script

terms to help you
find relevant
templates; the blue
tags describe the

Clicking the ‘label’
symbol brings up a
list of tags, whilst
clicking the ‘cog’
symbol brings up a

functional aspects

of a template,

whilst the red terms

d be th R_scriptCMC  Random slopes Recapture Record linkage ROC SABRE list ofsupported
lescribe the SAS_model Saving and Loading Selection Simulation Spatial .
SPSS_model SPSS_script Standand deviation Stata_model Stata_script englnes/packages.

Ssummary stats SuperMix  Suney T Unordered multinomial VPC

engines / packages
g /p g WinBUGS  [reset]

supported by a

2LevelBGARTnew
2levelBlock
2LevelBlockcc d Description: Fits 2-level random
2LevelComplex intercept models for
2Levellmpute Normal, Poisson, or
2LevellmputeOider binomial distributions.
ZLevellmputeRPFeedbac k For SPSS. model

2L evelincICrossedCorClass .

template. To

unselect terms,

press [reset]

distributions other than
o Normal are only

supported by SPSS
version 19 and above:

21 eveModAMI




3.2 Stage 2: Providing template-specific input

e Once your desired Dataset and Template is selected, you can start answering the input
guestions back on the main page. These are required by Stat-JR to allow the template to
perform the appropriate executions with your dataset; these inputs vary between
templates, and also within templates too, depending on your earlier choices as you progress
through the screens.

e For multi-choice lists you can de-select variables by simply clicking on their name in the list
of selected items.

e Press Next each time you’ve completed the input questions on the current page.

e Then, if applicable, more inputs will be revealed, and those you have already selected will be
greyed-out. However, you can still change each input via the remove button which you'll see
next to each one. Alternatively, to re-specify all your inputs, press Start again (in the top
bar).

e When asked for the Name of the output results, this will be the name given to any
outputted dataset which results from running the template (see Stage 5).

Stat-JR:TREE  start again

© Response: e / Choose your
inputs
[=]

Once you’re © Level 21D: district

happy with your Specify distribution: |
choices, press

Next... \ @

© Cument input string: &
Set

© Command: RunStat)R(template="2LevelMod’, dataset="bang1’, invars = {, estoptions = {)



2LevelMod

OResponse:  usa{emwe) You can remove
© Level 21D: d 5"-: specific inputs via

these buttons

If, at any point,
f' VP 7 Specify distribution: Binom 3 here

you want to re-

specify all your For multi-select lists 9 penominator cons =
inputs, then _
P you can de-select Specify link function: logit =
press Start variables by clicking
again on their name here _ © Explanatory variables: woman i
district
use
Ic
urban
educ
As you progress through the screens, you can hindu
see your choices reflected in the input string and g-g‘:;y
the RunStatJR command, at the bottom; if you = i
cons
copy the former (up to & including the curly age il
brackets), and paste in the box below and press Cltreat cons as categorical
- i i ftreat ¢ I
.Set, Stat-JR w:l/. automat:co‘:I/y populate the reat age as categorical Again, once you're
inputs boxes with your choices; the RunStat/R store level 2 residuals?  @Yes happy with your
command, on the other hand, can be used to call JNo

inputs, press Next
Stat-JR via a command line

@ Current input strirfg {y" use', 'L2ID" ‘district, ‘D' ‘Binomial}

© Command RunStatJR (tem plate="2LevelMod’, dataset="bang1’, invars = {{" 'use’ 'L2ID" 'district, 'D" 'Binomial}, estoptions = {})

peta_0 xml [=] | Popout

10



bang1 2LevelMod
© Response: Use remove
© Level 21D: district remove
Specify distribution: Binomial remove
@ Denominator: CONs remove
Specify link function: ogit remove

© Explanatory variables:  cons,age remwe

Store level 2 residuals? Yes remove
(We’ve skipped a
Choose estimation engine: eStat remove
screen or two where
we were asked about Number of chains: 4 remove
this input ...) e——————
Random Seed: remove

This is the name given to any
outputted dataset (e.g. MCMC

Length of burnin:

© Number of iterations: 2500 remove .
reme chains produced by the model run)
Thinning: remove
; Use default algorithm settings:  Yes remove
We’ve now
completed all the Generate prediction dataset: No remove

inputs, and so we
press Next for the
final time... © Name of output results: my_output

Use default starting values:

@ cument input string: {D': 'Binomial’, ‘storeresid” "Yes', ‘nchains': '4', 'link": 'logit', 'defaultalg” Yes', ‘iterations": '2500', 'seed" '1', 'defaultsv: Yes', 'Engine". 'eStat’, 'L2ID" 'district,
‘burnin® 1000', ‘n" ‘cons', thinning" "1', 'y"- 'use', ' ‘cons, age’, 'makepred" 'No'}
Set

© Command: RunStatR({template="2LevelMod', dataset="bang1’, invars = {L2ID" 'district’, 'D" 'Binomial', 'storeresid Yes'. 'n" 'cons', 'link" 'logit’, 'y'- 'use', 'x'- 'cons, age’},
estoptions = {Engine" 'eStat’, 'bumin® '1000', 'defaulisv: 'Yes' 'thinning® 1!, 'nchains® '4', 'defaultalg” Yes', iterations® '2500", 'seed" 1", ‘makepred: No})

beta_0.xml E Popout

11



3.3 Stage 3: Outputting the files to run the desired execution
e Once you’re pressed Next after the final input, Stat-JR returns a number of initial outputs
which you can view in the output pane at the bottom of the window.

o Note that Stat-JR hasn’t done everything you want it to do yet: it’s just producing
preliminary files telling you what it’s going to do, and how it’s going to do it.

e To select particular content to view in the output pane, use the drop-down menu just above
it.
e The Popout button, just above the output pane, allows you to view its contents in a new

browser tab.

e Pressing Run performs the executions described by the scripts, etc, returned in the output
pane.

Stat-JR:TREE Start again

Via the Edit button, you can
directly edit scripts and macros,
e.g.to change model specification,

plot characteristics, etc... emove - Press Run to perform the executions...

put sfring: {D" 'Binomial', ‘storeresid: 'Yes', 'nchains" '4', 'link" logit, 'defaultalg” "Yes', ‘iterations' 2500", 'outdata” 'my_output’, 'seed” 1", 'defaultsv: 'Yes', 'Engine’:
'eStat, 'L district', 'burnin” 1000°, 'n" ‘cons', thinning" "', 'y" 'use', k" ‘cons,age’, 'makepred" 'No‘}

mand: RunStatJR(tem plate="2LevelM od'. dataset='bang1', invars = {L2ID'- 'district’, 'D" 'Binomial', 'storeresid" 'Yes' 'n" 'cons', link" logit', 'y" 'use', %" 'cons age}.
ions = {Engine': 'eStat’, 'burnin 1000', 'defaultsv: 'Yes', ‘thinning' 1", 'nchains’: '4', 'defaultalg: Yes'. ‘iferations® ‘2500, 'outdata’ 'my_output', 'seed" '1', makepred: No7)

- Click here to view the contents of the output pane, below,
L) equation.tex -) @ .
in a new browser tab...

use; ~ Binomial(cons;, m;)
logit(m;) = Bycomns; + B age; + Udistricty

Udistrictf) ™ N(0,3)

You can choose what to view in the By ol
output panel (here we’ve chosen to Byl
view the equation for the model we’ve 7 ~ I'(0.001,0.001)
2
specified), via this selection box ou =1/m
3.4 Stage 4: Running the execution

e Once you're pressed Run, the executions specified by you are peformed.

e Depending on your choices, this may take anything from a second or two (e.g. to produce a
simple plot, fit a model using a non-iterative method of estimation, produce summary data,
etc.), to many minutes (e.g. to run MCMC chains for a large number of iterations).

e If appropriate (e.g. if the template supports inter-operability, and if you have chosen to
employ it when prompted), externally-authored software packages (e.g. R, MLwiN,
WinBUGS, SPSS, etc.) are opened, run, then closed, and the results are returned to Stat-JR.

e Whilst the execution runs, you may see a lot of activity in the black command window,
which can help you keep a track of progress.
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Stat-JR:TREE +

localhost:

Whilst it performs these executions,

Youmay see a o the progress gauge indicates that

lot of activit; . .
f v Stat-JR is still working...
in the
BN C\windows\system32\cmd.exe
Command dapting (chain @) for 128@ iterations (maximum 500> ...
emove EBUG: 1o, RESOURCE READ: P

f dapt i {chai iterations ¢ i 5008>.. .

window as the  mppy BTG ne s SHERGIRAE FRADY Adan fuorabions Snaximn
. . e 9298 — — [25/Nov/2813 18:88:171 “HTTP/1.1 POST -get_resour

execution is dapting {(chain 3> for 1208@ iterations {(maximum 5000>...

iterations (maximum 500@>...

erformed ot :hd.
apt il ain
p EBUG: 1o E :
dapting {chain iterations (maximum 580@8>
EBUG:ro :
I NFO dapt i ain
E : adapt

iterations (maximum 5008>

© Current input string: {D": ‘Binomial’, ‘storeresid’- Yes', ‘nchains™ ‘4", ‘link’ ‘logit’, ‘defaultalg "Yes', ‘iterations" 24 i :181 "HTTP/1.1 POST ~get_resour

‘eStat’, "L2ID". ‘district’, ‘burnin”- "1000", 'n" 'cons’, thinning’- '1", 'y’ 'use’, 'k "cons,age’, ‘'makepred’ No} INFO:ro0t zAd: in 3> for 13@@ iterations (maximum 5688 ...
2500", ‘outdata” ‘my_output’, 'seed” '1", ‘defaultsv: "Yes', 'Engine’: "eStat’, 'L2ID" “district’, 'bumin”. "1000', 'n’: ‘ct DE,‘?E‘?"“’? URCE in ‘E“,“‘gﬁ;ffgm iterations (maximum 58883
i in 2> for 1380 iterations (maximum 5888>
: adapt.cpp
i d. L S Y < 5800)
: i i . @ iterations i
© Command: RunStatJR{template=2LevelMod’, dataset=bang?’, invars = {L2ID’. ‘district’, 'D"- ‘Binomial, ‘storerd .wt_nggoancg RESﬁ? adap'él_cpp trerations Shaxinun

estoptions = {Engine™ ‘eStat’, ‘burnin" "1000", ‘defaultsv: "Yes'. thinning™ ‘1", ‘nchains™ 4", ‘defaultalg™ Yes', ‘iterati

equation.tex E

use; ~ Binomial(cons;, m;)

lngit{r:) = Rarons: + A.age. Lt o - ..
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3.5 Stage 5: The results

Once the executions have run, the progress guage, in the top-right corner, will change

from “Working” to “Ready”, and the drop-down list, just above the output pane, will

Depending on the template, a range of buttons / boxes appear above the output pane

allowing you to e.g. Download the results, Add to ebook, and run chains for Extra

[ ]

now be populated with more results.
[ ]

iterations.
[ ]

Choose, via the top bar).

2L evelMod

If applicable, an outputted dataset now appears in the list of datasets (see Dataset >

© Number of iterations:

The outputted dataset (which we
earlier chose to call ‘my_output’)
will now appear in the list of
datasets (see Dataset > Choose)
allowing us to investigate it
further by matching it up with
another template ...

© Name of output results:

Extra lterations:
( P
( Download

S —

You can Download
results, and run for
Extra iterations ...

Thinning:

Use default algorithm settings:

Generate prediction datasat:

Use default starting values:

2500 remwve
Stat-JR indicates it has finished running these
1 remove executions, by being “Ready” again...
5 remove
Here you can add, to an eBook, the
10 remove inputs you have just entered, the
o remove details of the template and dataset

you have just chosen, and the outputs
you would like to be displayed...

More

@ Cunent input string: {D* 'Binomial', 'storeresid" 'Yes', 'nchains’ '4', 'link" 'logit!, 'defaultalg". 'Yes', 'iterations': '2500', 'outdata” 'my_output', 'seed" 1", 'defaulisv: 'Yes', 'Engine':
‘eStat,, 'L2ID': district, ‘burnin’: 1000, 'n* ‘tons', thinning" 1", 'y 'use', %" ‘cons,age’, 'makepred” ‘No%}

'2500', ‘outdata’ 'my_output', 'seed” '1', 'defaultsv- 'Yes', 'Engine" 'eStat, 'L2ID" district’, 'bumin® '1000', 'n" 'tons', 'thinning- '1", 'y" 'use’, " 'cons,age', 'makepred': 'No?}

Set

© Command’ RunStatJR(em plate="2L evelM od', dataset="bang1', invars = {L.2ID" district, 'D" 'Binomial' 'storeresid" 'Yes' n" 'cons', 'link" logit' y* 'use' %" 'cons age’).
estoptions = {Engine': 'eStat’, 'burnin" 1000', 'defaultsv: Yes', thinning": 1" 'nchains' '4', 'defaultalg: Yes', 'iterations® '2500', 'outdata” 'my_output', 'seed" '1. 'makepred: 'No})

The results (e.g. plots, model estimates, etc.) are

Popout

ModelResults =

added to the list of outputs; here we’ve chosen to
display a summary table of results...

Results /
Parameters:
parameter mean sd ESS variable
sigma2 u 0.269406474316 0.089357301158 850
beta_0 -0.530822657478 0.0856270762827 507 cons
beta_1 0.00853908304127 0.00552257842808 2421 age
tau_u 414221258894 145517648317 692
ulo -0 4563146655 0 205573010541 2043 district
u1 -0.0482519589551 0348344553015 2358 district
u?2 0 200541719112 0 48514002114 2318 district

This ends the quick start guide. In the next chapter we describe the operation of TREE in more detail,

and work through examples.
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4 A detailed guide with worked examples

4.1 The structure and layout of the TREE interface

Stat-JR can be thought of as a system that manages the use of a set of templates written either by
the developers, and supplied with the software, or by users themselves. Each template will perform
a specific function: for example, fitting a specific family of models, summarising a dataset, or plotting
a graph. The Stat-JR system therefore allows the user to select and use specific templates with their
datasets, and to capture and display the outputs that result.

Returning to our start-up of the software, when the line http://0.0.0.0:50215/ appears, and after
refreshing the web browser, the browser window should appear as follows:

i stat-1R 1.0.1:TREE

« C [ localhost: 55534/#

Stat-JR:TREE Settings Debug -

Welcome to Stat-JR 1.0.1

Thank you for using our software. Stat-JR has been developed by a team of programmers based at the Universities of Bristol and Southampton and funded by several grants from the UK.
Economics and Social Science Research council (ESRC). For more information on the software, including downloadable manuals, please visit our webpages.

IF 0L LISE TANS SARWaNE for your research, then please cite It as:

Chariton, C© M.J., Michaglides, D.T., Parker, R.M.A., Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, .., Goldstein, H., Jones, K., Leckie, G, Moreau, L. and Browne, W.J
(2013) Stat-/ R version {.0. Centre for Multilevel Modelling, University of Bristol & Electronics and Computer Science, University of Southampton

This is the start screen for the TREE interface to Stat-JR, and contains information on funders,
authors, and a link to the Stat-JR website which contains further guidance, such as answers to
frequently asked questions, and a user forum.

Pressing Begin returns the following screen:

tutorial Regression1 Ready (15)
© Response: -

© Explanatory variables: school
student
normexam
cons
standirt
girl
schgend
awslirt
schav
wband

© Current input string: §
Set

© Command: RunStatJR(template='"Regression1’, dataset="tutorial’ invars = {J, estoptions = §)

At the top you'll see a black title bar. From left to right, this contains:

e alink (Stat-JR:TREE) back to the opening page;
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an option (Start again) to clear all inputs the user has chosen for the current template;

a Dataset menu allowing the user to choose, drop (from temporary memory cache), return
summary statistics for the current dataset, view (the entire dataset; see below), return a list
of datasets, upload / download (see Section 4.5) datasets. For example, selecting Dataset >
Choose returns a scrollable list of all the datasets that the system is aware of: i.e. those
which appear in the datasets subdirectory of this installation of Stat-JR. This pane can be
used to change the selected dataset via the Use button; for inputting your own data set you
can use the Upload button.

the name of the currently-selected dataset (in the grey box) — if you hover your cursor over
this name, it returns a textual description of the dataset;

a Template menu allowing the user to choose, list (described below) or upload individual
templates not already uploaded in the current session. If you select Template > Choose, a
box appears which contains a scrollable list of all the templates that the system is aware of:
i.e. those which appear in the templates subdirectory of this installation of Stat-JR. This can
be used to change the selected template via the Use button. As we anticipate there being
many templates, each template has defined ‘tags’ which are terms to describe what it does.
These appear as blue phrases in the ‘cloud’ above the list of templates, whereas the
estimation engines supported by each template appear in the cloud in red. When you select
a template, its name and description appear to the right of the list. Clicking on the symbol
that looks like a baggage label returns the tags for that template, whereas clicking on the
‘cog’ symbol returns a list of engines that particular template supports;

the name of the currently-selected template (in the grey box) — again, if you hover your
cursor over this name, it also returns a description of the template;

a progress gauge indicating whether Stat-JR is “Ready”, “Working”, “Idle” or whether it has
encountered an “Error”;

a link to a page containing options to change a variety of Settings (discussed further below);

a Debug button; this produces a drop-down list from which one can choose to reload the
templates, datasets or packages, allowing users upload changes to files they make outside
the TREE interface, without having to start-up Stat-JR again. For example, a user could paste
a new dataset into the datasets directory, or modify a template in the templates directory,
and reload them so that they appear in their lists in the browser window.

