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1. Introduction  

 1.1 Background  
For random effects analysis of variance, SAS has had procedures such as PROC VARCOMP and 
PROC GLM. Both procedures produce expected mean squares leading to the traditional ANOVA 
estimates of variance components. The GLM procedure (see below) also fits standard linear models 
accounting for random effects. For modelling general covariance structure, nested structures and 
time series, the procedures CALIS, NESTED and ARIMA as well as AUTOREG can be used. 
Although each of these procedures worked well in doing its own job, their capacity limitations 
make the extension to random effects modelling difficult. For example, the VARCOMP procedure 
does not produce estimates of covariate effects; the GLM procedure treats the effects specified in 
the RANDOM statement as fixed; the NESTED and CALIS procedures do not allow fixed effects 
in the model; and the ARIMA as well as AUTOREG procedures do not allow random components. 
The launch of PROC MIXED in SAS release 6 overcomes many of the limitations of these 
procedures. This procedure mixes functionality of the fixed effects models of procedures such as 
GLM and the random effects models of VARCOMP and NESTED together. It is a generalisation of 
PROC GLM with much flexibility in random effects modelling. After two more releases of SAS, 
the MIXED procedure has been improved and used widely. In addition to the MIXED procedure for 
fitting linear regression models to continuous responses, PROC NLMIXED is also available to fit 
mixed models for non-linear relationships between the response and covariates together with the 
NLINMIX and GLIMMIX macros that are based on different estimation methods. PROC 
NLMIXED is used to fit Binomial and Possion models as well as more general models which may 
be specified by the users, based on directly maximizing an approximate integrated likelihood.  

Our review of SAS for random effects modelling focuses on the MIXED and NLMIXED 
procedures in release 8.2 (2001). A few other relevant procedures are briefly explored. 

1.2 Software and hardware requirements 
Supplied with  the software package is a 29-page document, System Requirements with full details 
on all aspects of the system requirements. The System Requirements Wizard in the System Setup 
program is useful for ensuring that your computer meets the minimum system requirements before 
installing the SAS System. In brief, release 8.2 of the SAS System is supported on Microsoft 
Windows 95, 98 and ME operating systems. Windows 95 must be updated with additional Year 
2000 software updates by Microsoft. Windows 98 must be updated with Service Pack I or to 
Windows 98, 2nd Edition. It is also supported on Windows 2000 Professional and all Windows 2000 
Service Editions. It can also run under Windows NT, Version 4.0 updated with Service Pack 4 or 
higher (excluding Service Pack 6), plus additional Year 2000 software updates by Microsoft. 

The minimum hardware requirement includes an Intel or Intel-compatible Pentium with floating 
point unit or Maths Coprocessor, 64 MB or more of RAM on PCs (256 or more on Servers) and a 
CD ROM disc drive.  
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 1.3 Data input/output functionality 
As one of the biggest statistical packages worldwide, the SAS System has good facilities under 
windows for data input and output.  

The standard choice for data input is the Open tool in the File dropdown list which brings ASCII 
data files or other text files into the Program Editor. The data file can be delimited by spaces, 
commas, tabs or an other user-specified format. Variable names and missing values coded as dot or 
other symbols can be read in without problems. The second approach, the Import tool in the File 
list, will turn an ASCII data file delimited by spaces, commas or tabs into a SAS System file. One 
can view the data using PROC PRINT. Variable names and other characters in the data file can be 
imported at the same time. The third approach would be the standard Copy/Paste tools for 
Windows. One can copy text or ASCII data from Excel directly into the Program Editor. The SAS 
System can work with multiple data files at the same time as long as these files are named 
differently. The fourth approach is to use the INFILE statement under the DATA procedure, which 
is useful for working on very large data sets and running analysis in a batch file based on SAS 
syntax. Using this approach, one only needs to specify the full path to where the ASCII data file is 
stored, followed by variable names. For small data, one can always use the fifth approach which is 
to key in the data directly into the Program Editor. 

For data output, the Save As tool can be used to output files with the file types LIST, SAS, Log, 
Data or RTF from any of the SAS interface windows, Log, Program Editor and Output. Using the 
Export tool in the File list, one can output data either in standard data formats with space, comma or 
tab delimitors, or in user-defined formats. Another way of outputting data is to use the statements 
OUT or OUTFILE available under some procedures. One can output parameter estimates, 
predictions as well as data. Results in the form of texts or tables which appear in the Output 
window can be copied/cut and pasted into a Word or other word processor files. 

 1.4 Interface features: data manipulation, commands, menus 
A statistical task such as model fitting can be carried out through SAS syntax consisting of 
procedures. In SAS, a statistical procedure comprises a collection of statements, where each 
statement can be followed by many options. This review will focus on the use of syntax for fitting a 
variety of random effect models.  

Within the system, one mainly works with three windows named Program Editor, Log and Output. 
The Program Editor allows users to input data and to write syntax for the statistical tasks to be 
submitted. Once a task has been run, the syntax executed will appear in the Log window. If errors in 
the syntax are detected by the system, they will be reported in this window too. Results of analysis 
will be displayed in the Output window. The contents of any of the three windows can be copied 
into Word or Notepad for editing. They can also be saved as text files.  

Before carrying out statistical analysis, the DATA procedure should be called to read and 
manipulate data. Programming statements are available in the DATA step which enables complex 
data processing or data reconstruction. In this review, we use only the necessary and basic 
statements in this step in order to prepare data for specific random effect models to be fitted. 

2. Standard tools for random effects modelling 

2.1 A brief check of models  
The current SAS System can fit many types of models in the random effects modelling domain. 
Other terms for random effects models that are also used in this review are multilevel models 
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(MLwiN, SYSTAT, LISREL) or hierarchical models (HLM). The following are other terms used in 
SAS documents which differs from those used in other packages. 

Other terms SAS terms
  

Level identification Subject 
Random parameters Covariance parameters 
Categorical variable Class variable 

Residuals at higher levels Random effects 
High level residual var-covariance matrix G matrix  

Level 1 residual var-covariance matrix R matrix 

In Table 1 attached, we list random effect models that can be fitted by SAS. As described above, 
two standard procedures, MIXED and NLMIXED, are used in such models. In this review, we shall 
explore mainly these two procedures by models. 

