Module 5: Introduction to Multilevel Modelling SPSS Practicals

Chris Charlton
Centre for Multilevel Modelling

Pre-requisites
- Modules 1-4

Contents

P5.1 Comparing Groups using Multilevel Modelling 3
 P5.1.1 A multilevel model of attainment with school effects 3
 P5.1.2 Examining school effects (residuals) 7

P5.2 Adding Student-level Explanatory Variables: Random Intercept Models 13

P5.3 Allowing for Different Slopes across Schools: Random Slope Models 18
 P5.3.1 Testing for random slopes ... 19
 P5.3.2 Interpretation of random cohort effects across schools 20
 P5.3.3 Examining intercept and slope residuals for schools 20
 P5.3.4 Between-school variance as a function of cohort 24
 P5.3.5 Adding a random coefficient for gender (dichotomous x) 27
 P5.3.6 Adding a random coefficient for social class (categorical x) 29

P5.4 Adding Level 2 Explanatory Variables .. 36
 P5.4.1 Contextual effects ... 41
 P5.4.2 Cross-level interactions ... 45

P5.5 Complex Level 1 Variation ... 49
 P5.5.1 Within-school variance as a function of cohort (continuous X) 49
 P5.5.2 Within-school variance as a function of gender (dichotomous X) 49
 P5.5.3 Within-school variance as a function of cohort and gender 53

P5.6 Appendices ... 54
 P5.6.1 Appendix 1 .. 54
 P5.6.2 Appendix 2 .. 61

Some of the sections within this module have online quizzes for you to test your understanding. To find the quizzes:

EXAMPLE

From within the LEMMA learning environment

- Go down to the section for Module 5: Introduction to Multilevel Modelling
- Click “5.1 Comparing Groups Using Multilevel Modelling” to open Lesson 5.1
- Click Q 1 to open the first question

Introduction to the Scottish Youth Cohort Trends Dataset

You will be analysing data from the Scottish School Leavers Survey (SSLS), a nationally representative survey of young people. We use data from seven cohorts of young people collected in the first sweep of the study, carried out at the end of the final year of compulsory schooling (aged 16-17) when most sample members had taken Standard grades.

In the practical for Module 3 on multiple regression, we considered the predictors of attainment in Standard grades (subject-based examinations, typically taken in up to eight subjects). In this practical, we extend the (previously single-level) multiple regression analysis to allow for dependency of exam scores within schools and to examine the extent of between-school variation in attainment. We also consider the effects on attainment of several school-level predictors.

The dependent variable is a total attainment score. Each subject is graded on a scale from 1 (highest) to 7 (lowest) and, after recoding so that a high numeric value denotes a high grade, the total is taken across subjects.

The analysis dataset contains the student-level variables considered in Module 3 together with a school identifier and three school-level variables:

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description and codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASEID</td>
<td>Anonymised student identifier</td>
</tr>
<tr>
<td>SCHOOLID</td>
<td>Anonymised school identifier</td>
</tr>
<tr>
<td>SCORE</td>
<td>Point score calculated from awards in Standard grades taken at age 16. Scores range from 0 to 75, with a higher score indicating a higher attainment</td>
</tr>
</tbody>
</table>

We are grateful to Linda Croxford (Centre for Educational Sociology, University of Edinburgh) for providing us with these data. The dataset was constructed as part of an ESRC-funded project on Education and Youth Transitions in England, Wales and Scotland 1984-2002. Further analyses of the data can be found in Croxford, L. and Raffe, D. (2006) Education Markets and Social Class Inequality: A Comparison of Trends in England, Scotland and Wales”. In R. Teese (Ed.) Inequality Revisited. Berlin: Springer.
The sample includes the following cohorts: 1984, 1986, 1988, 1990, 1996 and 1998. The COHORT90 variable is calculated by subtracting 1990 from each value. Thus values range from -6 (corresponding to 1984) to 8 (1998), with 1990 coded as zero.

FEMALE
Sex of student (1=female, 0=male)

SCLASS
Social class, defined as the higher class of mother or father (1=managerial and professional, 2=intermediate, 3=working, 4=unclassified).

SCHTYPE
School type, distinguishing independent schools from state-funded schools (1=independent, 0=state-funded)

SCHURBAN
Urban-rural classification of school (1=urban, 0=town or rural)

SCHDENOM
School denomination (1=Roman Catholic, 0=non-denominational)

There are 33988 students in 508 schools.