The Settings window, accessible via the black title bar, displays a number of settings that the

program uses with each possible software package: some of these are relatively straightforward,

such as where the executables for each package are found, and some are relatively advanced, such

as for the eStat engine, optimisation, starting values and standalone code options.
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We will now look at The View dataset window:

Select Dataset > Choose from the menu in the black title bar.

Scroll down the dataset list, towards the bottom, and click on rats; its name and description will
appear to the right of the list.

Click on the Use button, and the name of the current dataset (in the grey box in the black title bar at
the top) should have changed accordingly.

Select Dataset > View; this will open a new tab in your browser: if you click on this you will be able
to see the dataset we have just selected, as follows:

Stat-JR:TREE J [0 Stat-JR:TR
C' A [ localhost49716/data/ o Bk g =

fif Apps | NewTab B skip to content @) Getting Started (] Latest Headlines [ Customize Links [*] Windows Marketplace (7] Imported From Firef... (7] Imported From Firef...

Stat-JR:TREE

New Variable name:

Expression:

Variable name: Ve

¥8 ¥15 y22 ¥29 ¥36 cons rat

m

146 191 229 272 302
157 211 250 285 323
132 185 237 286 331
150 207 257 303 345
169 216 261 295 333

100000000 D0DoDCoDDD Do ooo o oo o oo

Columns View 1 - 30 of 30

The rats dataset is a small, longitudinal animal growth dataset which contains the weights of 30
laboratory rats on 5 weekly occasions from 8 days of age (see Gelfand et al (1990) for more details).
The five measurements are labelled y8, y15, y22, y29 and y36, respectively, and the dataset also
contains a constant column — a set of 1’s,named cons, and a rat identifier column, rat. Initially, we
are going to perform a regression analysis of the initial weight (y8) on the final weight (y36),
including an intercept (cons). The boxes above the data allow the user to quickly add a new variable
or delete an existing variable from the dataset. We can also view a summary of the dataset:

To view a summary of the dataset, click on the first tab in the browser window containing the main
menu screen.

Select Dataset > Summary button via the black title bar at the top.

Click on the new tab and the screen will look as follows:
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e

" [ Stat-JR:TREE.

7 [ Stat-JR:TREE

C A | [ localhost49716

ummary;/

‘ i Apps [ NewTeb B skipto content @) Getting Started (] Latest Headlines | Customize Links [ Windows Marketplace (] Imported From Firef... [] Imported From Firef...

Name Count
v8 30 o
vis 30 [
va2 30 [
va9 30 o
V36 30 o
cons 30 o
rat 30 [

Missing Min

132

180

218

Max

Mean

152.166666667

201766666667

245.033333333

10.975953884

12.4597574437

15.1117687765

18.8356930675

19.1318234015

0.0

5.6554414484

Std

Description

Value Labels?

No

No

No

No

No

No

No

m

Here we get a very short summary of the dataset, giving, for each variable, the minimum value,

maximum value, mean and standard deviation. If the dataset has had descriptions added or has

categorical variables then they will appear in the last two columns. More extensive summaries are

available by using specific templates to summarise datasets, as we will see later.

Let’s now look at the Template menu:

Back on the main page, if you click on Template > List the following screen will appear in a new tab:

«

/[ stat-JR:TREE 2

\ L StatJRTREE

x ¥

C A [ localhost:49716/info/

Template Information

22 Apps [ MewTab B skipto content @) Getting Started [ Latest Headlines [ Customize Links [ Windows Marketplace (] Imported From Firef... (] Imported From Firef...

Name

1LevelBlock

1LevelBlockee

1LevelCatRef

Description

Fits 1-level Normal models, with an option of a

multivariate step for the fixed effects.

Fits 1-level Normal models. with an option of a

multivariate step for the fixed effects

Fits 1-level models for Normal, Poisson or binomial

responses, allowing user to specify whether explanatory

variables are categorical or not. In the case of the

former, users can specify which value is the reference
category. with dummy variables generated accordingly.

Contains

[latexMLwiNextra'
‘inputs’
'__module__'
‘engines', 'latex’
‘preccode’, 'fags'.
latextLwiN'
‘model, '__
‘minscript’]
[inputs’
*__module_'
‘customccode’
‘engines', 'latex'
‘tags', 'diccode’
'__doc__)

[rscript’, 'inputs'
'__module__'
‘engines', 'latex'
tags’. 'spssscript’
‘latexMLwiN'
‘preparedata’
‘statascript’

‘model', '__doc__ '

‘minscript]

doc_'

Tags

['Moder', "1-Level'"
‘Normal'
"MLWiN:point &
click]

['Model', '1-Level]

['Model', "1-Level'
‘Normal'
'Poisson’
‘Binomial’
"Probit', "Logit
‘Complementary
log-log'
'Categorical
predictors'
"MLWIN-point &
click]

Engines

[eStat’. 'WinBUGS'
'OpenBUGS'
‘MLWIiN_MCMC']

['CustomC"]

[estat', 'WinBUGS'
'OpenBUGS', "JAGS'
"MLWIN_MCMC'

‘R_MASS'
'R_MCMCgimm'
'R_MCMCpack'
'Stata_model'
'SPSS_model]

7o B

L] »

This rather busy screen (we don’t reproduce it all here, due to its length) contains, in the two

columns on the left, a tabular list of all the templates that are available with a short description of

what each template does. The other three columns are of more interest to advanced users, but

contain a list of functions in the template code, tags that identify the template type, and the engines

that are supported by the template.

We will next demonstrate running a template, using the default Regression1 template that fits a 1-

level Normal response regression model, this is appropriate as the response, the weights of the rats,

is a continuous measure

Return to the main menu screen, which should look as follows:
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Stat-JR:TREE  Start again

© Response:

@ Explanatory variables: y8
y15
y22
y29

cons
rat

@ Cunent input string: £

© Command: RunStat/Remplale="Regressiont, dataset=Tats', invars = {}, estoptions = {})

In the middle of the screen you can see the inputs required for this template (these are template-
specific, and may change when you use a different template). Since some inputs are conditional (i.e.
are only required when earlier inputs take specific values), the opportunity to specify inputs
proceeds through sequential steps. Here we see the two initially-required inputs for the Regression1
template are the Response variable and Explanatory variables. Since this template only allows for 1
response variable to be specified, a pull-down list is displayed, but since it allows for several
explanatory variables to be specified, a multiple selection list is displayed for that input. In the case
of the latter, variables are selected by clicking on their name in the left-hand list; to de-select them,
click on their name in the right-hand list.

The Start again link (in the top black bar) will clear any inputs the user has already selected and
return you to the first template input screen (i.e. the current screen, in this case), whilst the Next
button will allow the user to move on and specify further inputs once those on the current screen

have all been chosen.

Use the input controls and the Next button(s) to fill in the screen as follows:
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© Name of output results: out

@ Curent input string: {bumin’: '1000", ‘defaultsv: 'Yes', ‘thinning". *1', 'nchains® 1", 'defaultalg: 'Yes', ‘iterations’: '5000", " 'y36', 'x": ‘cons.y8" 'seed" '1', ‘makepred- 'No'}

@ Ccommand: RunStatJR{template='Regressiont, dataset="Tats', invars = fy" 'y36' %" 'cons,y87, estoptions = {bumin. '1000", 'defaultsv: "Yes', thinning" 1", ‘nchains® '1',
‘defaultalg: 'Yes', iterations* '5000", 'seed" 1", 'makepred" 'No'})

Note that an option to remove appears next to each input previously submitted; this will remove the
current input, but keep the other inputs you have specified (as far as it can; if they are conditional on
the input you have removed, then they will be, out of necessity, removed too).

So, here we are performing a regression of the initial weight (y8) on the final weight (y36), including
an intercept (cons).

The other inputs refer to the Monte Carlo Markov chain (MCMC) estimation procedures in Stat-JR.
MCMC estimation methods are simulation-based, and so require certain parameters to be set. The
methods involve taking a series of random (dependent) draws from the posterior distribution of the
model parameters in order to summarise each parameter. The inputs required here are as follows:

e the number of chains: this is the number of starting points from which we will take random
draws;

e random seed: the value from which random numbers are initially drawn. This allows
repeatability, as a run using the same starting values and random seed will give the same
answers. When multiple chains are used this seed is generally multiplied by the chain
number to give a unique seed for each chain;

e |ength of the burnin: the initial length of the chain (i.e. the number of iterations at the start)
which are excluded from the parameter summaries (the rationale for this is explained a little
further in the example, below, with the tutorial dataset);

e number of iterations: the length of chain following the burnin, from which the parameter
summaries are drawn;

e thinning: this determines how often the values are stored: i.e. store every nth iteration.
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By answering ‘Yes’ to the question use default algorithm settings, we have used defaults for other
settings for which we will therefore not be prompted to complete. By answering ‘No’ to generate
prediction dataset we have chosen not to generate a dataset of predictions from our model. By
answering ‘Yes’ to use default starting values we have chosen not to start the chain at values of our
choosing, instead accepting Stat-JR’s defaults. We will discuss MCMC estimation in slightly more
detail in the applications in the next section. The final input we’re asked for is the name of output
results: this is the name (here we’ve chosen out) given to any dataset of parameter chains
thatresults from running the template.

You will notice, towards the bottom of the window, a box for an Input string to be entered, next to a
Set button, with a rather long text string above it and another labelled as Command below it. The
input string allows the user to specify all the inputs directly, without having to point-and-click
through the list as we have done. These have to be formatted in a certain way, however, as
illustrated by the current (Input String) text string which Stat-JR has written for us as a result of our
inputs. This (i.e. the string between, and including, the curly brackets: in this example
{'burnin’:’1000’... ‘makepred’: ‘No’} ) can be copied and pasted into the box, and the Set button
pressed (following any edits you would like to make to the input values), in order to specify inputs
directly. The second text string (labelled Command) can be used by the command driven version of
Stat-JR to perform the same operations, although we will not discuss this further here.

Clicking on the Next button will now pre-process the template inputs, and will result in the following
new pane at the bottom of the window:

Stat-JR:-TREE  Start again

@ Curent input string: {bumin’: 1000", ‘defaultsv: 'Yes', ‘outdata’ 'out. 'thinning 1", ‘nchains® 1", ‘defaultalg” 'Yes' iterations”: '5000", " 'y36', X" 'cons.y8'" 'seed" '1', ‘makepred"
"No't
Set

@ command: RunStatR({template='Regression1’ dataset=rats', invars = fy" y36' " 'cons y81, estoptions = {bumin" '1000", 'defaultsv: 'Yes' thinning" ' nchains® '1',
‘defaultalg es', iterations* '5000' 'outdata” 'out, 'seed" ', 'makepred" 'No})

equation tex [=] | Popout

¥36; ~ N(py, %)
;= Bocons; + B, y8;
Bpoxl
By x1
7 ~ ['(0.001, 0.001)

el=1/r

The object currently specified in the pull-down list (equation.tex is selected by default here) appears
in the pane below it. These objects are any outputs constructed by Stat-JR before and during the
execution of the template, so here we see a nice mathematical description of the model. If we now
select the object model.txt from the list we see a description of the regression model that we wish to
fit in the language that is used by the eStat engine:
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S model bt [=] | Popout

model{
for (i in 1:length(y36)) {
y36[4] ~ dnorm(mu[i], tau)
mu[i] <- cons[i] * beta @ + y8[i] * beta_1

¥

# Priors

beta_p ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(0.601000, 0.801008)
sigma2 <- 1 / tau

sigma <- 1/ sqrt(tau)

At this point we haven’t actually run the template, and so the objects that can be selected from the
pull down list are those present pre-model run, and include computer code to actually fit the model.

Click the Run button to run the template.

Once the progress gauge, towards the right of the black title bar, has changed from “Working” (blue)
to “Ready” (green), select ModelResults from the pull-down list.

The screen will then look as follows:

Extra Iterations: E
Download  Add to ebook

@ Curent input string: {bumin’: 1000", ‘defaultsv: 'Yes', ‘outdata’. 'out, 'thinning* "1', ‘nchains® 1", 'defaultalg” 'es', fterations”: '5000", " 'y36", X" ‘cons.y8', 'seed" '1', ‘makepred"
Mot
Set

© Command: RunStat/R(lemplale='Regressiont, dataset=Trals', invars = {y" 'y36' " 'cons,y81%, estoplions = {bumin'. '1000", 'defaultsv: 'Yes', thinning". “1', ‘nchains® '1",
‘defaultalg” "Yes' 'terations' '5000', 'outdata” 'out’, 'seed” ', 'makepred"” 'No'})

M odelResults [=] | Popout
Results
Parameters:
parameter mean sd ESS variable
tau 0 00418080675558 0 00110904973838 4327
beta 0 169 180410959 31 4018966849 23 cons
beta_1 1.02242050055 0.205619681782 23 y8
sigma2 257.218314014 73.2560156192 4429
sigma 15 8879481878 2 18893042306 4397
deviance 250 689939715 2 28300617933 403
Model:
Statistic Value
Dbar 250.689939715
Dithetabar) 248 013138421
pD 2 67680129348
pic 253366741008

22



Here we see parameter estimates, along with standard deviations (SDs), as a measure of precision
for each parameter. We will explain these further in the next section. At the top of the screen shot
above (which is in fact the middle of the full window, vertically-speaking) we now have a few
additional buttons. The Extra Iterations box, along with the More button, will allow us to run for
longer (i.e. for a number of iterations additional to those we have already run for). The Download
button will produce a zipped file that contains a folder with files for many of the objects contained in
the two pull-down lists whilst the Add to ebook button can be used if one wants to construct an
ebook to be used with the DEEP eBook interface into Stat-JR.