2.2 Tools for statistical inference and model fit  
 

Table 2 Tools available for inference and model fit 
Type of 
response 

Statistics for 
overall fit 

Tests for fixed effects 
 

Tests for covariance 
parameters 

Other specific features 

Normal  -2 log likelihood 
AIC 
AICC 
BIC 

t-test (default) 
F-test (default) 
Chi-squared (request) 
 

Wald test (default) 
 

An option to compute a specific 
inflation factor to account for the 
downward bias by using 
approximate F and t tests 

Generalised 
Linear model  

-2 log likelihood 
AIC 
AICC 
BIC 

t-test (default) 
Confidence interval 
(default) 
 

t-test  
Confidence interval 
(default) 

t-test for difference of fixed 
parameters (request) 

There are three-types of F-test. By default type III results are reported. It is not clear from the 
manual when the other two should be considered as appropriate. For all tests, the degrees of 
freedom (d.f.) for each parameter estimate in the model may not be the same. For example, the 
cluster level variable would have fewer degrees of freedom than that of an individual level variable, 
and balanced data would have different degrees of freedom to unbalanced data. The two procedures 
have statements which allow users to specify the d.f. for each parameter estimate in the model. For 
Normal responses the MIXED procedure also has five methods to calculate approximate degrees of 
freedom. The choice of methods may affect the speed of model convergence.  

3. Model specifications ⎯ Basic models 

In this section, we explore some basic multilevel models that can be fitted using standard 
procedures. The models include Normal models, logistic models for binary data, the Poisson 
models for count data and repeated measures models for data with a two- or three-level hierarchical 
structure. As far as capacity and efficiency of estimation procedures are concerned, we shall explore 
the syntax used to specify the models, information on model estimates and convergence times. All 
models are run on a PC computer with Window NT system, 433 Mhz processor and 398 Mb RAM.  

3.1 Two-level Normal models 
The data set to be used is the example which appears in the user's guide to MLwiN (Rasbash et al. 
2000). It consists of 4,059 students (level 1 units) nested within 65 schools (level 2 units). The 
outcome is their examination score at age 16 (EXAM). A key covariate is the prior London Reading 
Test score (STANDLRT, 1x ) taken at age 11. Both the outcome and the reading scores were 
standardised with zero mean and unit variance and in addition the outcome score was Normalised. 
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Another student level variable is gender (GENDER, 2x : code 1 for girl and 2 for boy). Also 
considered is the school level variables are school gender (SCHGEND, coded 1 for mixed schools, 
2 for boys and 3 for girls schools respectively). Before fitting models, the data are assumed to have 
been read into SAS and the named data file is EXAM.  

Five models are fitted, each one on extension of another.  

Model A is a variance components model with fixed effects for all three covariates. For the variable 
school gender of three categories, two parameters are estimated in the model. Only the intercept is 
allowed to have random effects 0 ju  among schools. The model can be written as 

jjijijijij xxxxy 443322110 βββββ ++++=     (1) 

0 00 0 j ijij u eβ β= + +  

The β s in (1) are fixed effects, and var( 0 ju ) and var( ) are two covariance parameters to be 
estimated. This model shows the usage of the basic statements in the procedure MIXED for fitting 
the simple two-level model.  

0ije

Model B is an extension of Model A, including an interaction between the two student level 
variables, London Reading Score and student gender. This illustrates the ease with which the SAS 
tool can be used to extend the fixed part of the model.  

Model C extends Model B further by allowing 1β  the effect of a student's intake, to vary randomly 
among the population of schools: 

)( 215443322110 ijijjjijijjijij xxxxxxy ×+++++= ββββββ   (2) 

0 00 0 j ijij u eβ β= + +  

11 1 jj uβ β= +  

At the school level, a full variance - covariance structure for the two sets of random effects 0 ju  and 
1 ju  is fitted, leading to a 2×2 covariance matrix. This type of covariance structure is termed as 

Unstructured (UN) in SAS, which by default assumes a multivariate Normal distribution for the 
two random variables. SAS also allows independent distributions for the two sets of random effects 
by specifying the Banded Main Diagonal (UN1) structure, where no covariance between the 
intercepts and slopes is estimated. In addition, there are more than 20 covariance structures 
including 1st order Auto-Regression AR(1), 1st order Auto-Regression and Moving Average 
ARMA(1,1), Toeplitz, and Spatial Power, which can be fitted under the TYPE option. We will 
explore some of these features in later sections of the review. 

Model D extends C by changing the assumption about the residual variance at level 1. Instead of 
estimating a single variance term for residuals , we assume in this model a non-constant residual 
variance difference between boys and girls, and fit separate variances for each gender. This model 
is fitted by using the REPEATED statement jointly with the GROUP option. Under the 
REPEATED statement, the TYPE option can also be used to allow the level 1 residual variance to 
be constructed as functions of other variables. 

0ije

Model E is another version of Model D. Instead of partitioning the residual variance by gender, E 
models the residual variance as an exponential function of the student intake variable as follows 

2
1var( ) [exp( )]ij e ijdiag xe δσ=       (3) 

review-sas (14 March 2006).doc 5 17/03/2006 



 

where δ  is a parameter to be estimated. 

The syntax and model estimates, as well as convergence times are listed in Table 3. 

As we see, the basic statements in PROC MIXED for fitting those models are CLASS, MODEL, 
RANDOM, TYPE (option), REPEATED and SUBJECT (option). CLASS declares the categorical 
variables including the identifications for levels. Any covariate specified as a class variable with 
integer codes 1  and appearing in the MODEL statement will be fitted as  dichotomous 
variables, contrasted with a reference group. In the MIXED procedure, the reference group is the 
last code by default, i.e. code 2 (boys) for the individual gender and code 3 (boys school) for the 
school gender in our case. The MODEL statement specifies the fixed part of the model; the 
RANDOM statement with the TYPE option specifies the covariance structure at level 2; the 
REPEATED statement with the TYPE option specifies the covariance structure at level 1. The 
SUBJECT option indicates the block or cluster identifier. The RANDOM statement allows fitting 
of random slope models, either structured or unstructured, and the REPEATED statement allows 
modelling of the level 1 residuals, using many types of structures defined by the TYPE functions. 
We explain how PROC MIXED can be used to fit 3-level models below. 