Open the worksheet to

From within the LEMMA Learning Environment
- Go to Module 5: Introduction to Multilevel Modelling, and scroll down to SPSS Datafiles
- Click “5.1.sav”

You will see the Data Editor Window, after switching to Variable View:
P5.1 Comparing Groups using Multilevel Modelling

P5.1.1 A multilevel model of attainment with school effects

We will start with the simplest multilevel model which allows for school effects on attainment, but without explanatory variables. This ‘null’ model may be written

\[y_{ij} = \beta_0 + u_j + e_{ij} \quad (5.1) \]

where \(y_{ij} \) is the attainment of student \(i \) in school \(j \), \(\beta_0 \) is the overall mean across schools, \(u_j \) is the effect of school \(j \) on attainment, and \(e_{ij} \) is a student level residual. The school effects \(u_j \), which we will also refer to as school (or level 2) residuals, are assumed to follow a normal distribution with mean zero and variance \(\sigma_u^2 \).

To run this model in SPSS we will use the MIXED command. Immediately after MIXED there is the response variable. The /FIXED option specifies the variables to include in the fixed part, in this case this is empty as the intercept is automatically included, and there are no other predictors in the fixed part. The /METHOD option allows selection of the estimation method, in this case maximum likelihood. /PRINT=SOLUTION requests that the parameter estimates are displayed after fitting. The /RANDOM option specifies which variables are included in the random part, as well as specifying the variable that defines the grouping (here, schools). Finally the /SAVE option specifies that we want to save the fixed-part prediction (FIXPRED), the prediction including random effects (PRED) and the standard errors of the prediction (SEPRED) back into the data set. Note that unlike software such as MLwiN the data does not have to be sorted a specific way in order to fit the model.

```
MIXED score 
   /FIXED=| 
   /METHOD=ML 
   /PRINT=SOLUTION 
   /RANDOM=INTERCEPT | SUBJECT(schoolid) 
   /SAVE=FIXPRED PRED SEPRED.
```

Alternatively:
- Analyze>Mixed Models>Linear...
- Add schoolid to “Subjects”
- Click “Continue”
- Add score to “Dependent Variable”
- Click “Random”
- Tick “Include intercept”
- Add schoolid to “Combinations”
- Click “Continue”
- Click “Estimation”
- Tick “Maximum Likelihood (ML)”
- Click “Continue”
- Click “Statistics”
- Tick “Parameter estimates”
We will see the following tables of results (the “Model Dimension” and “Type III Tests of Fixed Effects” tables are not of interest for this analysis, so we will omit them from subsequent results):

<table>
<thead>
<tr>
<th>Model Dimension</th>
<th>Number of Levels</th>
<th>Covariance Structure</th>
<th>Number of Parameters</th>
<th>Subject Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td>Interceptor</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Random Effects</td>
<td>Interceptor</td>
<td>1</td>
<td>Variance Components</td>
<td>1 schoolid</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Score.

<table>
<thead>
<tr>
<th>Information Criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>286539.064</td>
</tr>
<tr>
<td>Akaike's Information</td>
<td>286545.064</td>
</tr>
<tr>
<td>Criterion (AIC)</td>
<td>286545.065</td>
</tr>
<tr>
<td>Hurvich and Tsai's Criterion (AICC)</td>
<td>286545.065</td>
</tr>
<tr>
<td>Bozdogan's Criterion (CAIC)</td>
<td>286573.365</td>
</tr>
<tr>
<td>Schwarz's Bayesian Criterion (BIC)</td>
<td>286570.365</td>
</tr>
</tbody>
</table>

The information criteria are displayed in smaller-is-better forms.

a. Dependent Variable: Score.

<table>
<thead>
<tr>
<th>Type III Tests of Fixed Effects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Numerator df</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Score.
The overall mean attainment (across schools) is estimated as 30.60. The mean for school \(j \) is estimated as 30.60 + \(\hat{u}_{0j} \), where \(\hat{u}_{0j} \) is the school residual which we will estimate in a moment. A school with \(\hat{u}_{0j} > 0 \) has a mean that is higher than average, while \(\hat{u}_{0j} < 0 \) for a below-average school. (We will obtain confidence intervals for residuals to determine whether differences from the overall mean can be considered 'real' or due to chance.)

Partitioning variance

The between-school (level 2) variance in attainment is estimated as \(\hat{\sigma}^2_{u0} = 61.02 \), and the within-school between-student (level 1) variance (labelled 'Residual' in the output) is estimated as \(\hat{\sigma}^2_{u0} = 258.36 \). Thus the total variance is 61.02 + 258.36 = 319.38.

The variance partition coefficient (VPC) is 61.02/319.38 = 0.19, which indicates that 19% of the variance in attainment can be attributed to differences between schools. Note, however, that we have not accounted for intake ability (measured by exams taken on entry to secondary school) so the school effects are not value-added. Previous studies have found that between-school variance in progress, i.e. after accounting for intake attainment, is typically close to 10%.

Testing for school effects

To test the significance of school effects, we can carry out a likelihood ratio test comparing the null multilevel model with a null single-level model. To fit the null single-level model, we need to remove the random between-school effect:

MIXED score
This document is only the first few pages of the full version.
To see the complete document please go to learning materials and register:
http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.