You'll recall that we earlier named the output results ‘out’, so if we choose this from the pull-down
list just above the output pane, we’ll be able to view it, as follows:

@ command: RunStat/R{template='Regressiont, dataset=Tats', invars = {y" 'y36', %" 'cons,y8%}, estoptions = {bumin'. '1000", 'defaultsv: "Yes', thinning" “1', ‘nchains® ‘1",
‘defaultalg: 'Yes', iterations* '5000", 'outdata” 'out, ‘seed” 1, ‘makepred” 'NoY)

out Popout
iteration chain tau beta_0 beta_1 sigmaz2 sigma deviance

1 1 0.002885180029051 205.480330661 0.819310401158 346.508822178 18.6171647101 253.401151791 =
2 2 1 0.00355026627780 106.364072102 0.823041334087 281.669013456 16.7820077404 250.465223393
3 3 1 0.00337715317364 201.360440503 0.805661006673 206.107386044 17.2077710046 240.330227004
4 4 1 0.00485282814740 205.747671086 0.784315702633 204.700343600 14.3108121258 240.587746728
5 5 1 0.00200592578601 203.353603004 0.793137713746 333.786630308 18.2608256636 250.7830479097
6 ] 1 0.00304771670837 202.145374143 0.813630644772 253.310982000 15.0157463852 240.301144304
7 7 1 0.00243484081172 106.10488080 0.804675355154 410.704457001 20.20655448603 255.768571423
8 8 1 0.004300753687407 100.260547643 0.83040110559 227.730803385 15.0014148901 248.050684071
9 2 1 0.00651709766023 108.173447585 0.792648458211 153.442537175 12.3871024654 250.508735637
10 10 1 0.00284766420737 206.455667221 0.772200262327 351.164999515 18.73030609801 251.385640422
11 n 1 0.00410410577917 200.647455254 0.794806635121 243.658437319 15.6095623678 253.280948695
12 12 1 0.00290512711805 208.12525737 0.802042431084 344.219016712 18.5531403464 253.474556979
13 13 1 0.00208889148908 201.023619949 0.822192714798 334.572199544 18.2013148685 250.74923858
14 14 1 0.0039487089208 104.258616129 0.853870178626 253.247332257 15.9137466442 248.832562639
15 15 1 0.00398014644401 195.373724985 0.87587350772 251.247036721 15.8507740102 250.410545995
16 16 1 0.00274330185388 195.617064614 0.862741807536 364.524231479 16.0925176831 251607779208
17 17 1 0.00467002957874 194 845081125 0.864004465250 213.678428054 146177436342 249056906502
18 13 1 0.00431451833524 190.916814268 0.865492720324 231.775582417 15.2241775613 249220469469
19 19 1 0.0037582104272 200.328243082 0.805435082072 266.083452382 16.3120646266 249670869303
20 20 1 0.0052505796049 200.3253883890 0.80382056858 100.455164048 13.80054904111 250.543489206
21 21 1 0.00394030422779 1990.926836813 0.846218456775 253.209158455 15.912547202 250632325746
22 22 1 0.00502086456319 198.3128095419 0.840380451779 108.812510245 14.1000890155 249 403806804
23 23 1 0.00498151618344 201277482336 0.81388328435 200.742096016 14.168348387 24051587256
24 24 1 0.00432901193958 200.951152711 0.834241583974 230.999593393 15.1986707936 250.074462576
25 25 1 0.00562238675370 108.163614546 0.810410168159 177.860407651 13.3364315936 252 17758698
26 26 1 0.00455976756075 202 871623973 0.803061550114 215309424587 14 3000003348 249.165280566

27 27 1 0.00510966170594 204 421761084 0.820922602561 195 707672553 139895558383 252621119088 _

View 1 - 30 of 5,000

4 1 r

Here we see columns containing the chains of values for each parameter in the model. As well as
being able to view this file here, it is also a dataset (stored in temporary memory) and so will appear
in the dataset list (at least for the duration of our current session using the software) accessible via
the Dataset menu in the top title bar. This means that we can string templates together, as we can
select out as a dataset and perform operations on it using another template.

This ends our whistle-stop tour of many of the windows in Stat-JR. We will next look at a practical
application.
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4.2 Application 1: Analysis of the tutorial dataset using the eStat
engine

4.2.1 Summarising the dataset and graphs

In this section we will look at performing some analysis of an example dataset from education. The
dataset in question is known as the tutorial dataset, and is used as an example in the MLwiN
software manuals (see, for example, Browne 2012). In fact, much of the material here owes a lot to
Browne (2012), which employs similar analysis but using MLwiN.

Let us start by looking at the tutorial dataset.

Select tutorial via Dataset > Choose (see the title bar), then click Use.

If you then select Dataset > Summary, a new tab should appear in the browser window containing
summary information, as follows:

Stat-JR:TREE X J [7 Stat-JR:TREE X

I Apps [ NewTab [ skipto content @) Getting Started [ Latest Headlines [ Customizelinks [ Windows Marketplace ("] Imported From Firef.. [ Imported From Firef...

‘ C A [ localhost49716/summary/ bk EE M =

Name Count  Missing Min Max Mean std Description Value Labels?

school 4059 0 1 65 31.0066518847 18.9368110726 School ID o

student 405 0 1 138 385999260902 30.2605908583 Student ID No

normexam 4059 o -3.66607 3.66609 -0.000113913771435 0.998820795417 Age 16 exam score (normalised) No

cons 4058 0 1 1 Lo 0.0 Constant No
standirt 4059 0 -2.93495  3.01595 0.00181025641104 0993101714477 Age 11 exam score (standardised) o

girl 4059 0 0 1 0.60014781966 0.489867751763 Girl o
schgend 405 0 1 3 1.80457804578 0.914079554538 School gender

avsirt 405 0 -0.75596  0.637656  0.00151024983235 0.314831491873 School average LRT score

schav 4058 0 1 3 2.12712490761 0.652926315528 School average LRT score (3 categories)

vrband 4058 0 1 3 1.84306479428 0.630784592987 Age 11 verbal reasoning level

The tutorial dataset contains data on exam scores of 4059 secondary school children from 65
schools at age 16. These exam scores have been normalised to have a mean of zero and a standard
deviation of one and are named normexam. There are several predictor variables, including a
(standardised) reading test (standirt) taken at age 11, the pupils gender (girl), and the school’s
gender (schgend) which takes values 1 for mixed, 2 for boys and 3 for girls. Each variable is described
in the Description column and if you hover over any of the variables that say “Yes” in the value labels
column, the category labels will be displayed.

We can explore the dataset in more detail, prior to fitting any models, by using the many data
manipulation templates available in Stat-JR. We will first look at some plots of the data:

Select Template > Choose and then select Histogram from the template list that appears and click
Use.
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Fill in the inputs as shown below and click Next and then Run and select histogram.svg from the

output list.

Stat-JR:TREE Start again

© Command” RunSiatJR(lemplate='Histogram', datasei=tutonal’, invars = {vals" normexam', 'bins'- 20'}, estoptions = {)

histogram_swg [=] Fopout

700

0
normexam

Here you will see, in the output pane, a histogram plot that shows that the response variable we will

model, normexam, appears Normally-distributed.

Select Template > Choose and this time select XYPlot from the template list, then click Use.

Fill in the inputs as shown below and click Next and then Run and select graphxy.svg from the list.
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Download  Add to ebook

© Current input string: {xaxis" 'standiit’, 'yaxis" nomexam’}

@ Command: RunStatJR(template='XYPlot', dataset="tutorial’, invars = {xaxis" ‘standiit’, yaxis" 'normexam'}, estoptions = {})

graphxy.svg = Popout

17 > normexam

_4 L L L
-3 -2 -1 0 1 2 3 4

standlrt

Here we see that there appears to be a positive relationship between normexam and standlrt, with
pupils that have higher intake scores performing better, on average, at age 16.

We can display the graph in a separate tab in the browser window by clicking on the Popout button
next to the pull down list:
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C' A  [1 localhost:49716/output/graphxy.svg av; g @ =
i Apps [ MewTab [ skipto content @) Getting Started (] Latest Headlines [ Customize Links [ Windows Marketplace (] Imported From Firef... »

A normexam

S

% o x

I Sl -

| x

i 43 ) -1 0 z 3 3
standirt

For the sake of brevity, for the remainder of this documentation we will assume you now know how
to change template/dataset, and also how to display output in separate tabs, so we’ll refrain from

repeating this information in detail again.

Next, we might like to examine how correlated the two variables, normexam and standirt, actually

are:

Select AverageandCorrelation as the template, and complete the inputs as follows before clicking on
Next and Run and selecting table from the outputs:

/[ stat-JRTREE WA
& C A [Y localhost49716/run/# Qs K @™ =

22 Apps [ NewTab % skip to content 0 Getting Started [ Latest Headlines || Customize Links [ Windews Marketplace (] Imported From Firef... »
tutorial AverageAndCorrelation Ready {15)
Operation:

Variables:

i Download  Add to ebook

Current input string: {'vars” ‘normexam,standirt’ ‘op" "correlation’

Set
Command: RunStatJRitemplate="AverageAndCorrelation’, dataset="tutorial, invars = {'vars" ‘normexam,standirt’, "op". ‘correlation}, estoptions = {})
|
table [=] | Porout
name normexam standirt
normexam 10 0591649587344
standirt 0.591648587344 10
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Here we see that the correlation is 0.592, so fairly strong and positive. We might also like to look at

how exam score varies by gender:

Select Tabulate as the template, and complete the inputs as follows, before clicking on Next and
Run and selecting table from the output list:

_ EEER x|
[ Stat-JR:TREE LR
&~ C A | [ localhost:49716/run/# S EE ™ =

S% Apps [ NewTab [ skip to content @) Getting Started [ Latest Headlines  [*] Customize Links  [* Windows Marketplace ("] Imported From Firef... [ Imported From Firef...

remove

remove

remove
|
|
remove
J remove
\ Download  Add to ebook
I Current input string: {subset’: "No’, varcol "normexam’. rows’: ‘cons’, 'cols”. 'girl’, "op’: ‘means’
Set
Command: RunStatJR(template=Tabulate’, dataset="tutorial’, invars = {subset’: 'No’, varcol: 'normexam’, ‘rows": ‘cons’, 'cols": 'girl, "op": ‘'means’, estoptions = {})
table El Popout
0 1
1 1623.0 24360
mean 014035034437 0.0933184716422
sd 1.02571256052 0.969719141289

We have to enter variables for column values and row values, and so here we have specified column
values as girl (taking value 1 for girls and 0 for boys) and row values as cons (which is a constant),
and then we get 2 columns in the output labelled 0 and 1 for boys and girls, respectively . Looking at
the means, it appears that girls do slightly better than boys, and looking at the standard deviations
(sds) they are slightly less variable than boys in their scores. Let us now consider performing some

statistical modelling on the dataset.

4.2.2 Single-level Regression
As in the last chapter, with the rats dataset, we will start by fitting a simple linear regression model
to the tutorial dataset. Here we will regress normexam on standirt by using a modelling template.

Select Regressionl as the template and fill it in as follows:
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remove

remove

remov e

remov e

© Name of output results: out

© Cument input string: {bumin’: 1000", ‘defaultsv- 'Yes', 'thinning" '1", 'nchains® ', 'defaultalg” "Yes', ‘iterations' '5000", 'y': 'normexam’, %" ‘cons standirt’, 'seed" "1, 'makepred" 'No'}
Set

@ Command: RunStatIR(template="Regression1’, dataset=tutorial', invars = {y" 'normexam’, %" '‘cons,standlrt}, estoptions = {bumin": '1000', 'defaultsv: 'Yes', 'thinning" 1"
‘nchains” "', ‘defaultalg” "Yes', ‘iterations” '5000', 'seed” 1", 'makepred” 'No'})

Here we are fitting a linear regression, and so have standlrt as an explanatory variable, but also cons
(which is a column of 1s) as we would like to include an intercept as well. For now we have set-up
the MCMC estimation options as we did for the rats dataset, and we will overwrite the output file

out.

Clicking on the Next button will populate a pull down list of objects created by Stat-JR at the bottom
of the screen and by default we see the object equation.tex :

— = — S

[ Stat-JR:TREE x| — —

Qe B @ =

; « C M [ localhost:49807/run/

| HEoapps [ NewTab BE skipto content @) Getting Started (*] Latest Headlines [ Customize Links || Windows Marketplace ("] Imported From Firef... [ Imported From Firef...

equation tex E Popout

NOTIIEXAI ~ N(,u!-_.ai)
1y = fdycons + [# standlrt;
G x1
G x1
7~ I'(0.001,0.001)

m

a? = [;"-,—

In the pane we find a mathematical representation of the chosen model. Note that the file is a LaTeX
file that is being rendered in the browser by a piece of software called MathJaX (v2.3, 2013), so if
you are a LaTeX-user you can copy this file straight into a document. If we instead choose model.txt

from the list we see the following:
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E model.txt E Popout

model{ ‘

for (i in 1:length(normexam)) { |
normexam[i] ~ dnorm(mu[i], tau)

mu[i] <- cons[i] * beta_® + standlrt[i] * beta_1 ‘

|

|

|

|

|

# Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(®.@81608, ©.861608)

sigmaz <- 1 / tau =
sigma <- 1 / sqrt(tau)

Here we see the text file that represents the model we wish to fit in the language that the algebra
system used by the built-in eStat engine requires. The Regressionl template only uses the eStat
MCMC-based estimation engine, so as you can see in the mathematical formulae in equation.tex we
are fitting a Bayesian version of a linear regression, and the last four lines of the output are prior
distributions for the unknown parameters, Bo, B; and the precision T (where t=1/0?).

Whilst we will keep our description of Bayesian statistics and MCMC estimation to a minimum, and
recommend Chapter 1 of Browne (2012) for more details, in brief we are interested in the joint
posterior distribution of all unknown parameters given the data (and the prior distributions
specified). In practice, in complex models, this distribution has many dimensions (in our simple
regression we have 3 dimensions) and is hard to evaluate analytically. Instead, MCMC algorithms
work by simulating random draws from a series of conditional posterior distributions (which can be
evaluated). It can then be shown (by some mathematics) that after a period of time (required for the
simulations to move from their possibly arbitrary starting point) that the draws will be a dependent
sample from the joint posterior distribution of interest. It is common, therefore, to throw away the
first n draws which are deemed a burn-in period.

For the simple linear regression, it is a mathematical exercise to show that the conditional posterior
distributions have standard forms and are Normal (for the fixed effect) and Gamma (for the
precision = 1 /variance). The eStat engine has a built in algebra system which takes the text file
(model.txt) in the left-hand pane and returns the conditional posterior distributions; you can view
these as follows:

Select algorithm.tex from the list and click on the Popout button and the algebra steps will appear in
a new tab as follows:
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Conditional posterior for tau for Gibbs sampling

Y-length(uormexa.m]

“i=1

(normexam; — f; x cons; — B x st-andhti)E
7~ T 0.001+ 0.5 x length(normexam), 0.001000 - 5

Deviance Function

|
T X (Eie:lgthumrmexam_ (normexami — By % congg — By X standlrti)z)

deviance = 2 x

3 +0.5 x (In(7) — In(7)) x length(normexam) + 0.346573590279973 x length(normexam)
Conditional posterior for beta0 for Gibbs sampling

T X (Z%eflgthfnurmexam] cons; x (normexam; — 8; x standlni)) length(normexam)
T cons;”

x (Z%e:g(h[nurmexam] consii)

By~ N

i=1

Conditional posterior for betal for Gibbs sampling

length(normexam)

TX (Zl i standlrt; x (normexam; — By x consi)) length(normexam)
ST X sf:amd]rti2

rx (Z_lengthfnormexam] stahndlrtii)

i=1

B ~N

i=1

Deterministic formula for parameter sigma

Deterministic formula for parameter sigma2

The eStat engine then takes these posterior distributions and wraps them up into computer code
(C++) which it will compile and run for the model. By default this will be several pieces of code that
are linked together by Stat-JR, although the Settings screen (accessible via a link towards the top of
the main menu screen, as we saw earlier) has an option to output completely standalone code that
can be taken away and run separately from the Stat-JR system; this is, however, a topic for more
advanced users.

Returning to the tab, in the browser window, containing the model template, click on the Run
button and wait for the model to run.

Then select ModelResults from the pull down list and pop it out into a separate tab.
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S F Stat-R 1.0.1.TREE % ¥ JF stat-Jr 1.0.1:TREE x

| C' | [ localhost: 55534/ /outputModelResUlts w2 =

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1.84117678833 0.0336578211121 5103
beta 0 -0.00154647326083 0.0128434892887 5104 cons
beta 1 0.594931664702 0.0128203661607 2501 standirt
sigmaz 0.649164430348 0.01415830719538 5097
sigma 0.805659357513 0.0087994558192 5098
deviance 976347654373 238667420142 4635
Model:

Statistic Value
Dbar 976347654373
D{thetabar) 9760 51117614
pD 2 98536759262

DIC 576644191133

Here the model results can be split into two parts:

The first part of the results (under the heading ‘Parameters’) contains the actual parameter
estimates. Here, for each parameter, we get 3 numbers: a posterior mean estimate (mean), a
posterior standard deviation (sd), and an effective sample size (ESS).

Here we see that beta_0 has a mean estimate of approximately 0, which we would expect as both
the response and predictor have been normalised, or standardised. The slope beta_1 has mean
0.595 with standard deviation 0.013, and is highly significant, as it’s mean estimate is many times
it’s standard deviation ( a Bayesian equivalent of a standard error) The value 0.595 represents the
average increase in the normexam score for a 1-point (1 sd, due to standardising) increase in
standirt. The residual variance, sigma2, has value 0.649 showing that, as the initial response variance
was 1.0, standlrt has explained 35.1% of the variability.