,2,...g 1g −

There are other useful features in PROC MIXED. The following are some examples: 

 Random parameters at any level can be constrained to equal a known value using the PARMS 
statement with the HOLD option. For example, to fix the variance for girls and boys in model D 
in Table 3 to  equal 0.55, one extra syntax line would be for example  

PARMS (0.08369) (0.02065) (0.01545) (0.55) (0.55) / HOLD = 4,5; 

 In some situations where the variance matrix may become negative definite, one can set a lower 
or upper boundary on the random parameters to avoid computational problems. This can be 
done using options LOWERB=<value list> or UPPERB=<value list> under the PARMS 
statement.  

 To carry out custom hypothesis tests on any fixed parameters or random parameters, the 
statement CONTRAST with options for F or 2χ  tests is available. 

 To obtain the empirical best linear unbiased predictor of level 2 residuals or random effects, one 
can use the option SOLUTION (or S in short) under the RANDOM statement. Together with 
each residual estimate, the comparative estimates of the residual variance (using the 
terminology of  MLwiN) is reported. 

 There are options for outputting the empirical sandwich estimator for the variances of fixed 
effects, for displaying the variance-covariance matrix of the fixed and the random effects, for 
information on each subject (block), and for specifying the degrees of freedom for hypotheses 
tests.  

 Up to 8 spatial covariance structures for level 2 or level 1 random effects can be specified using 
the TYPE  option.  

In combination, these statements and options provide easy-to-use tools for fitting Normal multilevel 
models to data with a two-level structure. 
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3.2 Three-level models for a Normal response 
It is possible to fit three- or more than three-level Normal models using PROC MIXED, although 
the computational methods, which use the sweep operator and the Cholesky decomposition, can be 
rather inefficient when dealing with large datasets. This issue is clearly explained in the SAS 
manual in the chapter for PROC MIXED, with estimates of the computational speed of algorithms 
given numbers of variables, observations, random parameters, clusters and maximum observations 
per cluster. The covariance parameters at levels 3 and 2 can be defined using the RANDOM 
statement repeatedly, or the RANDOM and REPEATED statements jointly.  

Sometimes one may be only interested in fitting a variance components model with many nested 
levels, unbalanced data, and no covariates. In this case, PROC NESTED is a useful tool to obtain 
estimates for each component of the total variance. This procedure runs very fast even on a large 
data set. 

For illustration, we fitted models on  A/AS-level examination data that consist of 1997 Chemistry  
on 31022 individuals from 2280 schools in 131 Local Education Authorities (LEA) in England 
(Yang et al. 2002). The explanatory variables are an intake score, the average GCSE score of the 
individual, their gender and age. 

We have fitted only three variance component models with and without the fixed effects of the 
covariates. The syntax, model estimates and convergence times are given in Table 4.  

For the model with variance components only, PROC NESTED is very quick, taking less than 1 
second to converge. To add the fixed effect of the intake score to the model, PROC MIXED is used, 
since PROC NESTED does not allows covariates. Having added one fixed effect to the model, the 
MIXED procedure took more than 3 minutes to estimate the model using the 
RANDOM/REPEATED combination. The REPEATED statement specifies the middle-level 
random terms. However it is not straightforward to obtain the full variance-covariance structure for 
both random intercepts and slopes. To do this you replace REPEATED by the RANDOM statement 
in order to obtain the full variance-covariance structure on the random effects of intercepts and 
slopes at both LEA and school levels. In doing so, however, the results in Table 4 show how slow 
the procedure is, compared to the previous model fitted using the statement REPEATED. 

It may be possible to write SAS program macros to improve the efficiency of the estimation 
procedure for three-level problems on large data sets. But we shall not explore this in the review. 

3.3 Two-level models for binary/binomial data 
Two-level binary and binomial data can be modelled using PROC NLMIXED.  

The procedure uses adaptive Gaussian quadrature, which allows a number of choices for the first or 
second order optimisation. The default is the first order optimization. Overall, this procedure allows 
73 options that are related to computational aspects in fitting nonlinear models. There are clear 
descriptions and definitions of the options in the online help system (Chapter 46, Statistical 
procedures). On the one hand, these options could be useful in gaining access to the core of the 
algorithm, since they allow specifications of optimization and derivatives, convergence criterion 
functions as well as method of approximation. On the other hand, it can be very difficult for the 
majority of users to make a choice without knowledge of the computational details and techniques 
in modelling nonlinear data. The procedure also consists of 11 statements for model specification.  

To illustrate how the procedure works, we fitted models to binary data from the 1989 Bangladesh 
Fertility Survey (Huq & Cleland, 1990). The data are a sub-sample of 1934 women grouped into 60 
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districts. The outcome variable is use of contraception ( ) which equals 1 for using contraception 
and 0 otherwise. Three covariates are considered: age at survey centered at the sample mean ( ); 
type of region of residence ( ) which equals 1 for urban and 0 for rural; and number of living 
children (0=none, 1=one, 2=two, 3=three or more), represented by three dummy variables for the 
last three categories ( ,  and  respectively).  

ijy

ijx1

ijx2

ijx3 ijx4 ijx5

Data have to be clustered according to the SUBJECT variable, districts in this example, by sorting 
the data by district prior to calling PROC NLMIXED. Unlike PROC MIXED, there is no CLASS 
statement available within this procedure, and the categorical covariate 'number of living children' 
is handled by creating three dummy variables in the DATA procedure beforehand. Good starting 
values, specified by the PARMS statement, are crucial to achieve convergence. 

We firstly fitted a variance components model allowing only random intercepts at level 2, using 
both logit and probit link functions. We then fitted a model which allows both random intercepts 
and random slopes for the effect associated with the type of region of residence at level 2, using the 
default settings which produces 1st order ML estimates. The results are in Table 5. The SAS syntax 
for fitting these models is presented at the bottom of the table.  

PROC NLMIXED allows only one RANDOM statement, which limits nonlinear models to data 
with two levels. For advanced users, the programming language SAS/IML could be used to write 
macros to fit models to data with more than two levels, but this would not be an easy task for most 
users. Alternatively, the GLIMMIX macro may be used. It is essentially PQL1 estimation (see 
summary tables). 

To evaluate overall goodness of fit, the default Fit Statistics include -2log-likelihood, AIC, AICC 
and BIC values. For each parameter estimate in the model a t-test value and a confidence interval 
based on the tail probability for given degrees of freedom are displayed.  

We can also see that SAS, aML and STATA produced similar results for the -2log-likelihood 
values for these models, since these packages all use the Gaussian Quadrature integration method 
that produces maximum likelihood estimates. The likelihood values produced by MLwiN using the 
IGLS/RIGLS estimation procedure of quasi-likelihood are less accurate than others for binary 
models.  

For binomial data where the outcome is a proportion p  based on  observations for each case, the 
distribution BINOMIAL ( ) can be used for. Models can be fitted to count data using 
POISSON (

n
,n p

λ ) distribution, where λ  is the mean. The general function GENERAL( ll ) specifies a 
general log-likelihood function for other nonlinear models such as an ordinal model with random 
effects, and a Normal distribution NORMAL( ,m ν ) can be used to fit general nonlinear models to 
a continuous response. We shall review these functions in the following sections. 

3.4 A two-level model for count data 
For count data with a two-level hierarchy, Poisson models can be fitted using PROC NLMIXED in 
the same way as  two-level logistic models. Here we illustrate the use of this procedure on the 
malignant melanoma mortality data from 354 counties within 78 regions within 9 European 
countries. The data consist of observed deaths and expected deaths due to malignant melanoma, 
which produce the standardised mortality rate (SMR), (observed deaths) / (expected Deaths). One 
important environmental variable that might be associated with the mortality rate is the county level 
UV radiation exposure. A detailed analysis is presented in Langford, Bentham and McDonald, 
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(1998). We treat the data as having a two-level structure: counties nested within regions, due to the 
small number of countries. 

The simple variance components model is 

ij
ij

ij

y

E
λ= , 0 10 1 )exp(ij j iju xβ βλ = + + , 2

0 ~ (0, )j uNu σ ,  (4) 

where  is the observed death count in the  county from the  region which is assumed to 

follow a Poisson distribution with mean 
ijy thi thj

ijλ , ijE  is the expected death count, 1ijx  is the UV 

exposure measure, and 0 ju  are the random effects for regions.  

This model is easy to fit, and the SAS syntax is as follows. 
Proc nlmixed data=MMM; 
Parms b0=-0.01 b1=-0.03 sigma2=0.1; 
y = offset +b0*intercept+b1*uvb+u; 
Lambda = exp(y); 
Model death ~ Poisson (lambda); 
Random u ~ normal(0,sigma2) subject=region; 
Run; 

The term offset is the logarithm of the expected number of deaths. Starting values are given under 
the PARMS statement. The results for the NLMIXED and other packages give similar results. 

Random slopes models can be fitted in a similar way to that illustrated for a binary outcome in 
Table 5. 

It is not clear from the manual whether any facility is available for detecting over or under 
dispersion for generalised models such as this and the models in the previous section, although the 
SAS macro GLIMMIX provides such a tool (Guo & Zhao, 2000)  

3.5 Models for repeated measures data 
Fitting models to repeated measures data, with either balanced or unbalanced observations among 
subjects, is straightforward using PROC MIXED with SUBJECT = individuals at level 2 and 
occasions at level 1. Time series models can be fitted to the level 1 residuals over occasions within 
subjects, specified by the TYPE option under the REPEATED statement. The type of time series 
functions include the 1st order Autoregressive AR(1), Heterogeneous AR(1) called ARH(1) and 
First-Order Autoregressive Moving Average ARMA(1,1). The data have to be balanced with a fixed 
set of time intervals. 

The estimation of time series models using PROC MIXED is illustrated using the data consisting of 
the height (cm) of 26 boys between the ages of 11~13 in Oxford over 9 occasions approximately 
0.25 year apart. The data are balanced. The same data were used by Goldstein, Healy and Rasbash 
(1994) to describe some general multilevel time series models which allow for the autocorrelation 
structure between the height measurements. Here an AR(1) model is fitted and the results are 
compared to those produced by MLwiN macros. 

Model A fits a 4th degree polynomial function to the overall growth, with quadratic function fitted 
to each individual's growth. In Model B, the AR(1) structure is fitted to the level 1 residuals, and sin 
and cosine terms are added to the fixed part of the model. 
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The model specifications and syntax are as follows. In model B, sine and cosine functions are fitted 
in the fixed part.  Model estimates are listed in Table 6.  

 

Models  Basic Syntax 

A:  2 3 4
0 1 2 3 4ij ij ij ij ij ijj j jht t t t t eβ β β β β= + + + + +

         00 0 jj uβ β= + , 11 1 jj uβ β= + , 22 2 jj uβ β= +  

0

21

2

~ (0, )
j

j

j

u
MNu

u

⎛ ⎞
⎜ ⎟

Ω⎜ ⎟
⎜ ⎟
⎝ ⎠

2~ (0, )ij eNe, σ  

Proc mixed method=ML; 
Class boys occasion; 
Model ht=t t*t t*t*t t*t*t*t/s; 
Random int t t*t/type=un sub=boys; 
Run; 

B:  5 6
0 2 3,4

sin cosh h
ij ij ij ijij ijhj h

h h
ht t t eβ β β β

= − =
= + + +∑ ∑ +

         hjhj h uβ β= + ,  0,1, 2h =

0

21

2

~ (0, )
j

j

j

u
MNu

u

⎛ ⎞
⎜ ⎟

Ω⎜ ⎟
⎜ ⎟
⎝ ⎠

2~ (0, )eij Ne Ω, , | '|2 i i
e ρσ −=Ω  

Proc mixed method=ML; 
Class boys occasion; 
Model ht=t t*t t*t*t t*t*t*t sin cos 
/s; 
Random int t t*t/type=un sub=boys; 
Repeated /type=ar(1) sub=occasion;  
Run; 

4. Model specifications ⎯ other random effects models 

4.1 Random effect models for a multiple categorical response 
In this section we consider ordinal multinomial models for ordered responses and nominal 
multinomial models for unordered responses.  