The ESS is a diagnostic which reflects the simulation-based (stochastic) nature of the MCMC
estimation procedure: we have based our results on the 5,000 iterations post burn-in, but we know
that the method produces dependent samples, and so the ESS gives an equivalent number of
independent samples for the parameters involved; in effect a measure of the information content of
the chain In this case, all parameters have ESS of > 4000, and so the chains are almost independent.

The second part (under the heading ‘Model’) refers to the model fit for this particular model and the
DIC diagnostic (Spiegelhalter et al. 2002). The DIC diagnostic is an information criterion which is a
measure of how good a specific model is, consisting of a combination of how well the model fits the
data (here defined by the model deviance) and how complex the model is (here defined by pD: the
effective number of parameters). Basically the better fitting the model is, the better the model is,

32



but it has to be penalised by how complex it is. The DIC statistic is defined as the deviance of the
mean + 2pD. In this example the deviance at the mean (D(thetabar)) is 9760.5 and pD is ~3
(reflecting the three parameters of the model that are being estimated) and so we have a DIC value
of 9766.4. This number is not particularly interesting in isolation but it is when we compare values

for several models.

We can also get more information from the diagnostic plots that are available in the list of objects

Return to the model run tab in the browser window, and select beta_1.svg from the pull-down list

above the output pane and view in a separate tab.

Stat-JR:TREE % /[ Stat-JR:TREE x ¥

C A | [ localhost:49807 /output/beta_l.svg

E=' Apps | ] New Tab % skip te content @ Getting Started [:l Latest Headlines | 7| CustomizeLinks | | Windows Marketplace

—
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This “sixway” plot gives several graphs that are constructed from the chain of 5,000 values produced

for beta_1. The top-left graph shows the values plotted against iteration number, and is useful to

confirm that the chain is ‘mixing well’, meaning that it visits most of the posterior distribution in few
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iterations. The top-right graph contains a kernel density plot which is like a smoothed histogram and
represents the posterior distribution for this parameter. Here the shape is symmetric and looks like a
Normal distribution which we expect given theory for fixed effects in a normal model.

The two graphs in the middle row are time series plots known as the autocorrelation (ACF) and
partial autocorrelation (PACF) functions. The ACF indicates the level of correlation within the chain;
this is calculated by moving the chain by a number of iterations (called the lag) and looking at the
correlation between this shifted chain and the original. In this case, the autocorrelation is very small
for all lags. The PACF picks up the degree of auto-regression in the chain. By definition a Markov
chain should act like an autoregressive process of order 1, as the Markov definition is that the future
state of the chain is independent of all the past states of the chain given the current value. If, for
example, in reality the chain had additional dependence on the past 2 values, then we would see a
significant PACF at lag 2. In this case all PACF values are negligible. All of this suggests that we have
good mixing and it would be appropriate to proceed to the interpretation of the parameters.

The bottom-left plot is the estimated Monte Carlo standard error (MCSE) plot for the posterior
estimate of the mean. As MCMC is a simulation-based approach this induces (Monte Carlo)
uncertainty due to the random numbers it uses. This uncertainty reduces with more iterations, and
is measured by the MCSE, and so this graph details how long the chain needs to be run to achieve a
specific MCSE. The sixth (bottom-right) plot is a multiple chains diagnostic and doesn’t make much
sense when we have run only one chain, and we will therefore consider running multiple chains in
the next section.

We can also get some other diagnostics and summary statistics for the model as follows:

Click on the Template pull down list at the top of the screen and select Choose and SummaryStats
as the template.

Next click on the Dataset pull down list and select Choose and out as the dataset.

Run the SummaryStats template and select the inputs as follows before clicking on Run:

Stat-JR:-TREE  Start again

Now select table from the drop-down list of outputs, and display it in a separate tab:
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[} stat-IR 1.0.1:TREE

I} stat-IR 1.0.1:TREE

C [ locahhost: 55534 output/table

Stal-JR:TREE

name beta O beta_1 sigmaz
N 5000 5000 5000
mean -0.0015464 7326083 0.594931664702 0.6458164430848
sd 0.01254348928587 0.01258203661607 0.0141830713538
median -0.00137256910389 0.595057913446 0.649016571248
min -0.0423723856%43 0.54096895575 0.6040035586165
max 0.0457521057663 0.645871124458 0.70543401519
2.5% -0.0260586560258 0.568970859499 0.622427120867
5% -0.02201773456952 0.57359032263 0.626237012023
50% -0.00137256910389 0.595057913446 0.649016571248
95% 0.0191401171679 0.615577564578 0.6728253586309
97.5% 0.0231234059113 0.61974651492 0.676582888931
1OR 0.0165228609912 0.0168564529234 0.0183726812426
ESS 9104 2501 2097
BD 240935 27 a2

Here we see a more extensive summary of the three parameters of interest. This summary table
includes various quantiles of the distribution which are calculated by sorting the chain and picking
the values that lie x% into the sorted chain (where x is 2.5, 5, 50 etc.). These allow for accurate
interval estimates that do not rely on a Normal distribution assumption. The inter-quartile range
(IQR) is similarly calculated by picking the values that lie 25% and 75% through the sorted list and
calculating the distance between them.

The final statistic is an MCMC diagnostic designed to suggest a length of chain to be run. The Brooks-
Draper diagnostic is based on measuring the mean estimate to a particular accuracy (number of
significant figures set to 2 by default). For example, it states that to quote sigma2 as 0.65 with some
desired accuracy only requires 32 iterations. The anomaly here is beta_0, however, since the true
value is 0 we have difficulty quoting such a value to 2 significant figures!

4.2.3 Multiple chains

MCMC methods are more complicated to deal with than classical methods as we have to specify
many estimation parameters, including how long to run the MCMC chains for. The idea of running
chains for a longer period is to counteract the fact that the chains are serially-correlated, and
therefore are not independent samples from the distribution. Another issue that might cause
problems is that the posterior distribution of interest may have several possible maxima (i.e. may be
multimodal). This is not usually an issue in the models we cover in this book, but it is still a good idea
to start off the estimation procedure from several places, or with several runs with different random
number seeds, to confirm we get the same answers.

From the top bar change Template and Dataset using the respective pull down lists and Choose so
you have Regressionl as the template and tutorial as the dataset.

This time fill in the screen as follows:
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tutorial Regression1 Ready (1)
© Response remove
© Explanatory variables it remove
umber of chains: remov e
Random Seed remove
Length of bumin remove
o 2 remove
Thinning remove
Use defaultalgorithm settings: es remove
remove
es remove
© Name of output results: out3

© Cument input string” {bumin’- '500', 'defaultsv- 'Yes', 'thinning" 1", 'nchains® '3', 'defaultalg” "Yes', ‘iterations'- '2000', 'y'- 'normexam’, " 'cons standlrt, 'seed” 1", ‘makepred" 'No}

Set

@ Command: RunStatJR(iemplate="Regressiont’, dataset="utonial’, invars = y" nomexam', %" ‘cons,standlit}. estoptions = {bumin® '500", 'defaultsv- 'Yes', 'thinning" 1,
‘nchains'. '3, 'defaultalg” 'Yes', ‘iterations': '2000', 'seed". '1', ‘makepred" 'No’l}

Click on the Next and Run buttons.

When the model has run select beta_1.svg from the outputs list and pop it out to view it in a new

tab.

R B

Stat-JR:TREE

% /[ Stat-JRTREE

C A [ localhost:50248/output/beta_l.svg
1! Apps [ NewTab P skipto content @) Getting Started (] Latest Headlines [ CustomizeLinks [ Windows Marketplace (- Imported From Firef... [ Imported From Firef... ‘
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Here we see the three chains superimposed on each other in the top-left pane — note the chain looks

primarily red simply because this chain (chain 3) has been plotted on top of the other two, and due
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to good mixing obscures them. Each chain has its own kernel plot in the top-right pane and this also
suggests that, by the similarity of shape and position, the chains are mixing well.

We have previously described what all the graphs here mean in Section 4.2.2, apart from the Brooks-
Gelman-Rubin diagnostic plot (BGRD; Brooks and Gelman, 1998) in the bottom-right corner. This
plot looks at mixing across the chains: the green and blue lines measure variability between and
within the chains, and the red is their ratio. For good convergence this red line should be close to
1.0, and here the values get close to 1.0 fairly quickly. We can have a lot of faith in the estimates of
our model.

4.2.4 Adding gender to the model

We have so far been more focused on understanding the MCMC methods but now we will return to
modelling. We next wish to look at whether gender has an additional effect on normexam on top of
that we have observed for intake score (standirt).

To do this, click on the remove link next to explanatory variables in the browser window, and fill-in
the template as follows:

Stat-JR:-TREE

© Name of output results: outgend

Click on Next and then Run to run the model.

After the model finishes running select ModelResults from the drop-down list of outputs, and display
in a new tab.
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I} stat-JR 1.0.1:TREE

€« C [ localhost: 55534 run/# 92 =
tutorial Regression1 Ready (25s)
hodelResUIts v | Popout
Results
Parameters:
parameter mean sd ESS variable
tau 1.55781035569 0.03453914301 G063
beta_0 -0.103463853944 0.0196323128096 1614 cons
beta_1 0.2904 24943086 0.0125754600564 2488 standit
beta_2 0.170255680478 0.0254307765774 1623 girl
sigma2 0642241872026 0.0142289667969 G064
sigma 0.801350831396 0.00887789655944 G065
deviance 972095322315 2.79195762248 4053
Model:
Statistic Value
Dbar 972095322315
Dithetabar) 9717.00863805
pD 35.94458508372
DIc 9724 88700824

This new model has one additional fixed effect parameter (beta_2) associated with gender, and we
see it has a positive effect (0.170) which appears highly-significant (at least twice its sd, which is
0.025). Note that in our earlier tabulation we saw that the difference in gender means was 0.093- (-
0.140) = 0.233 and so the effect here is somewhat smaller, probably due to correlation between
gender and intake score.

Looking at the DIC diagnostic to assess whether this model is better we see this has dropped from
9766.4 to 9724.9, which is a big drop, and so the model with gender is indeed much better.

Finally we see that the ESS for two of the parameters is lower (beta_0 and beta_2), at around 1600,
so the model doesn’t mix quite as well; however, these ESS are still large enough not to require
further iterations. Here is the graph for beta_2.svg, displayed in a new tab:
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We see reasonable mixing, and can clearly see the significance of the effect as well (as the kernel
density plot in the top-right corner indicates that 0 is nowhere near the posterior distribution). From
a modelling perspective we have thus far ignored the fact that our data is a two-stage sample and
that we should account for the clustering of the pupils within secondary schools. To do this we need
to fit a 2-level model, and use a different template.

4.2.5 Including school effects

Stat-JR contains many different model-fitting templates some of which can fit whole families of
models and some of which can fit just one or two specific models. We have thus far looked at the
rather restrictive Regressionl template that only fits single level normal response models. To include
school effects we will now look at the 2LevelMod template, which not only includes a set of random
effects but also supports different response types and estimation engines, features that we will look
at later.

On the Template pull down list at the top of the screen select Choose and select 2LevelMod as the
template and stick with tutorial for the dataset.

Set-up the inputs as shown below:
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/[ Stat-JR:TREE

==

€« C f [} localhost:50248/run/#

mber of chains
ando 11 e
L 1 of burn
i
Numbse f iterat
Thin
€ faL
W >enerate i lata
Use default starting values
Name of output results:
i ‘cons,standlrt,girl’, ‘makepred’ ‘No’, 'seed: 1", 'defaultsv: Yes’}

i Apps [ NewTab [ skipto content @) Getting Started [T] Latest Headlines ["] Customize Links |*

e (1

Qvr B =

d From Firef... ("] Imported From Firef...

ol remove

al remove

remove

tat remove

remove
remove

1 remove

remove
es remove

out2leve \|

remove

Current input string: {Engine”: ‘eStat’. 'L2ID" "school’, 'burnin™ 500", ‘D" ‘Normal', 'storeresid "Yes', 'thinning" '1", ‘nchains™ '3, 'defaultalg™ Yes', iterations” "2000', 'y": ‘normexam’, ‘X"

m

Press Next and then Run to fit the model. Note that running will take a while as we are storing all 65
school effects and so for each one the software needs to construct diagnostic plots.

When the model finishes select ModelResults, from the output list, and show the results in a

separate tab.
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Jff stat-IR 1.0.1:TREE

s I JJ stat-Jr 10,1 TREE

C' | [ localhost: 55534 /outputMadelResults

Stat-JR:TREE

Results

Parameters:
parameter
sigma2_u
tau
deviance
beta 0
beta_1
beta 2
u_o
u_t
uz
u3
u_4
us
us
u7
u_s
use
u_10
u_1

u_12

mean
0.0927580841793
1.77800634602

9184.86162301

-0.0909418181226
0.559532031983
0170213802116
0 398604325785
0430788328464
0.518891434178
0.0376716646194
0241875184368
0469545038534
0.30512934547
-0.0997702433726
-0.11362155163
-0.311431588694
0.266481255227
-0.0556801364388
-0.155371453148

sd
0.015214800522
0.0398110038171
11.9608582571

0.0428473833425
0.0125937745994
0.0329981198223
0.0821121960575
0105398278624
0.104348689937
0.0893074505889
0121985255709
0.0907376260424
0.0871035400229
0.0825388991247
012136834076
0106620310371
0.100348401637
0108838186418
0096835512847

3418
6072
5978

319
4931

778
2286
2899
2873
2328
3779
2064
1993
1862
G965
3132
2910
G065
2894

ESS

£ons
standirt
girl
school
school
schoal
schoal
school
school
schoal
school
school
schoal
schoal
school

school

5
[]

variable

Here if you scroll down we see that the DIC value for the two-level model is 9245, compared with

9725 for the simpler model, showing that it is important to account for the two levels in the data. If

you scroll down to the beta fixed effect parameters, as shown in the table below, you will find that

their mean estimates have changed little.

Parameter Single level Single level 2level 2level
Mean(sd) ESS Mean(sd) ESS
beta_0 -0.103 (0.0196) 1615 -0.091 (0.0429) 319
beta_1 0.590 (0.0126) 5488 0.560 (0.0126) 4951
beta_2 0.170 (0.0254) 1623 0.170 (0.0330) 775

The standard deviations for beta_0 and beta_2 have increased due to taking account of the

clustering, and the ESS values have reduced due to correlation in estimating the fixed effects and

level 2 residuals.

4.2.6

Caterpillar plot

The random effects in the 2-level model are also interesting to look at, and one graph that is often

used is a caterpillar plot. This can be produced in Stat-JR using a template specifically designed for

producing this plot. This template requires the user to select all the ‘u’s to be displayed in the plot,

which can be time-consuming if there are many of them:

From the top bar we need to select Choose for Template and Dataset.

Choose CaterpillarPlot95 as the template and out2level as the dataset.
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You need now to select all the u’s from u0 to u64 which is best done by clicking on u0 and holding
down the mouse and scrolling down to multiselect all the u’s together

Once all are selected press the Run button.

Select caterpillar.svg in the pull down list and view in a new tab as follows:

— =
Stat-JR:TREE % [ [Y Stat-JR:TREE *x \\\
C' A [} localhost50248/output/caterpillar.svg <r BE =
i Apps [ NewTab [ skipto content @) Getting Started [ Latest Headlines [ CustomizeLinks [ Windows Marketplace [ Imported From Firef.. (] Imported From Firef...
Stat-JR:TREE
1.0
0.5f
0.0
—0.5f
-1.0 - -
0 10 20 30 40 50 60 70

This graph shows the schools in order of ascending mean whilst the bars give a 95% confidence
interval around each mean. The school in the middle with the wide confidence interval (i.e. very
large bars) has only 2 pupils and so there is much greater uncertainty in the estimate.

In this chapter we have explored fitting three models to the tutorial dataset. This has illustrated how
the Stat-JR system works, how to interpret the output from MCMC and eStat, and how to compare
models via the DIC diagnostic. There are better models that can be fitted to the dataset: for
example, we could look at treating the effect of intake score (standirt) as random, and fit a random
slopes model using the template 2LevelRS; in the future we may add material on this subject to this

manual, but for now we leave this as an exercise for the reader. Next we turn to the interoperability
features of Stat-JR.
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4.3 Interoperability - a brief introduction

In this section we look at interoperability with other software packages. In order to run this section
you will need to have installed the other packages and told Stat-JR where they are. For more details
look at the Stat-JR website (www.bristol.ac.uk/cmm/software/statjr/).