As an example, a sub-sample of the British Social Attitudes Survey, a panel study, is considered 
(McGrath, K. and Waterton, J, 1986). The data consist of 264 adult respondents in 54 districts who 
completed interviews in 1983, 1984, 1985 and 1986. The outcome of interest is a total score, 
ranging from 1 to 7, calculated as the number of positive answers to seven questions about whether 
they supported or opposed a woman's right to have an abortion under different circumstances. The 
score is arranged to reflect attitudes from the most restrictive (code 1) to the most permissive (code 
7) towards to a woman's right to have an abortion. The data are structured as years nested within 
respondents within districts. There were many covariates measuring the background and socio-
economic status as well as the political party preference of the respondent. For the purpose of 
illustrations, we consider only the religion of the respondent: Roman Catholic=1, protestant/Church 
of England=2, others=3 and none=4 for illustration purpose.  

We shall ignore the district level as the NLMIXED procedure can only fit random effect models to 
two-level data.  

Denote the cumulative probability by  ()( sp yij
s
ij ≤=γ

7 ( )

1
1s

s
γ

=
=∑ ), the simplest model for ordinal 

data is the proportional odds model with fixed effects for the three religion groups ( lx ) contrasting 
to Roman Catholic, and random effects ( ju ) for respondents. The possible association among 
residuals of the outcome over time is ignored in this model. The model can be written as 
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( )
3( ) ( )

( )
1

log
1

s
ijs s

lij jij ls
lij

y x u
γ

βα
γ =

⎛ ⎞ ⎛ ⎞⎜ ⎟= = − ∑⎜⎜ ⎟ ⎝ ⎠−⎝ ⎠
+ ⎟       (5) 

2~ (0, )j uNu σ ,  ( ) ( ) ( )( ) ( ) (1 ) /cov , s r
ijij ij

s r
ij ij s rnγ γγ γ − ≤=  

The six cutoff points ( )sα  will have values between −∞  and +∞  on the logit scale, and  are the 
tail probabilities corresponding to the cutoff points, conditional on the covariates and random 
effects.  

γ )(s
ij

Using following syntax, we firstly bring the ASCII data into SAS, then name variables and generate 
dummy variables for the three religion groups. Roman Catholic is treated as the reference group. 
We have specified arrays c(i), y(i) and gamma(i) (i=1,2,…6) for the cut points, the logit dependent 
variables and cumulative probabilities respectively, corresponding to the intervals between cut 
points. 

data socatt; 
  infile 'c:\socatt.txt'; 
  input year yvar religion person; 
  if (religion=2) then rel2=1; 
    else rel2=0; 
  if (religion=3) then rel3=1; 
    else rel3=0; 
  if (religion=4) then rel4=1; 
    else rel4=0; 
  run; 
 
proc nlmixed data=socatt; 
  parms ss=1 c1=-3 c2=-2 c3=-1 c4=0 c5=0.1 c6=0.5 b1-b3=-0.5; 
  array c[6] c1-c6; 
  array y[6] y1-y6; 
  array gamma[6] gamma1-gamma6; 
 
  do i=1 to 6; 
  y[i] = c[i]+b1*rel2+b2*rel3+b3*rel4 + u; 
  gamma[i]=exp(-y[i])/(1+exp(-y[i])); 
  end; 
 
  If (yvar=1) then z=1-gamma1; 
  else if (yvar=2) then z=gamma1 - gamma2; 
  else if (yvar=3) then z=gamma2 - gamma3; 
  else if (yvar=4) then z=gamma3 - gamma4; 
  else if (yvar=5) then z=gamma4 - gamma5; 
  else if (yvar=6) then z=gamma5 - gamma6; 
  else z=gamma6; 
  if (z>1e-8) then ll=log(z); 
  else ll=-1e100; 
 
  model yvar ~ general(ll); 
  random u ~ normal(0,ss) subject=person; 
  run; 

It can be seen the proportional odds model may be specified in PROC NLMIXED using the general 
distribution function with the log-likelihood function specified by Z. The RANDOM statement 
allows more than one random parameter. 

Suppose that the response is an unordered categorical variable ( s = 1,…,7), and we fit a multinomial 
model with a series of odds ratios comparing each of 1s −  categories with a base category, 7t =  in 
our case. The simplest model with common random effects for each odds ratio would be 
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The syntax for this model is as follows. For simplification, we have ignored the covariates x  in the 
fixed part of the model. 

proc nlmixed data=socatt; 
  parms b1-b2=-1 b3-b6=0.5 ss=5; 
  array eta[6] y1-y6; 
  array p[6] p1-p6; 
  array b[6] b1-b6; 
 
  do i=1 to 6; 
  y[i] = b[i] + u; 
  Psum=Psum + exp(y[i]); 
  end; 
 
  do i=1 to 6; 
  p[i]=exp(y[i])/(1+Psum); 
  if (yvar=i) then z=p[i]; 
  end; 
  if (yvar=7) then z=1-p1-p2-p3-p4-p5-p6; 
 
  if (z>1e-8) then ll=log(z); 
  else ll=-1e100; 
 
  model yvar ~ general(ll); 
  random u ~ normal(0,ss) subject=person; 
  run; 

 

ML estimates for both models are given in Table 7. For aggregated proportional data, the 
REPLICATE statement can be used to specify the model.  

In SAS poor starting values are often responsible for a failure to estimate the model,  the error 
message ' no valid parameter points were found' is given. Currently, users have to find their own 
way of obtaining reasonable starting values, which can be difficult. Having an option in the 
procedure for generating good starting values using a non-iterative method that does not depend on 
users input, would be extremely useful.  