4.3.1 So why are we offering Interoperability?
There are many motivations that could be given for the benefits of having an interoperability
interface. First and foremost it opens up functionality in other software packages through a common
interface.

One important feature that the template, Regression1AML, which we cover at the end of this
chapter, shows is that not all model templates need to use the built-in eStat engine. It would be
perfectly reasonable for a user to construct a template that fitted a specific family of models in the
WinBUGS software and then novice users would have access to a user-friendly interface to such
models without having to understand the subtleties of writing WinBUGS code; it can thus play an
important role introducing packages, such as WinBUGS, to new users. This follows earlier work: for
example the MLwiN-WinBUGS interface that we developed 10 years ago.

It also offers an easy way of comparing different software packages for a multitude of examples, and
we will return to this in Section 4.4.4. Finally it can be thought of as a teaching tool, so that a user
familiar with one package can use Stat-JR and directly compare the script files, etc., required for the
package with which they are familiar to those required for an alternative package.

4.3.2 Regression in eStat revisited
In Section 4.2 we looked at fitting a few models to the tutorial dataset using the built-in eStat
engine: a newly-developed estimation engine with the advantage of being transparent in that all the
algebra, and even the program code, is available for inspection. It is an MCMC-based estimation
method, but is also rather quick. In this chapter we will stick with one simple example, the initial
linear regression model that we fitted to the ‘tutorial’ dataset that we considered in Section 4.2. We
will need to use a new template, Regression2, as the Regressionl template only supports the eStat
engine.

We will begin by setting-up the model and running it in eStat:

From the top bar select Regression2 as the template, and tutorial as the dataset using the Choose
options on the pull down lists for templates and datasets and set-up the inputs as follows:
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file:///C:/Bristol/estat/trunk/Documentation/www.bristol.ac.uk/cmm/software/statjr/

[ Stat-JR:TREE

€« C A [ localhost:49895/run/?inputbox=+%7B%27numfjoins%27%3A+%270%27%2C+%27defaultsv9%27%3A+ %27 Yes%27%2C +%27numbjoins%279 77| BE @ =
tutorial Regression2 Ready (13) B
Response: normexam remove
Explanatory variables: cons,standirt remove |
Choose estimation engine: eStat remove
Number of chains: 3 remove
Random Seed: 1 remove L4
Length of burnin: 500 remove
Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
Name of output results: uutestaﬂ
=

Click on Next and Run to fit the model.

Select ModelResults from the pull down list, and show this output in a new tab which should look as

follows:

C' | [ localhost: 55534 /outputModelResults w =
Results
Parameters:
parameter mean sd ESS variable
tau 1.54160995074 0.0340085114631 5799
beta 0 -0.0012763518487 1 0.0125770014327 5960 ons
beta_1 0594959154334 0012745358164 6129 stancirt
sigmaz 0.648987956703 0.0143066971083 5784
sigma 0.5055458947358 0.00857975575981 5789
deviance 9763 48848832 2 43302399601 BB |
Model:
Statistic value
Dbar 9763 48846832
D(thetabar)  9760.50978897
pD 297869934713
DIC 976646718766

These results are identical to those we obtained using Regressionl earlier, although we only looked
at the plot for beta_1 in Section 4.2.3. We will use this as a benchmark, contrasting these results
with those we obtain from the other packages, although it is worth noting that all packages will have
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good mixing and converge quickly for this simple linear regression model. You might like to explore
differences between engines / packages for other models yourself after reading this chapter.

4.3.3 Interoperability with WinBUGS
WinBUGS (Lunn et al., 2000) is an MCMC-based package developed (as BUGS — Bayesian inference
Using Gibbs Sampling) originally in the early 1990s by a team of researchers at the MRC Biostatistics
Unit in Cambridge. It is a very flexible package and can fit, in a Bayesian framework, most statistical
models, provided you can describe them in its model specification language. In Stat-JR we have
borrowed much of this language for our own algebra system, and so many templates feature
interoperability with WinBUGS.

To fit the current model using WinBUGS we can click on remove next to the Choose estimation

engine input and set up the template inputs as follows:

Number of chains: 3

n

Random Seed: 1

Length of burnin: 500

Number of iterations: 2000

Thinning: 1

Name of cutput results: outwinbugs L

@yes
©No

Use default starting values:

When we press Next the Stat-JR software will construct all the files required to run WinBUGS so for
example we can choose model.txt from the list:
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tutorial Regression2 Ready (1s)

STl model bxt [z] | Popout

#This file contains the model specification based on the eSTAT system or newly defined

model{

for (i in 1:4859) {
normexam[i] ~ dnorm(mu[i], tau)
mu[i] <- cons[i] * beta_@ + standlrt[i] * beta_1

}.

# Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(@.801000, ©.001000)

sigma2 <- 1/tau

sigma <- 1/sqrt(tau)

n

Here we see the model defined in the WinBUGS model specification language in the output pane.
This file is almost identical to that used by eStat aside from the expression length(normexam) being
replaced here by its value 4059. Selecting script.txt from the list and popping out to a new tab gives
the following:

C A [ localhost:50488/output/script bt

Script to run model

display('log")
check('c:/users/frujb/appdata/local/temp/tmpeqyduu/model. txt ")
data('c:/users/frujb/appdata/local/temp/tmpeqyduu/data. txt ")
compile(3)

inits(1, "c:/users/frwjb/appdata/local/temp/tmpeqySuu/initsl.txt’)
inits(2, "e:/fusers/frwjb/appdata/local/temp/tmpeqyduu/inits2.txt")
inits(3, 'c:/users/frujb/appdata/local/temp/tmpeqyduu/inits3. txt')
gen.inits()

set.seed(1)

update(588)

set('tau')

set("deviance')

set('beta’)

set("beta_@8")

set('beta 1')

set("sigma’)

set("sigmaz’)

dic.set()

thin.updater(1)

update(2088)

coda('*', 'c:fusers/frwjb/appdata/local/temp/tmpeqyduu/results’)
stats("*')

dic.stats()

history('*', 'c:/users/frwjb/appdata/local/temp/tmpeqySuu’)
save('c:/users/frwjb/appdata/local/temp/tmpeqyduu/log.odc”)
save('c:/users/frwjb/appdata/local/temp/tmpeqyduu/log. txt")

quit()

Here we see a list of the commands to be run in the WinBUGS language to fit the model. Note that
this is done using a temporary directory and so this pathname appears in many commands.

Return to the tab containing the main page and click on the Run button.
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The WinBUGS package then pops up in its own window, runs the above script, and returns control to
Stat-JR when it has finished estimating the model. If we look at the ModelResults output from the list
and pop it out to its own tab we will see the following:

i} stat-JR 1.0.1:TREE % 1 O} stat-aR 1.0.L:TREE
C | [ localhost: 55534/ /output/ModelResults e =
Results
Parameters:
parameter mean sd ESS
beta 0 -000104421424553 0.0126340094221 5728
beta_1 0584715833333 0.0127046348041 6666
deviance 97635005 2.46495430992 6154
sigma 0805538533333 0.00890770014363 5758
sigma2 0643051716667 0.0143577775306 5761
tau 154146433333 0.034078449611 5747
Model:
Statistic Value

Dbar_normexam 9763.5
Dhat_normexam 5760.51
pD_normexam 2.986
DIC_normexam 976640
Dbar_total 9763.3
Dhat_tetal 5760.51
pD_total 2.986

DIC_total 9766.48

These estimates, as one might expect, are very close to those from eStat, and again all ESS values are
around 5,000-6,000. We can also look at the log file from WinBUGS:

Return to the template tab and choose log.txt in the outputs list.

Scroll the log.txt file down to the bottom, and the screen should look as follows:
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Template « Ready (225} Settings  Debug~

set.seed(1)
update(508)
set(tau)
set(deviance)

set(beta)

command #Bugs:iset cannot be executed (is greyed out)
set(beta_)

set(beta 1)

set{sigma)

set(sigmaz)

dic.set()

thin.updater(1)

update( 2008}
coda(*,c:fusers/frujb/appdata/local /temp /8 tmplonub@/results)
stats(*)

Node statistics

node mean sd MC error 2.5% median 97.5% start sample
beta_@ -@.001244 @.91263 1.641E-4 -@.@2522 -@.ee1e57 @.92377 S@l 5208
beta_1 ®@.5247 @.2127 1.472E-4 a.57 @.5946 @.61% S@l 5208
deviance 9763.@ 2.451 @.93237 9¥61.@ 9¥E3.@ S770.@ 501 5208
sigma 2.3056 0.028908 1.88E-4 @.7885 0.8854 B.8232 501 [=lle o
sigma? @.6491 @.01436 1.74E-4 @.6218 @.6487 Q.6777 501 6008
tau 1.541 0.03487 4.138E-4 1.476 1.542 1.608 501 [=lle o

dic.stats()

DIC

Dbar = post.mean of -2logl; Dhat = -2Legl at post.mean of stochastic nodes
Dbar  Dhat  pD DIC

normexam 3763.500 9760, 510 2,986 9786.450

total  9763.500 9760, 518 2,986  9786.480

history(*,c:/users/frujb/appdata/local ftemp/8/tmplouuba)
History

save(c:fusers/frujb/appdata/local /temp/8/tmplowwb@/ log. cdc)
save(c:/users/fruib/appdatasLlocal ftemp/8/tmplowwb@/Log. txt )

Here we see that the estimates and the DIC diagnostic are embedded in the log file, and take a
similar value to eStat. WinBUGS required initial value files for each run (and these are stored in 3
text files beginning with inits and the chain number), together with a data file as well as the model
and script files already shown. All of these are available to view and to use again, thus Stat-JR is
useful for learning how these other packages, such as WinBUGS, work.

4.3.4 Interoperability with OpenBUGS

Our next package to consider is OpenBUGS (Lunn et al., 2009). OpenBUGS was developed by
members of the same team who developed WinBUGS, but differs in that it is open source so other
coders may get access to the source code, and in theory develop new features in the software.

To run OpenBUGS via Stat-JR click on the word remove next to the Choose Estimation engine input,
set up the template as follows, and then click on Next :
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[ Stat-JR:TREE

« C A [ localhost:49895/run/#

Response: ni AM remove
Explanatory variables: cons,standirt remove
Choose estimation engine: OpenBUGS remove
Number of chains: 3
Random Seed: 1
Length of burnin: 500 =
Number of iterations: 2000
Thinning: 1

Name of output resuits: outopenbugs

Use default starting values: OYes
DNo

Current input string: {'y"- 'normexam’, 'x'": 'cons standirt', 'Engine': 'OpenBUGS'}

Command: RunStatJR(template='Regression2', dataset="tutorial', invars = {'y": 'normexam’, 'x': 'cons standirt'}, estoptions = {'Engine': 'OpenBUGS'})

This will have set-up the files required for OpenBUGS; these are similar, but not identical, to
WinBUGS: the script file, in particular, is somewhat different and is split into 3 parts called
initscript.txt, runscript.txt (shown below) and resultsscript.txt , (you can access this from the objects

[ stat-JR:TREE
&« C # [ localhost:50489/run/# v BB =

tutorial Regression2 Ready (16s)

Command: RunStatJR(template='Regression2', dataset="tutorial', invars = {'y'": 'normexam’, 'x" 'cons standlrt'}, estoptions = {Engine" 'OpenBUGS',
‘burnin' '500', 'defaultsv'- 'Yes', 'thinning' '1', 'nchains'- '3', ‘iterations' '2000', 'outdata’ 'outopenbugs', 'seed” '1'})

Edit runscript tet [=] | Popout

modelDisplay( "log")

modelSetWD( 'c:/users/frwjb/appdata/local/temp/tmpn7qc4f’)
modelInternalize('modelstate.bug')
samplesSet("tau’)
samplesSet('deviance')
samplesSet('beta’)
samplesSet('beta_8')
samplesSet('beta_1')
samplesSet('sigma’)

samplesSet( sigma2’)

dicSet()

modelUpdate (2008, 1)
modelExternalize( "modelstate.bug")
modelSavelog( ' runlog.txt")
modelQuit('yes")

OpenBUGS allows us to change the working directory, and so there is no need for other commands
to include the temporary directory path. Unlike WinBUGS, OpenBUGS will run in the background,
and so will not appear when we click run.
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Clicking on Run and selecting ModelResults in its own tab gives the following:

i} stat-JR 1.0.1:TREE % 1 O} stat-aR 1.0.L:TREE
C' | [ localhost: 55534 /outputModelResults w =
Results
Parameters:
parameter mean sd ESS
beta 0 -0.001294676807 0.0126309741479 6018
beta_1 0.5920477 0.0128666030758 5858
deviance 5763532 246413121945 5785
sigma 0.802422516667 0.00816667249695 5954
sigma2 0.648708483333 0.0147680896654 4961
tau 154212983333 0.0351074252826 5957
Model:
Statistic Value

Dbar_normexam 5764.0
Dhat_normexam 5761.0
pD_normexam 3.071
DIC_normexam S5767.0
Dbar_tetal 3764.0
Dhat_total 9761.0
pD_total 3.071

DIC_tetal 37670

Again, these results are very similar in terms of parameter estimates and ESS values to the other
software packages.

4.3.5 Interoperability with JAGS
The third standalone MCMC estimation engine available, via Stat-JR, is JAGS (Just Another Gibbs
Sampler), developed by Martyn Plummer (Plummer, 2003). JAGS also uses WinBUGS model
language, but has a few differences in terms of script files and data files.

To run JAGS via Stat-JR click on the remove text next to Choose estimation engine and set-up the
template as follows, before clicking on Next :
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« C A [ localhost49895/run/# 7 Bk @ =

tutorial Regression2 Ready (1s)

Response; normexam remove

Explanatory variables: standirt remave

Choose estimation engine: JAGS remove

I

Number of chains: 3 =
Randem Seed: 1
Length of burnin: 500 z
Number of iterations: 2000 =
Thinning: 1 =
Name of output results: outjags|
Use default starting values: ?'YES
“No

Current input string: {'y'": ‘normexam’, 'x" 'cons standirt, 'Engine": 'JAGS'}

This will set-up the files required for JAGS; for example, here you can see the script file (script.txt)
which show some differences to those for WinBUGS (as to the initial value file formats):

[ Stat-JR:TREE

= C A | [} localhost50489/run/# Pl
tutorial Regression2 Ready (1=}
Edit script. bt [z] | Popout
load dic

model in ‘model.fxt’

data in 'data.txt’

compile, nchains(3)

parameters in ‘initsl.txt', chain(1)
parameters in 'inits2.txt', chain(2)
parameters in ‘inits3.txt’, chain(3)
initialize

update 58@

monitor tau, thin(l)

moniter deviance, thin(1)

monitor beta, thin(1)

moniter beta @, thin(l)

monitor beta_1, thin(1)

monitor sigma, thin(l)

monitor sigma2, thin(1l)

monitor pD

update 2808

coda *, stem('results')

parameters to 'chainstatel.txt', chain(1)
parameters to 'chainstate2.txt', chain(2)
parameters to 'chainstate3.txt', chain(3)
samplers to 'samplers.txt'

exit

mn

Like OpenBUGS, JAGS will run in the background (i.e. it will not open as a window on your screen).

Clicking on Run, and placing ModelResults in a new tab, gives the following:
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i} stat-JR 1.0.1:TREE s} stat-JR 1.0.1:TREE

C' | [ localhost: 55534 /outputModelResults T =

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
tau 1840129985 0.0342782163089 5398
deviance 9763542965 2.45268401799 5168
beta 0 -0.00115234885409 0.0127380153459 56863
beta_1 0 595060330833 0.0127474159985 5686
sigma 0805938662667 0.00897061798359 5360
sigmaZ 06496176425 0.0144640713399 B373
pD 3 0445005368 1.74378318306 1992
Model:
Statistic value
Dbar 9763 542065
pD 3 0445005368
DIC 9756.58746554

As you can see, we have similar estimates and effective sample sizes to the other estimation
methods we’ve used. Whilst JAGS can be faster than WinBUGS and OpenBUGS, it fits a slightly
smaller number of models.

4.3.6 Interoperability with MLwiN
MLwiN (Rasbash et al. 2009) is a software package specifically written to fit multilevel statistical
models. It features two estimation engines (for MCMC and likelihood-based (IGLS) methods,
respectively) with a menu-driven, point-and-click user interface. It also has an underlying macro
language, however, and this is what we use to interoperate with Stat-JR. We will first consider the
MCMC engine. As it is limited in the scope of models it fits, this means it is generally quicker than the
other MCMC packages. MLwiN is a single chain program, but can be made into a multiple chain
engine with Stat-JR, since the latter can start-up three separate instances of MLwiN. At present
these are given different random number seeds, but the same starting values, however we will try
and change this in future.