4.2 Cross-classified random effects model 
Fitting a two-way cross classification model using the MIXED procedure is no different to fitting a 
random effects model to data with a three-level hierarchy. The exam scores of 3435 16 years old 
students who attended 148 primary schools and 19 secondary schools in Fife Scotland were 
analyzed. The attainment score is the outcome variable, and separating out the variability in the 
attainment score due to primary and secondary schools is of particular interest. We consider the 
following simple model  

1( ) 0 1 ij j k i jki jky x u u e ( )β β= + + + +      (7) 

2~ (0, )
jj uNu σ , 2~ (0, )

kk uNu σ , 2
( ) ~ (0, )i jk eNe σ , 

where i  denotes students at level 1, j  and k  denote primary and secondary schools respectively at 
level 2, and the covariate is gender. Random effects for primary and secondary schools are 
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represented by ju  and  respectively. Typically, no correlation structure between the two sets of 
random effects is assumed. This model can be fitted using the following syntax 

ku

proc mixed data=xc; 
  class primary secondary sex; 
  model attain= sex/s; 
  random int /sub=primary; 
  random int /sub=secondary; 
  run; 

Alternatively, one can use the REPEATED statement to replace the second RANDOM statement to 
obtain the same results but at much slower speed (1'45" v.s. 2"). Another way is to set the 
classification with the most units as the subject for the REPEATED statement. In our example there 
are many more primary schools than secondary, so the model is specified using 

random int /sub=secondary; 
repeated /sub=primary; 

This reduces the dimension of the design matrix associated with the higher level random effects 
from 148 to 19 between the two usages of the repeated statement. Therefore, the convergence time 
of 4" has been much improved.  

The results for Model (7) in Table 8 are comparable to other packages.  

To allow random effects of gender across primary schools, we only need to change the syntax line 
for the first RANDOM statement: 
      random sex /type=un sub=primary; 

This model takes 41 seconds to converge. At the primary school level, we have the variance for 
gender=1 and the variance for gender=2 as well as a covariance between them. The log likelihood 
ratio statistic is 2.2 on 2 degree of freedom, suggesting no significant difference in the variability by 
gender. 

4.3 Multivariate Normal response model 
Modelling multiple responses, accounting for the dependence between them, is of interest to many 
researchers. By treating the responses as repeated measurements nested within subject, the 
multivariate model fits neatly into the multilevel framework. The example consists of scores on a 
science examination obtained on both a traditional written paper ( ) and coursework ( ) from 
1905 16 years old students in 73 schools in England. The data have a three-level structure of exam 
marks nested within students within schools. Interest in these data centres on the relationship 
between the two components at both school and student levels, whether there are gender (

1Y 2Y

X =1 for 
girls and 2 for boys) differences in this relationship and whether the variability differs for the two 
components. The bivariate Normal model was considered for this purpose. The responses are both 
N(0,1). 

Let  indicate the responses at level 1, 1, 2i = j  the students at level 2, and  the schools at level 3. 
An index variable  (1 for written paper, 2 for coursework) is required. The basic model fitted is as 
follows.  

k
z

 
1 (1 )ijk jk jkz z 2y y= + − y       (8) 

1 11 0 1 jk k jjky kx v uβ β= + + +  

0 1 2 22 jk kjky jkx v uα α= + + +  
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In this model, 1β  and 1α  are the gender effects on written paper and coursework respectively. At 
the school level, the unstructured covariance matrix vΩ  estimates the variability of mean marks of 
the two components among schools, with the correlation coefficient calculated as 

12 1 2v vvρ vσ σ σ= . 
Similarly, the unstructured covariance matrix uΩ  is obtained at the student level.  

The SAS syntax for fitting this model is straightforward. However, a few tricks in preparing the 
data are required in order to obtain correct estimates. Failure to do so, results in non-convergence or 
incorrect results. 

(1) Data should be structured as a three-level hierarchy with the responses stacked in one column. 

(2) The level 2 identification should be unique for each subject (each student in this case), no matter 
which level 3 unit the student comes from. Otherwise, the procedure would incorrectly classify 
the blocks of students based on the subject id on which some students in different schools might 
be coded the same. 

(3) Students with missing values on one or more of the outcomes should be kept in the data set. 
Their missing values should be coded as full stops (periods) and placed at the end of the level 1 
units within each level 2 unit. For example, student number 10 from school 2 did not take the 
written paper exam, so the data segment for the person should look like 

         school   student   index   Y   gender 
           2            10          2        y2      1 
           2            10          1        •        1 

 
Provided the data are structured correctly, the procedure will fit the multivariate model in the same 
way as other conventional three-level models. It can be very slow for large data sets. Fitting Model 
(8) in our example takes 14'27" to converge to the following REML estimates, with standard errors 
in brackets: 

 
 
Proc mixed data=bivariate; 
    Class school student index gender; 
    Model y=index index*gender/s noint; 
    Random index /type=un sub=school; 
    Repeated /type=un sub=student; 
    Run; 
   

0β =49.41 (0.939), 1β =-2.500 (0.561) 

0α =69.62 (1.179), 1α =6.752 (0.671) 

1

2
vσ =47.61 (9.597), 

2

2
vσ =76.41 (14.98) 

12vσ =25.29 (9.197) 

1

2
uσ =124.69 (4.346), 

2

2
uσ =180.19 (6.256) 

12uσ =73.02 (4.160) 
Time to converge is 14'27" on a computer of Pentium 433 with 398 RAM under Window NT system. 

To obtain correlation coefficients instead of covariances between the two outcomes at both school 
and student levels, one can use the option TYPE=UNR at both levels. 

Effects for other covariates can be fitted easily by adding terms “index*var” in the Model 
statement. 
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4.4 A Model for Meta-analysis 
In a meta analysis means and standard deviations are collected for a set of studies together with 
some variables such as the control/treatment group at the study level. The means are regressed on 
some covariates X given the standard deviations or the sizes of groups of the studies. The between-
study variation is of interest.  

Let j  indicate studies at level 2 and  denote the means or some other aggregated measure, the 
model may be written as 

•

( ) j jjj Xy u eβ ••• = + +        (9) 

2~ (0, )j uNu σ ,  
2

~ 0, je
j

j
Ne n

σ
•

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

where 2
uσ  is the variance parameter to be estimated for the between-study variability, 2

jeσ  is the 

standard deviation known for the thj  study, and X  is any explanatory variable at the study level. In 
SAS terminology, we say that the R matrix for level-1 residuals is known. There is no need to 
estimate the residual variance as long as we supply this information in the model and constrain R to 
be fixed at this value while estimating other parameters in the model. This requirement can be 
implemented through the WEIGHT and PARMS statements in the MIXED procedure. 