To run MCMC in MLwiN, via Stat-JR, click on the remove text by Choose estimation engine input and
set-up the template as follows before clicking on Next :
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« C A [ localhost:50839/run/# v HEE =
tutorial Regression2 Ready (1) 7
Response: normexam remove
Explanatory variables: cons,standirt remove L
Choose estimation engine: VLwiN_MCMC remove
Number of chains: 3 remove
Random Seed: remove 1
Length of burnin: 500 remove
Number of iterations: 2000 remove
Thinning: remove
Use default algorithm settings: Yes remove
Name of output results: outmiwin|
[ ]
I <

You can see, in the pulldown list the dataset (in .dta format) that is used by MLwiN. There are also
several MLwiN script files for the multiple chains and the several stages of model fitting.

Clicking on the Run button will set off three instances of MLwiN (in the background) and Stat-JR will
then collate the results together. Choosing ModelResults, and displaying them in a new tab, gives the
following:

C | [ localhost: 55534/ /output/ModelResults e =
Results
Parameters:
parameter mean sd ESS variable
deviance 9763.52135498 24524165969 5558
beta2 -0.00106361221436 0.0125106907785 5798 tons
betad 0595001279732 0 0127556806575 5937 standirt
sigmal_1 0.6491785063148 0.0146208911389 5242 var(_levres)
Model:
Statistic value
Dbar 9763 52148438
Dithetabar) 9760.51302083
pD 300819102923
pic 9766 5296224

Once again here we have similar estimates, although the naming convention is slightly different for
MLwiN. To show that we have multiple chains we can examine the chains for the slope (beta3), as
shown below:
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C' # | [} localhost:50839/output/beta3.svg
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Stat-JR also offers the option of using the likelihood-based IGLS estimation engine in MLwiN.

To do this in MLwiN, via Stat-JR, click once again on the remove text next to the Choose estimation

engine input and set-up the template as follows, before clicking on Next:

& C A [ localhost:50839/run/# e Eﬁ B8 =
tutorial Regression2 Ready (1s) ‘;
Response:  normexam remove b
Explanatory variables: cons,standirt remaove
Choose estimation engine:  MLwiN_IGLS remove
Use default algorithm settings: "?‘YES
©No

Again the dataset will appears in the output pane, and this time pressing Run will give the following
in the ModelResults output:
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Results

Parameters:
parameter variable mean se
beta2 cons -0.00119112 0.0126392
betad standirt 0.595057 0.012727
sigmal_1 var(_levres) 0648419 0.0143933
Model:
Statistic Value
converged 1.0
iterations 2.0
2*LogLikelihood 9760.51

Here we get the Deviance (-2*Loglikelihood) value, together with parameter estimates with standard
errors. The likelihood-based methods are far faster to run than the MCMC-based methods.

4.3.7 Interoperability with R
R (R Development Core Team, 2011) is another more general purpose package that can be used to
fit many statistical models. R has many parallels with Stat-JR in that users can supply functions (like
Stat-JR templates) which are then added to the library of R packages. We have thus far implemented
interoperability features with R for several of these R functions; for example, for the template
Regression2, we have implemented two R engines: R_MCMCglmm, which is MCMC-based, and
R_glm, which is a standard regression modelling function. We will firstly demonstrate MCMCglimm.

To run MCMC in R, via Stat-JR, click on the remove text by the Choose estimation engine input and

set-up the template as follows, and click on Next:
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[ Stat-JR:TREE
€« C f [ localhost:50839/r

Respense:

EXAIM remove

Explanatory variables:

15,standlrt remaove

Choose estimation engine:

Random Seed:
1

Length of burnin: B

500

Number of iterations:

5000

Thinning:
1

Name of output results:

UutRl

After pressing Next, if we look at the script file, script.R, which we can select from the outputs list,
we see the following:

[ Stat-JRTREE [’ Stat-JRTREE

C A [ localhost50839/output/script.R o B @ =

Script to run model

FEEBFEEEEFEREFER B AR ERE R SRR E R RES
Note that when Stat-IR intEr‘DpEr‘atES with R, it sets the wnr‘king
directery te wherever the user's temperary files are stored, i.e.
workdir = tempdir(). The data to be modelled, this script, and the
files exported from R, are all saved there.

LR EREEEE R R EEE R EE EREEEEEEEEREEEREEREER R

m

# test to see if foreign package is already installed, if not, then install it
PACKages<-as.character(data.frame(installed.packages())$Package)
test<-("foreign™ %in¥ PACKages)
if (ltest){
install.packages("foreign”,repes="http://cran.r-project.org")
H
# load foreign package
library(foreign)
# use foreign package to read *.dta file (Stata format) into R data frame ('mydata’)
mydata<-read.dta("datafile.dta")
# print summary of the data
summary(mydata)
# test to see if MCMCglmm package is already installed, if not, then install it
PACKages<-as.character(data.frame(installed. packages())$Package)
CMCglmm” %in%k PACKages)
if (ltest){
install.packages ("MCMCglmm" , repos="http://cran.r-project.org")

1ibrary(MCHMCglom)

EE R R R SR E R R E R E RS EEE S E R EEEEEEEEEEREE]
# Here we specify the model formula, formatted as y ~ x1 + x2 + ...

# Since Stat-JR assumes users have included the intercept in their list
# of explanatory variables, -1 removes the intercept which the glm

# function otherwise adds by default.

R R R S R R R R R R R E R EE R R R R R

formula <- normexam ~ cons + standlrt - 1

MCMCglmm can fit all forms of generalised linear mixed models, of which a linear regression is a
rather trivial case. You will see that the script file contains some setup code which will actually
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download and install the MCMCgimm library the first time you execute the script (so ensure your
machine is connected to the internet) before calling the MCMCglmm command and then producing
summaries.

Clicking on Run in the main window will create several outputs.

The ModelResults are similar to other software but we can also look at diagnostics plots that are

specific to R by selecting DiagPlots1.png:

Trace of cons Density of cons
3 81
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w |
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S w
J o
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g o -
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o 4
T T T T T T T T T T T T
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lterations N =5000 Bandwidth = 0.002475
Trace of standirt Density of standirt

5 10 15 20 25 30

056 058 060 0.62 064
1

0
|

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0.56 0.58 060 062 0.64
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Here R gives trace plots and kernel density plots for both the intercept and the slope parameter.

Turning next to the gim package we can click on the remove text by Choose estimation engine and
set-up the template as follows, before clicking on Next :

[ Stat-JR:TREE | Stat-JR:TREE

&« C A | [ localhost:50839/run/#

remaove

Choose estimation engine:

R_gim E'
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Clicking on Run will this time run the MASS package and give results in ModelResults as usual. There
are additional graphical plots that come back from R; for example, below is a plot of residuals of the
model fit against fitted values (ResivsFitted.svg).

[ Stat-JRTREE %V [ Stat-JRTREE

C f [ localhost

Residuals vs Fitted

Residuals

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Predicted values
glm(formula)

Before finishing with R, we will also demonstrate a non-model template developed with R called
PlotsViaR that gives the Stat-JR user access to R’s lattice graphics package through the Stat-JR
interface.

Click on Choose from the Template pull down list at the top of the screen to get a list of all the
templates. Note that the search cloud is useful with interoperability as it can be used to show which
templates offer interoperability with a particular package (the engines are in red).

Click on Plots and also R_script in the blue tag cloud. You’ll see that the list of templates,
underneath, is accordingly reduced to just those that draw plots using R.

Select PlotsViaR from the list, and click Use.

Set up the template inputs as shown below:
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[ Stat-JR:TREE

<« C f | [ localhost50839/run/#

Type of plot:

Density Plot remove

n

X values:

normexam remove

Do you want a (within-plot) grouping variable:

Yes remove

Grouping variable:

girl remove

How many panelling variables do you want:

Do you want the variable name included in panel bar (if answer No, just the level appears):

Yes remove

These options will display kernel plots for the exam scores of pupils grouped by gender, with
separate (panelled or trellise) plots for each school gender type. We can now press Run and show
the plot (Plot1.svg) in a separate tab:

[ Stat-JR:TREE x

) Stat-JRTREE x

C A | [ localhost:50839/output/Plotl.svg

1 1 1 1 1
factor(schgend) : girlsch
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/ \
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Here (by coincidence) we have blue for boys and pink for girls!
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4.3.8 Interoperability with AML
We will next look at another software package that can fit many statistical models via likelihood-
based estimation. AML (Lillard & Panis, 2003) is very useful for fitting multi-process models, but as
with other software packages can fit a simple regression as a special case. In our development work
on Stat-JR we have written special templates for interoperability with AML as opposed to
incorporating interoperability in the standard templates. We therefore need to do the following:

Click on the Choose option from the Template pull down list.
Select Regression1AML from the template list and click on Use, and stick with the tutorial dataset.

Note that if you have earlier clicked on Plots and R_script in the cloud of terms you will need to
either unselect them or click on [reset] to see the required template.

Fill in the inputs as follows, and press Next:

Current input string: {'y'": 'normexam’, 'x": 'cons,standirt’}

Now click on Run to run the model in AML and select ModelResults from the list:

Results
Parameters:
parameter mean se

beta0 -0 0011 00126

betal 0.5951 00125

sigma 08052 0.0087
Model:

Statistic Value
Log-Likelihood -4880 25

Here we see the model results are similar to other packages. AML has three input dataset
(amlfit.raw, amlfit.aml and amlfit.r2a. There are also three additional output files from AML:
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amlfit.out, amlfit.tab and amlfit.sum. For more information on how AML works we recommend
looking at the reference manual for the software.

We also have interoperability support for a variety of other packages, including GenStat, MATLAB,
Minitab, Octave, Sabre, SAS, SPSS, Stan (via RStan) and Stata. These packages are either not installed
on the machine we are currently using, or are not supported by the Regression2 template that is
being demonstrated, and so Stat-JR realises this and does not offer them.

4.4 Application 2: Analysis of the Bangladeshi Fertility Survey
dataset

4.4.1 The Bangladeshi Fertility Survey dataset

The Bangladeshi dataset (bangl) is an example dataset from the 1988 Bangladeshi Fertility Survey. It
contains records from 1934 women based in 60 districts in Bangladesh, and we are planning to
investigate variables that predict whether the women were using contraception or not at the time of
the survey. Let us first look at the data and the variables we will consider.

Select Choose and pick bangl from the Dataset list and click on Use.
Click on View from the Dataset list to view the data as follows:

New Variable name:

Expression:

Variable name:
woman [=]
[F] woman | district  use Ic age urban  educ | hindu | d_illit d_pray cons

1 |@ 1 1 0 3 1844 1 1 0 058 064 1~

2 D 2 1 o 0 -5.56 1 1 1 058 064 1 il =

3 (O 3 1 0 2 1.44 1 2 0 058 064 1

4 |O 4 1 0 3 544 1 1 0 058 064 1

s |0 5 1 0 0 -1356 1 1 0 058 064 1

=] 5 1 0 0 -1156 1 1 0 058 064 1

7 D 7 1 o 3 1844 1 1 0 0538 064 1

s (O [ 1 0 3 -356 1 1 0 0.58 054 1

E=] ] 1 0 1 -556 1 1 0 058 064 1

10 |0 10 1 0 3 1.44 1 1 0 058 064 1

1 (@ 11 1 1 0 -1156 1 1 0 058 064 1

12 @ 12 1 0 0 -256 1 1 0 058 064 1

13 |0 13 1 0 1 -456 1 1 0 058 054 1

14 D 14 1 o 3 5.44 1 1 0 058 0.64 1

15 |0 15 1 0 3 -0.55999¢ 1 1 0 058 064 1

16 (0O 16 1 1 3 444 1 1 0 058 064 1

17 |@ 17 1 0 0 -556 1 1 0 058 064 1

18 |0 18 1 1 3-0.55999¢ 1 z 0 058 064 1

19 D 19 1 1 1 -6.56 1 4 0 058 064 1

20 (0O 20 1 0 2 -356 1 1 0 058 064 1 M
I 21 (0O 21 1 0 0 -456 1 3 0 058 064 1

2 (0O 22 1 0 0 -956 1 1 0 058 064 1

23 (O 23 1 0 3 244 1 z 0 058 064 1

24 D 24 1 1 2 244 1 4 0 058 0.64 1 il
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Here we see records for the first 24 women in district 1 displayed. The response variable use takes
value 1 if the woman was using contraceptives during the time of the survey, and 0 if she was not.
There are then several predictor variables, both woman-level and district-level. Here we will focus
on just two: the number of living children (/c), which is a categorical variable with four categories (no
kids, one kid, two kids, three+kids), and the respondents’ age, which is measured to the nearest year
and has been centred around its grand mean. We will now consider modelling the dataset.

4.4.2 Modelling the data using logistic regression

We will firstly consider a simple linear regression model relating contraception use to the age of the
woman.

Choose the template 1LevelMod from the Template list and click on Use.
Then setup the model with inputs as below.

&« C A [ localhost:50839/run/# Qs Bk 8 =

bangt ALeveiod Resay 15} —

m

Name of output results: out

Clicking on Next and choosing equation.tex in the pull down list and we see the following:

[ Stat-JR:TREE

< C M [ localhost:50839/run/# -
Edit equation.tex [z] Popout

use; ~ Binomial(cons,, m;)
logit(m;) = Fycons; + 51 age;
Boocl
Bl

R
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Here we the logistic regression model, in LaTeX, in the output pane. If we select model.txt we can
then see the model code that the algebra system will interpret:

[ Stat-JR:TREE

< C | [ localhost:50839/run/# vy BE ™ =
bang1 1LevelMod Ready (755)
I I8l model txt [=] | Popout N
model{

for (i in 1:length(use)) {
use[i] ~ dbin(p[i], cons[i])}
logit(p[i]) <- cons[i] * beta_@ + age[i] * beta_1
1
# Priors
beta_@ ~ dflat() -
beta 1 ~ dflat()

Now choosing algorithm.tex from the right-hand pane, and placing it in its own tab in the browser
window, gives the following:

Qv B ™ =

lengthfuse]
¥

(beta 0 % +beta_1 xage;) lengthfuse) lengthuse) lengthfuse)
une; x (beta_D xccoms; +beta_L x.age; — (1 +exp (beta D x coms; +beta 1 xage;))) (mfusg)m(l oo (beta, 0 cons; + ek 1 xag%) )+ {f )- Logfisct (e ) — Logfiactfeare — use;)
ot ! fot

deviance — (~2)

lengh(use)
o 1+exp (beta_0 x cons; +beta_1 x age;)

lengghfuse) Jeneghfuse) exp (beta_t x azey)  exp foams; < beta_0) lenggh{use)
F(beta ) oc ( 2 coms; x uisi) xbeta 0+ 2 (coms; —use;) x l.n(i— W) + 2 (—ume) % In(1 +exp(beta_1 x age;) x exp foons; x beta_0))

th{use)

length(use)
(-vi5q) {1+ exp (et 0  comsy ) « exp age; x beta_1))

Sloetat | )K( age
ot

lengthuse)

“bota L+ (m,mi)un(x

axp (beta_0  coms;)  exp ase;  beta_1) )+
o

7 Tgrexp (beta_0 x cons; )  exp age; « beta_1)

Here we see that the eStat engine uses a different MCMC method, random walk Metropolis, for the
steps for the fixed effects (beta0 and betal) when fitting logistic regression models. We will come
back to this modelling decision in Section 4.4.4 when we compare different software packages.

Returning to the main pane and clicking on Run will now run the model.
Once it has finished, if we select ModelResults from the list, and look at it in a new tab, we get the
following:
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C [ localhost: 52622/ /outputvodelResults wl =
Results
Parameters:
parameter mean sd ESS variable
beta 0 -0.438900302614 0.0464520782198 1552 cons
beta_1 0.00641195705115 0.00506444056927 1380 age
deviance 259124987395 186946370926 1433
Model:
Statistic Value

Dbar 2591.24937395
Dithetabar) 250929226267
pD 1.85761128422
D

C 259520748524

Perhaps disappointedly and surprisingly, age doesn’t appear to have a significant effect (its estimate
(0.0064) is similar in magnitude to its standard error (0.0051)). To see this more clearly we can look
at the graph beta_1.svg in its own browser tab:

C' # | [ localhost:50839/output/beta_l.svg
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Here, whilst the values on the x-axis overlap and therefore aren’t particularly clear, we can see that
all three chains show strong support for the value 0.00 in the kernel density plot (i.e. it's comfortably
within the distribution). It might be the case, however, that contraceptive use has a non-linear
relationship with age (possibly quadratic) and this could also be confounded by how far through
their own family-formation process the woman is, which we will model via the variable Ic. We might
also be interested in accounting for any clustering effects of having women nested within districts.