To illustrate the procedure, we use the example from the meta-analysis of teacher expectancy 
effects. The effect-size and standard deviation, together with an explanatory variable for 19 clusters, 
are available. The syntax for fitting this model is given below. 

Data meta; 
   Infile 'c:\meta.txt'; 
   Input effect sd week studyID; 
   Invsd=1/(sd); 
   Run; 
 
Proc mixed covtest data=meta; 
   Class studyID; 
   Weight invsd; 
   Model effect = week/s; 
   Random int /type=un sub=studyID; 
   Parms (0.1) (1)/hold=(2); 
   Run; 

 
 

Table 9 Model estimates (REML) based on 19 effect-sizes data in meta analysis 
Parameters SAS  

0β  0.409 (0.087) 

1β  -0.158 (0.036) 
2
uσ  0.000 (0.000) 

-2LogLikelihood -2.700 
 

If the sample size of the control/treatment groups, n  (g=1, 2 for control and treatment), is 
provided, instead of the standard deviations of the studies, the weight variable in the SAS syntax 
should be 

gj

ngj .   

If the study output is a proportion such as an odds-ratio from case-control studies, we can fit the 
same model using the log odds-ratio. In some cases, we may have individual level data of 
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binary/binomial outcomes from all studies, in which case an ordinary two-level logistic model with 
study level random effects can be fitted as described in Section 3.3 of the review. 

4.5 Spatial models 
Models with spatial structures can be specified using the option TYPE. There are eight choices 
available in the current version. Factor analysis of the covariance structures can be fitted in the 
same way with three choices. We have not explored these models in this review. 

5 Documentation and user support 

SAS on-line documents are provided on a CD ROM with the package. One can either install the 
document on the computer as an on-line help system or read it directly from the CD drive when 
needed. Detailed information on SAS Procedures is included in the Statistics part of  the document.  

For the majority of multilevel models reviewed in this article, three procedures are involved: 
MIXED, NLMIXED and NESTED. They are described in Chapters 41, 46 and 44 respectively. 
Each chapter starts with an overview or introduction of the procedure, followed by a brief 
comparison between that procedure and other related procedures, and an informative bibliography. 
This background information is particularly useful for users to gain familiarity with the general 
features of the procedure before analysing data and to make a choice among many procedures that 
may share similar functions. The documentation also includes general notation of the basic models 
which can be fitted, syntax format, discussion of computational issues and some examples.  

SAS users receive a free monthly e-newsletter ‘Your SAS Technology Report’. It contains news on 
SAS conferences, user group updates, latest development in the documentation and new software 
linked to the main package, new statements in procedures, and new frequently asked questions, etc. 
Downloading new documents is also available through links provided. The newsletter reflects the 
international network of SAS users. 

For a major package like SAS with many users worldwide, user support implies a large input of 
human resources. On a couple of occasions, we made enquires on general issues, and these were 
effectively dealt with by the provider of the review version. We found the information provided on 
the SAS web site (www.sas.com/service/techsup/) regarding technical support policies and regional 
contacts to be very convenient and helpful. One can also find information on training program was 
all over the world from the web site.  

6 Conclusion 

Generally speaking, the MIXED and NLMIXED procedures in SAS Release 8.2 are powerful tools 
that handle many types of multilevel or random effect models, as shown in the review. For small 
samples, the MIXED procedure can be used to fit models with more than three levels. Statistical 
inferences based on REML and ML are available. For large data sets, however, with more than two 
levels, the procedure can be rather inefficient.  

The NLMIXED procedure is intuitive for nonlinear models and user friendly, although it only 
handles data with a two-level hierarchy. However, obtaining suitable starting values is an issue in 
fitting complicated nonlinear models. The choice on functions for the covariance structure is an 
excellent feature compared to other packages that have much less choice.  

For repeated measures data, SAS handles data with autocorrelation over time, dependent response 
structures and spatial covariance structures, although only for discrete time points. A few examples 
or more explanation on how to use these features would be helpful in promoting their application. 
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The documents for general computational issues, statistical inference and syntax details are 
comprehensive, informative and helpful for statisticians. But for sociologists or applied researchers, 
this information could be difficult to digest. As the procedures are still command driven, the syntax 
can be complicated according to the type of model. Also a statement in one procedure may operate 
differently in another procedure. For these reasons, new users accustomed to a Windows 
environment would have a steep learning curve. The SAS Institute provides training at different 
levels in a number of regions to help such users.  

For more details on the current release, contacts to distributors in your own region, and on-line 
order for products, The SAS web site is a good resource: 
http://www.sas.com/products/sassystem/release82/. 
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Table 1 Multilevel models that can be fitted by SAS procedures 

Model type Algorithms Estimating 
methods 

Covariates  Random 
slopes 

Weighting Fitting 
variance 

function (any 
level) 

 
Procedures 

Normal response  
 

Newton-Raphson 
 

REML 
ML 

MIVQUE0* 

Yes Yes  level 1  Yes MIXED fits most two-level models 
efficiently; NESTED fits data with more 
than 2 levels for simple variance 
component model very efficiently. 

Binary/Binomial  Methods A and B ML  Yes Yes none Yes (level 2) NLMIXED. two level hierarchy only 
Poisson Methods A and B ML Yes Yes none Yes (level 2) NLMIXED. two level hierarchy only 
Nominal multinomial Methods A and B ML Yes Yes none  NLMIXED, two-level hierarchy only 
Ordered multinomial Methods A and B ML Yes Yes none  NLMIXED, two-level hierarchy only 
Cross-classified Newton-Raphson 

 
REML/ML 

MIVQUE0* 
Yes Yes Yes Yes MIXED 

Repeated measures with 
time series 

Newton-Raphson 
 

REML/ML 
MIVQUE0* 

Yes Yes Yes Yes MIXED 

Multivariate Normal Newton-Raphson 
 

REML/ML 
MIVQUE0* 

Yes Yes Yes Yes MIXED 

Meta-analysis for normal 
response 

Newton-Raphson 
 

REML/ML 
MIVQUE0* 

Yes Yes level 1  Yes (level 2) MIXED 

Model with general 
nonlinear functions  

Methods A and B ML Yes Yes none  NLMIXED,  two level hierarchy only 

Spatial model Newton-Raphson 
 

REML/ML 
MIVQUE0* 

Yes Yes Yes  Mixed 

Multiple membership       N/A 
Survival data       N/A 
Mixed responses model       N/A 
 • MIVQUE0 stands for Minimum Variance Quadratic Unbiased Estimation of the random parameters 