In order to fit a quadratic function to age we will need to construct the variable age® which we can
easily do by viewing the Dataset and use the variable creation tool.

Return to the main screen and select View from the Dataset pull-down list at the top of the page
In the New Variable name box type the following:

[ Stat-JRTREE

% 1 [ Stat-JRTREE

C # | [} localhost:50839/data/ o Bk = =
New Variable name: age2 =
Expression: age*age
Create
Variable name: woman E
Delete
B woman district use ic age urban educ hindu d_illie d_pray cons
1|0 1 1 i 3 18.44 1 1 o 058 064 1f=
2 B 2 1 0 0 -5.56 1 1 1 058 0.64 it >

Here we are going to overwrite the existing dataset (at least in temporary memory) with a version in
which we have appended an additional column to it. Clicking on Create and looking at the data

below gives the following:

[ Stat-JR:TREE

% ¥ [ Stat-JRTREE

C # [ localhost50839/data/ ==
New Variable name:
Expression:
Create
Variable name: woman B |
Delete
] woman district use Ic age urban educ hindu d_illic d_pray cons age2
=] 1 1] 0 3 15.44 1 1 o 058 0.54 1340033630371 4
: (@ 2 1] 0 0 s6 1 1 1] 058 064 1[309135932024 %
=] 3 1] 0 2 144 1 2 o 058 064 1 2.0736014842
+ (B 4 1 0 E) 5.4 1 1 0 058 064 1/71.233512060¢ m
s |0 5 1 0 0 -13.56 1 1 o 058 0.64 1|183.873580937
s @ 5 1] 0 o -1156 1 1 o 058 0.5¢ 1133 63358068¢
=] 7 1] 0 E) 15.44 1 1 o 058 0.54 1340033830371
s @ s 1] 0 3 356 1 1 0 058 064 1126735963821
s (@ o 1] 0 1 556 1 1 o 058 064 130913583202
1 B 10 1 0 E) 144 1 1 0 058 064 1 2.0736014843
u (O 11 1 1 0 -1156 1 1 o 058 0.64 1|133.63359088¢
1z @ 12 1] 0 o -235 1 1 o 058 0.5¢ 1655358745028
i |0 3 1 0 1 -456 1 1 0 058 064 1207935343604
= - . - R . . N . s P EP TP =2

Here you see age2 (age”) appearing in the column on the far right. Whilst we could explore adding
further explanatory variables to this 1-level model, we are going to move straight into fitting a 2-
level model to account for districts.
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4.4.3 Multilevel modelling of the data
We will now require a template that will fit a 2-level logistic regression model to our dataset. In the
earlier sections we looked at the template 2LevelMod and we will once again use it here and also
illustrate how to fit categorical predictor variables.

On the main tab, click on Choose in the Template pull down list and select 2LevelMod and click on
Use button to run this template.

Fill in the template inputs as follows:

[ Stat-JR-TREE

&« C A [ localhost50838/run/# o BE ™ =
bang1 2LevelMod Ready (1s) M
Response: e rem
Level 2 ID: district remove
specify distribution Binomial remove 3
Denominator: S remove
Specify link function ogit remove
Explanatory variables: woman M L
district
use
urban
educ
hinciu
d_ilit
d_pray =
cons
age
age2
lc -
[Cltreat cons as categorical
[lreat age as categorical
[Chreat age2 as categorical
[Zltreat Ic as categorical
Store level 2 residuals? 0 remove

Here we need to specify several extra inputs, including an input for the level 2 identifiers and also to

let the software know which predictor variables are categorical. Continue with the inputs as follows:

[ Stat-JR:TREE

cf b

5
®
N
@
o
m
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Clicking on Next will run the algebra system and set up code to fit the model. If we select model.txt
in the output list we will see the following:

[ Stat-JR:TREE

€« C M | [ localhost:50839/run/#

Sl model bt [z] | Popout

model {
for (i in 1:length(use)) {
use[1] ~ dbin(p[i], cons[i])
logit(p[1]) ¢- cons[i] * beta @ + age[i] * beta 1 + age2[i] * beta 2 + 1c_1[1] * beta 3 + lc 2[4] * beta 4 + lc_3[1] * beta 5 + u[district[i]]
}

for (§ in 1:length(u)) {
u[3] ~ dnorm(e, tau_u)

# priors

beta 8 ~ dflat()
beta_1 ~ dflat()
beta_2 ~ dflat()
beta_3 ~ dflat()
beta_4 ~ dflat()
beta_s ~ dflat()

m

tau_u ~ dgamma(0.01000, ©.001000)
sigma2_u <- 1 / tau_u

Here we see the more complicated model code for this 2-level model in the left-hand pane. Note
that the /c predictor is treated as categorical and thus appears as 3 dummy variables (Ic_1—/c_3)

If we select tau_u.xml in the output list we will see the following:

[ Stat-JR:TREE

<« C f | [ localhost50839/run/#

J Edit tau_uxmi [=] | Popout

Use Gibbs sampling from conditional posterior for tau_u:

-1

lengthfu)  »
taw_u ~ T'| 0.001 + 0.5 « length(u), 0.001000 + =1

tan_u ~ T(30.001, 0.001 + (252 ;20 ) = 0.5) |

i

Here we see the algorithm step for the parameter tau_u. Although most parameters in this model
are updated by Random Walk Metropolis sampling, this parameter is updated by Gibbs Sampling as
its conditional posterior distribution has a standard form.

If we now click on Run then after 72s (including around 24s of compiling time and 18s of adapting)
the model will have run and if we select sigma2_u.svg we will see the following:
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sigma2_u.svg [=] | Popout
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Here we can see that convergence and mixing, for this parameter at least, are reasonable. In fact, if
we look at the diagnostic plots for the other parameters, we see similar convergence there as well.
Next we can look at ModelResults in its own tab to see the parameter estimates:
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i} stak-3R 1.0,1:TREE 1O stak- IR 1.0.1:TREE

Pt
m

C' | [ localhost: 52622/ outputModelResults

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
sigma2_u 0.320003605827 0.099343387633 807
beta 0 -0.761482066363 0183607013726 92 cons
beta 1 0.007559565398534 0.00974610865538 183 age
beta 2 -0.00488118864141 0.000743128200041 319 age2
beta 3 0760861326671 0164095856618 227 Ic_onekid
beta 4 0.B0BE0BGET1551 0.191526987545 169 Ic_twokids
beta 5 0.80208871160:4 0.191860340821 114 Ic_three+kids
tau_u 342956763696 1.07988494419 760
deviance 2351.0823043 11.2344869316 1242
Model:
Statistic Value
Dbar 2351.0823043
D{thetabar) 2308.12973411
pD 42 8565501939
Dic 238403885449

Here we see that beta_2 is significant and negative (and larger than beta_1) suggesting a quadratic
fit to the age predictor. As the data is centred around its mean, this implies that contraceptive use is
reduced the further from the mean age the woman is. We will look at this in more detail at the end
of the chapter.

The parameters beta_3-beta 5 are all significant, and positive (and of similar magnitude), which
suggests that women with children are more likely to use contraceptives than those without. The
parameter sigma2_u is fairly large, suggesting there are differences between districts in terms of
contraceptive use.

What is slightly disappointing here are the ESS values for all the fixed parameters. We have run each
chain, after burnin, for 2,500 iterations resulting in a total of 7,500 actual iterations (i.e. from 3
chains) but the effective sample sizes are of the order of 100-350. As this indicates, the default
algorithm in eStat — random walk Metropolis — is not very efficient for this example. We will look at
two possible solutions in the next two sections.

4.4.4 Comparison between software packages

Not all software packages fit the same MCMC algorithm for this model. So here we will show how to
fit the same model in another package, OpenBUGS, which uses a different method: namely
multivariate updating for the fixed effects in a GLMM, as developed by Gamerman (1997). This
method results in slower estimation, but, as we will see, far better ESS. We will then look at a table
comparing all the possible MCMC algorithms in the different packages for this model, which you can
verify for yourselves.

To fit the model in OpenBUGS click on the remove text next to Choose estimation engine and set-up
the model as follows:
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i stat-3R 1.0.1:TREE

€« c

bang1 2LevelMod

© Response:

@ Level21D:

Specify distribution:

© Dencminator:

Specify link function:

© Explanatory variables:
Store level 2 residuals?
Cheose estimation engine:
Number of chains:
Random Seed:

Length of burnin:
Number of iterations:
Thinning:

Name of output results:

Use default starting values:

=

@ current Input string: {'Engine’. 'OpenBUGS', 'L2I0" 'district’, 'link" 'logit’, ‘D" "Binomial', " 'use’, " 'cons,age age2 lc.cat’, 'storeresid” 'No', 'n' ‘cons'y

UsE remove

district remaove

Binomial remove

CONs remove

logit remaove

CONS age afe2 cicat remove

Mo remove

OpenBUGS remove

3

2500

2500

1

FETITET w

19 localhost: 52622/runf#

Ready (1)

| nutnpenhugﬁ\

*¥es
No

Clicking on Next and Run will (after 5 min 13s on my machine) give the following, having selected
ModelResults from the drop-down box above the output pane, and opening it in a new tab:
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if I} stak-3R 1.0,1:TREE % 1O stak- IR 1.0.1:TREE

C' | [ localhost: 52622/ outputModelResults

Pt
in

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS
beta 0 -0.790445984 0172820147789 2595
beta_1 0.0065719269272 0.00308771213816 5031
beta 2 -0.00481055466667 0.000726598414238 3057
beta 3 0.7824753212 0182317868714 9291
beta 4 0.825564053333 0.18610056524 5181
beta 5 0.827532796 0.1B387555B8079 4443
deviance 2351.19746667 11.9283430783 4441
sigma2_u 0.3171049659333 0.1004B86311559 1753
tau_u 347796493333 1.13186027688 1645
Model:
Statistic Value

Dbar_use 23510
Dhat_use 2309.0
pD_use 4266
DIC_use 23840
Dhar_total 2351.0
Dhat_total 2503.0
pD_total 4266

DIC_total 2394.0

Here we see far better effective sample size values, with runs of 7,500 iterations translating into ESS
values of between 2,500 and 5,500 for the beta parameters.

We can repeat this analysis using WinBUGS, JAGS and MLwiN with the same run lengths. Note for
JAGS you will need to edit the initial value files or it will not run. To do this view each in the output
window and click on the Edit button. If you change the value for beta_2 (the fixed effect associated
with age2) from 0.1 to 0.0 in all three initial values files and click Set each time then JAGS should run.
It should also be noted here that results may vary a little if you have different versions of the third
party software packages or have changed options in them.

We could also fit the model using the MCMCglmm package in R, although here we would need to
run a single chain and logistic regression models for binary data are the one GLMM where the
answers can be a little different as it assumes over-dispersion which is inappropriate in this case.

The table overleaf details the results of fitting many of these options:

71



Para- eStat WinBUGS OpenBUGS JAGS MLwiN eStat
meter

orthogonal
Betal -0.761(0.183) -0.790(0.176) -0.790(0.173) -0.776(0.177) -0.833(0.175) -0.784(0.180)
Betal 92 396 2595 255 94 979
ESS
Betal 0.0076(0.0097) 0.0066(0.0093) 0.0066(0.0091) 0.0069(0.0090) 0.0051(0.0091) 0.0068(0.0096)
Betal 183 763 5031 550 248 1792
ESS
Beta2 -0.0049(0.00074) | -0.0048(0.00074) | -0.0048(0.00073) | -0.0048(0.00071) | -0.0047(0.00073) | -0.0048(0.00073)
Beta2 319 1154 5057 926 331 1799
ESS
Beta3 0.761(0.164) 0.782(0.162) 0.782(0.162) 0.778(0.163) 0.797(0.163) 0.779(0.165)
Beta3 227 1021 5291 630 249 1686
ESS
Betad 0.809(0.192) 0.825(0.184) 0.826(0.186) 0.818(0.188) 0.855(0.187) 0.823(0.190)
Betad 169 745 5181 477 193 1726
ESS
Beta5 0.805(0.192) 0.828(0.185) 0.828(0.184) 0.817(0.187) 0.861(0.183) 0.823(0.191)
Beta5 114 512 4443 329 128 1666
ESS
Sigma2u 0.320(0.099) 0.318(0.102) 0.317(0.100) 0.317(0.100) 0.317(0.099) 0.322(0.101)
Sigma2u 807 1809 1753 1445 769 756
ESS
Pd 42.96 42.55 42.66 42.16 42.49 43.21
DIC 2394.03 2393.49 2394.0 2393.39 2393.65 2394.51
Time (s) 72 (48) 391 313 309 16 70 (46)

In summary we see that MLwiN is by far the fastest of the packages, with eStat quicker than the

other three as well. Both MLwiN and eStat use the simple random walk Metropolis algorithm, which

is not the best method for this model and gives fairly poor ESS. Interestingly, both WinBUGS and

OpenBUGS use the Gamerman method, but in this case OpenBUGS performs better in terms of time

taken and ESS. This is somewhat puzzling as when each is run with a single chain, their performance

is almost identical. Finally, for this example, JAGS is a similar speed to OpenBUGS but its

performance is disappointingly in the middle with regard ESS; however, there have been many

comparisons between JAGS and WinBUGS for different models, and which method is better varies

from model to model, so we shouldn’t dismiss it based on just this one example. The final column

shows another eStat method which we will discuss next.
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4.4.5 Orthogonal parameterisation.

The reason eStat (and MLwiN) perform badly in terms of ESS in this instance is that they are
performing single-site updating, and the parameters are correlated. So here we will consider a
reparameterisation method that aims to fit parameters that are less correlated, and then translates
them back to the original parameters. For this we construct a set of orthogonal vectors from the
original predictor variables (see Browne et al. 2009 for details).

We will therefore now look at the NLevelOrthogParamRS template in order to use orthogonalisation
on our model. This template actually fits a larger family of models: those with any number of higher
levels/classifications (hence ‘NLevel’), allowing for the possibility of random slopes at each of these
levels (hence ‘RS’), and so our 2-level random intercept model is perhaps the simplest case that the
template fits.

Click on the Template pull down list and click Choose then select NLevelOrthogParamRS from the
template list.

Click on Use and fill in the template inputs as follows:

i1 stat-JR 1.0, TREE

« C' [ localhost: 52622/run/# % =

Stat-JR:TREE  sStartagain Dataset~  (@@RgW)  Template-  (NEEUCIORNOGPATAMRS) Settings  Debug~

remove

remave

remove

remove

remove

remove

remove

remove

remove

remove

remove

remove

rermove

rermove

remave

remaove

remowe

remaove

remove

remove

© Name of output results:

Giving a name for the results and clicking on Next and selecting equation.tex in the pull down list
(we’ve opened it in a new tab) will show the following:
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[ Stat-JR:TREE *
/ — P —

« C A [ localhost:51164/ru
i Apps [ NewTab B skipto content @) Getting Started (7] Latest Headlines [ Customize Links [ Windows Marketplace [ Imported From Firef... (] Imported From Firef...

>

MNLevelOrthogParamRs. Ready (65)

m equation.tex [z] | Popout

use; ~ Binomial(cons;, ;)

logit(m;) = Bjortheons; + Slorthage, + 3jorthage2; + S3orthle_1; + 3jorthle_2; + 3 orthle_3; + u(u?;mmﬂ{ cons;

‘-"gz,(lmmt(e) ~N(0.03)
2 ~ T(0.001,0.001)
oh = Vna
By x1
Bi 1
B; w1
B3 o1
B:x1 M
B x1
Bo = L035 — 0.0020481038611337 — 81.19146511663; — 0.21408415166235 — 0.2763803320627 ] — 0.6784646064183 7
B, =10.035 + 103} — 3.981347139683; + 0.007316892150093 — 0.002445256588593 ] — 0.03563437468013;
=0.09; +0.08} + L0F; +0.000382130301133 5] + 0.0009595177912343; + 0.001341155988423 7
By +0.08] +0.08; +1.05; +0.21712971416453 ] + 0.469386306038 5
B4 =0.08; +0.08; +0.09; +0.005 + 108 + 0.627080532383;
B =0.035 +0.08] +0.08; +0.085 +0.08; +1.05;

i

Here we see that the model code is actually fitting a different set of predictors, each with the prefix
‘orth’ and a corresponding set of coefficients. There is then a set of deterministic statements that
translate these coefficient values to the coefficient values for the original predictors (again, see
Browne et al. (2009) for details)

Clicking on the Run button will run the model (which took 70s on my machine including compiling),
after which selecting ModelResults from the pull down list, and popping out into a new tab, gives the
following:

i} Stat-1R 1.0.1:TREE x 1 JJ stat-Jr 1.0.1:TREE
C' | [4 localhost: 52622 /outputModelResults v =
Results
Parameters:
parameter mean sd ESS variable
sigma2_u0 1 0322611997838 0.100988344452 786
deviance 2351 30603584 11.7512785968 1283
betacrt 0 -0.5844221893533 0.0940982100777 35
betaert 1 0.00925227105254 0.00611737929645 1863
betacrt 2 -0.00633183225716 0.0006688412364597 1679
betaort 3 0325993846063 0.128837324437 1799
betaort_4 0307001409516 0.142090095981 1850
betacrt 5 0823501488221 0.191451499533 1867
beta 0 -0.7683622684065 0180131036563 979 cons
beta 1 0.00675107940155 0.00856557217846 1792 age
beta_2 -0.00480826241604 0.000730012649254 1799 agel
beta 3 0779101816497 0165132052505 1686 Ic_onekid
beta_d 0523279406878 0.169574243211 1726 lc_twokicls
beta 5 0823437482593 0.191418149556 1666 Ic_three-+kids
tau_ud 1 341856462849 1.133235441 689
Model:
Statistic Value
Dbar 2351 30603584
Dithetabar) 230809827984
pD 432077560009
DIc 2394 51379184
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The estimates, their ESS, and the time taken to run the model are all added to the end of the
software comparison table we looked at above. It indicates that, compared to the other method we
employed to fit the model in eStat, there is virtually no overhead incurred when performing the
orthogonalising algorithm, and it is much faster than OpenBUGS, and the ESS are now much better
(if still not as good as OpenBUGS). We therefore have two ways of fitting the model that are
reasonably comparable in terms of ESS/s, with little to choose between them. This orthogonalising
approach is also available in MLwiN: this will be faster again, and should have similar ESS to the
method in eStat, and therefore may be the best overall in terms of ESS/s, but we leave this for the
reader to investigate.

4.4.6 Predictions from the model

When we ran this model we discussed some interpretation of the fit, but it would be nice to plot
some predictions from the model as well. In this latest version of Stat-JR we have added the option
to store predictions when fitting the model. So hopefully in the last model fit you will have ticked yes
to the generate prediction dataset question. This will generate a new dataset named
prediction_datafile which contains the original data and several prediction columns formed from the
model fit.

To use this dataset we need to select Choose on the dataset list and select prediction_datafile from
the list and click Use.

In fact the dataset has a full prediction column called pred_full but this also contains the district
random effects. We would here like to simply predict from the fixed part of the model so we can
construct the variable pred_fixed as follows:

Click on View from the Dataset menu and input the new variable pred_fixed as indicated below.

Click on Create to create the variable

- — —— = | )
Stat-JRTREE % | [ StatJRTREE x X[} Stat JR:TREE x
| C f | [ localhosts1164/data/ S =
i i Apps [ NewTab [ skipto content @) Getting Started [ Latest Headlines [ ) Customize Links [ Windows Marketplace (] Imported From Firef... (] Imported From Firef
|
New Variable name: pred_fixed ‘
Expression: pred_full - pred_ub_0
Variable name: woman E
Delete 3
[F] womi distri use Ic age wrbar educ hinde d_illi d_prz cons age2 Ic_1 Ic_2 Ic_3 orthc ortha ortha orthls orthl: orthls pred_ pred_ pred. pred_ pred_ pred_ pred_ pred_bv
1 (=] 1] 1 o 3/18.44 1 1] 0 0.58 084 1/340.0{ 00| 00 1.0 1.0/18.43/185.4,0.050/0.004/0.120.-2.05{-0.58;-0.78:0.1244-1.63 0.0 0.0 0.82343 =
2 (] 2| 1 o 0/-5.58 1 1] 1 058 064 1/3091] 00| 00 0.0 1.0/-5.56{-28.14-0.24]-0.23-0.43{-1.55]-0.58:-0.78:-0.03]-0.14{ 00 0.0 00/=
3 @] 3 1 o 2 tas4 1 2 0 058 084 120731 0.0 10/ 0.0 1.0 1437(-84.8:-0.20;0.722(-0.09¢-0.54]-0.581-0.78:0.009'-0.00¢ 0.0 0.823. 0o
4 a 4 1 o 3 844 1 1] 0 058 064 1/7123] 00| 00 1.0 1.0 8437-435(-0.12¢-022{0.116]-0.83]-0.581-0.78:0.056¢-0.34] 0.0 0.0 0.82343
s O 5| 1 o 0-135( 1 1 0 058 064 1/183.8) 00 0.0 00/ 1.0 -13.5(156.6(-0.241-0.06¢0.051{-2.34(-0.561-0.78:-0.09:-0.88¢ 0.0 0.0 00
8 (=] & 1 o 0|-11.5¢ 1 1] 0 0.58 084 1/133.6] 00/ 0.0 0.0 1.0-11.5(98.461-0.24,-0.11¢{-0.08]-2.09.-0.58:-0.78:-0.07¢{-064; 0.0 0.0 0.0
7 (] 7 1 o 3/18.44 1 1] 0 058 064 1/3400; 00| 00 1.0 1.0/18.43/185.4/0.050/0.004/0.120{-2.05{-0.58:-0.780.1244-1.634 0.0 0.0 0.82343
8 @] 8 1 o 3/-3.58 1 1] 0 058 084 11267, 00| 00 10 1.0 -3.56i-54.3-0.23:-025!0.465/-0.63;-0.581-0.78:-0.02:-0.06( 0.0 0.0 0.82343
9 a k] 1 o 1 -556 1 1] 0 058 064 113091 10, 00 00 1.0/-5.56i-28.140.757(-0.01¢0.030{-0.771-0.581-0.78:-0.031-0.14{0.779 0.0 00
10 (O 10 1 of 3| tas 1 1| o 0ss oss 12073t 00| 00 1.0/ 1.0[1.437{-84.8{-0.20{-0.270.273(-0.54]-0.581-0.7810.009-0.00¢ 0.0/ 0.00.52343
u (@ 11 1 1] 0|-11.5¢ 1 1] 0 0.58 084 1/133.6] 00| 00 0.0 1.0-11.5(98.461-0.24,-0.11¢{-0.08]-2.09.-0.58:-0.78:-0.07¢{-064; 0.0 0.0 0.0
12 (O 12 1 o 0/-2.58 1 1] 0 058 064 1/6.553) 00| 00 0.0 1.0/-2.567-64.4:-0.23(-0.263-0.57{-1.41¢ H -0.01:-003 00 00 0o
13 (@ 13 1 o 1 -456 1 1] 0 058 084 1/20.79 10, 00 00 1.0 -4.56:-42.240.760,-0.02¢{-0.01¢{-0. -0.03(-00%¢0.779 00 0o
s O 14 1 o 3 544 1 1] 0 058 064 1/2959] 00| 00 1.0 1.0/5437-73.2!-0.16]-0.26:0.167-0. 1-078:0.0367-0.14] 0.0 0.0 0.82343
s (O 15| 1 of 3055 1 1 0 058 064 1/0313) 00 00 1.0 1.0 -0.56]-78.6¢-0.21{-0.27¢0.341{-0.55{-0.561-0.78:-0.00:-0.00] 0.0 0.0 0.82343 =




This has created a variable on the fixed predictor scale but as we are fitting a logistic regression we
need to take an anti-logistic transform to convert these predictions to probabilities. This can be done
by creating another column in the dataset as shown below:

| — — - — — (=] i
[ Stat-JR:TREE % / [Y Stat-JR:TREE x \ [ Stat-JR:TREE x ¢ [ Stat-JRTREE x { [Y Stat-JR:TREE x B
@ A [ localhost51164/data/ v BE ™ =

I
S Apps [ NewTab [ skipto content @) Getting Started (] Latest Headlines  [*) CustomizeLinks [ Windows Marketplace (] Imported From Firef., (" Imported From Firef.. ‘
New Variable name:

fitprob

Expression:

Variable name:

woman |z| o

Delete

[

[F] wen dist use Ic age urb: edw hinc d_il d_p con: age: lc_1 Ic_2 Ic_3 orth orth orth orth orth orth prec prec prec prec pre¢ prec prec prec p
1 ] 1 1 o 3184, 1 1 0058 0.64 i/340. 0.0) 0.0/ 1.0/ 1.0/18.4/185.0.0510.0040.121-2.0¢-0.5¢-0.7{0.124-1.67 0.0 0.0/0.821-1+
2 ) 2 1 0 0/-5.5¢ 1 1 1058064 1|309 00 00 00| 10 -55(-28:-0.2:-027-04:-15%-05{-0.7{-0.0:-0.1< 00 00 DD-[‘E‘
3 [} 3 1 [t} 2144 1 2 0058 0.64 112,07 0.0 10 0.0 1.0 1.437-844-0200.72/-0.0¢-0.5¢-0.5{-0.710.00{-0.00 0.0 0.82] 0.0 0
4 D 4 1 0 3844 1 1 0 058064 1/71.2) 00 00 10| 10 843/-43%-01:-0210.111-0.8:-0.5{-0.710.05(-03¢ 0.0 0.0/0.82]-C
5 (=] 5 1 0 0-13:% 1 1 0/0.58/0.64 1/183. 0.0 0.0 0.0/ 1.0/-13.1156.1-0.2:-0.0¢0.05/-2.34-0.5{-0.71-0.0{-0.8{ 0.0 0.0/ 0.0/-1
6 D 3 1 0 0/-11¢ 1 1 0 0.58 0.64 11334 0.0 0.0 00| 1.0-11.198.41-0.2¢-0.11-0.0{-2.05-0.5{-0.7{-0.01-0.6< 0.0 0.0/ 0.0 -1 i

In order to plot separate fitted curves for the various numbers of living children we can use the
template XYGroupPlot as shown below:

— — - - - e—— =R
/[ Stat-JR:TREE x - -
€« C A [ localhost:51164/run/# T @ = [
£ Apps [ NewTab [ skiptocontent @) Getting Started [ Latest Headlines | Customize Links [ ] Windows Marketplace [~ Imperted From Firef... (] Imported From Firef..
prediction_datafile XYGroupPlot Ready (1s)
X values: age remove
Y values fitprob remove
Grouped by: C remaove

Current input string: {'group*: 'Ic', 'xaxis'- 'age’, 'yaxis'": "fitprob'}

Clicking on Run and popping out graphxygroup.svg gives the following:
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Here we see the four curves (although three of them are very close together) which clearly showing
that the women with children have higher probabilities of using contraceptives, and that the peak
for each group is around the average age of the sample, as discussed earlier.

Hopefully this section has shown firstly that Stat-JR can fit models other than Normal response
models; in fact there are a vast number of model templates which fit lots of other model classes.
Secondly, we hope we’ve shown its utility in terms of comparing model-fitting across different
software packages for different models, accessing each from a common hub.

4.5 Miscellaneous other topics e.g. Data Input/Export

It is very easy to import data into Stat-JR. Data has to be in the .dta dataset format that is used by
Stata (and supported by MLwiN). Any .dta files that are in the “datasets” subdirectory of Stat-JR will
automatically be loaded in the start-up of the software. As discussed earlier, if you wish to add a
dataset to the directory after start-up you can press Debug > Reload datasets from the main menu
page to reload the whole ‘datasets’ folder again, or you can upload an individual file by finding it via
Browse... (beneath the scrollable list of datasets on the main menu page) and then click on the
Upload button. Similarly, any datasets constructed while running the software, and stored in
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temporary memory, can be downloaded for storage elsewhere by selecting them as the current
dataset and using the Download button.
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6 Appendix: List of Third Party Software that are used by Stat-
JR

Stat-JR makes use of several third party software products that are included within the distributed
code or (in the case of MinGW) need to be downloaded separately. These software products each
have a license file that can be viewed from the links in the table below and/or in the licences
subdirectory of the installed code.

Package Link Licence terms

MathJax http://cdn.mathjax.org/mat | Apache
hjax/2.0-latest/LICENSE

Bootstrap https://github.com/twitter/b | MIT
ootstrap/blob/master/LICE
NSE

jquery http://jquery.org/license MIT

jquery-ui http://jquery.org/license MIT

jquery-treeview https://github.com/jzaeffer | Dual MIT/GPL
er/jquery-treeview

jquery-cookie https://github.com/carhartl | MIT
liquery-
cookie/blob/master/jquery.
cookie.js

jagrid http://www.trirand.com/ | Dual MIT/GPL(v2)
blog/?page id=87

jQuery File http://opensource.org/lic | MIT

Upload enses/MIT

jQuery text align http://www.opensource.or | BSD
a/licenses/bsd-
license.php

jQuery-xpath http://opensource.org/lic | MIT
enses/MIT

cx_freeze http://cx- PSF
freeze.readthedocs.org/e
n/latest/license.html

numexpr http://www.opensource.or | MIT
g/licenses/mit-license.php

mako http://www.opensource.or | MIT
g/licenses/mit-license.php

pyparsing http://www.opensource.or | MIT
g/licenses/mit-license.php

reset-fonts-grids http://yuilibrary.com/licens | BSD
el

markupsafe http://www.opensource.or | BSD
al/licenses/bsd-
license.php

pyquery http://www.opensource.or | BSD
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http://www.trirand.com/blog/?page_id=87
http://www.trirand.com/blog/?page_id=87
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
http://cx-freeze.readthedocs.org/en/latest/license.html
http://yuilibrary.com/license/
http://yuilibrary.com/license/

al/licenses/bsd-
license.php

rdflib

http://www.opensource.or

allicenses/bsd-
license.php

BSD

isodate

http://www.opensource.or

allicenses/bsd-
license.php

BSD

Ixml

http://Ixml.de/index.htmli#li
cense

BSD

numpy

http://numpy.scipy.org/lice
nse.html#license

BSD

scipy

http://www.scipy.org/Licen

se_Compatibility

BSD

weave

http://projects.scipy.org/sc
ipy/browser/trunk/Lib/wea
ve/LICENSE.txt?rev=151
1

BSD

matplotlib

http://matplotlib.sourcefor
ge.net/users/license.html

Modified BSD

MinGW

http://www.mingw.org/lice
nse

Not distributed with

software directly

LAPACK

http://www.netlib.org/lapa
ck/LICENSE.txt

Modified BSD

BLAS

http://www.netlib.org/blas/
faq.html#2

Own licence
(Netlib)

web.py

https://github.com/webpy/
webpy/blob/master/LICEN

SE.txt

PSF

Python

http://docs.python.org/lice
nse.html

PSF

setuptools

http://docs.python.org/lice
nse.html /

PSF

cssselect

http://www.opensource.or

al/licenses/bsd-
license.php

BSD

dateutil

http://opensource.org/lic
enses/BSD-2-Clause

Simplified BSD

htmiI5lib

https://github.com/htmI5

lib/html5lib-
python/blob/master/LICE
NSE

MIT

Six

https://bitbucket.org/gut
worth/six/src/e3da7fd96
039a6ed89493f89d121c4
f3797e6713/LICENSE?at=
default

MIT

sparglwrapper

http://www.w3.org/Cons

ortium/Legal/2002/copyri
ght-software-20021231

w3cC
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https://github.com/html5lib/html5lib-python/blob/master/LICENSE
https://github.com/html5lib/html5lib-python/blob/master/LICENSE
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https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
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https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
https://bitbucket.org/gutworth/six/src/e3da7fd96039a6ed89493f89d121c4f3797e6713/LICENSE?at=default
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

ply http://www.dabeaz.com/ | BSD
ply/README.txt

provpy http://opensource.org/lic | BSD
enses/BSD-2-Clause
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