• Method A: Adaptive Gaussian quadrature and dual quasi-Newton (1st order optimisation) 
• Method B: Adaptive Gaussian quadrature and Newton-Raphson (2nd order optimisation) 
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Table 3 PROC MIXED specifications for 2-level Normal models (4059 students nested 
within 65 schools) 

Model building Fixed and random parameters. Syntax specification to fit 
the model 

REML Estimates (SE) Seconds to 
convergence 

A: Variance 
component with 
covariates 
'standlrt' (x1), 
'girl' (x2) and 
'schgend' (x3, x4) 
 
Note: By default, 
SAS treats the 
last category 
code in the class 
variable as the 
reference code. 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β ) 
Random 
Level 2: (

0
2
uσ ) 

Level 1: (
0

2
eσ ) 

 

 
Proc mixed noclprint 
covtest; Class school 
girl schgend; Model 
exam=standlrt girl 
schgend /s ddfm=bw; 
Random int /type=un 
sub=school; Run; 

0β̂ =-0.0094 (0.0779) 

1β̂ =0.5598 (0.01245) 

2β̂ =0.1674 (0.0341) 

3β̂ =-0.1590 (0.0894) 

4β̂ =0.0187 (0.1260) 

0
2ˆ uσ =0.0858 (0.0178) 

0
2ˆ eσ =0.5625 (0.0126) 

-2LogL=9347.67 

 
0.38 

B: Variance 
component with 
interaction, 
'girl'*'standlrt' 
(x5)  

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ) 

Level 1: (
0

2
eσ ) 

 

 
Proc mixed noclprint 
covtest; Class school 
girl schgend; Model 
exam=standlrt girl 
schgend 
gender*standlrt /s 
ddfm=bw; Random int 
/type=un sub=school; 
Run; 

0β̂ =-0.0094 (0.0779) 

1β̂ =0.5626 (0.01837) 

2β̂ =0.1673 (0.0341) 

3β̂ =-0.1588 (0.0894) 

4β̂ =0.0189 (0.1261) 

5β̂ =0.0051 (0.0246) 

0
2ˆ uσ =0.0858 (0.0178) 

0
2ˆ eσ =0.5627 (0.0126) 
-2LogL=9353.20 

 
0.38 

C: Random 
slopes of 'standlrt' 
effect'  

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: (
0

2
eσ ) 

 

 
Proc mixed noclprint 
covtest; Class school 
girl schgend; Model 
exam=standlrt girl 
schgend girl*standlrt 
/s ddfm=bw; Random 
int standlrt /type=un 
sub=school; Run; 

0β̂ =-0.01197 (0.0742) 

1β̂ =0.5503 (0.0257) 

2β̂ =0.1686 (0.0338) 

3β̂ =-0.1779 (0.0821) 

4β̂ =-0.0004 (0.1162) 

5β̂ =0.0069 (0.0295) 

0
2ˆ uσ =0.0837 (0.0174) 

01uσ =0.0205 (0.0070) 

1
2
uσ =0.0153 (0.0047) 

0
2ˆ eσ =0.5504 (0.0124) 
-2LogL=9308.24 

 
0.55 

D: Level 1 
variance 
heterogeneity  by 
'girl' (1=boy, 
0=girl)  
 
 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: (
1

2
eσ ,

2
2
eσ ) 

 

 
Proc mixed noclprint 
covtest; Class school 
girl schgend; Model 
exam=standlrt girl 
schgend girl*standlrt 
/s ddfm=bw; Random 
int standlrt /type=un 
sub=school; Repeated 
/type=un(1) 
group=girl; Run; 

0β̂ =-0.0119 (0.0741) 

1β̂ =0.5502 (0.0262) 

2β̂ =0.1687 (0.0340) 

3β̂ =-0.1782 (0.0816) 

4β̂ =-0.0005 (0.1166) 

5β̂ =0.0069 (0.0297) 

0
2ˆ uσ =0.0837 (0.0175) 

01uσ =0.0206 (0.0070) 

1
2
uσ =0.0155 (0.0048) 

1
2ˆ eσ =0.5880 (0.0210) 

2
2
eσ =0.5253 (0.0153) 

-2LogL=9302.21 

 
1.86 
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E: Level 1 
variance as an 
exponential 
function of 
'standlrt'  
 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: ( 2
eσ ,δ ) 

 

 
Proc mixed noclprint 
covtest; Class school 
girl schgend; Model 
exam=standlrt girl 
schgend girl*standlrt 
/s ddfm=bw; Random 
int standlrt /type=un 
sub=school; Repeated 
/local=exp(standlrt); 
Run; 

0β̂ =-0.0115 (0.0744) 

1β̂ =0.5514 (0.0257) 

2β̂ =0.1687 (0.0338) 

3β̂ =-0.1782 (0.0822) 

4β̂ =-0.0004 (0.1166) 

5β̂ =0.0073 (0.0296) 

0
2ˆ uσ =0.0839 (0.0175) 

01uσ =0.0211 (0.0070) 

1
2
uσ =0.01492 (0.0047) 
2ˆ eσ =0.5498 (0.0124) 

δ =-0.0540 (0.0231) 
-2LogL=9302.79 

 
2.16 

Note: All models were run on a computer of Pentium 433 with 398 RAM under Window NT system. 
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Table 4 PROC MIXED specifications for 3-level Normal models  
(31022 students nested within 2279 schools nested within 130 local educational authorities) 

Model Fixed and random 
parameters. 

Syntax specification to fit models REML Estimates (SE) time to 
convergence 

F: Variance 
component 
without any 
covariate 

Fixed  
Intercept: ( 0β ) 
Random 
Level 3: (

0
2
vσ ) 

Level 2: (
0

2
uσ ) 

Level 1: (
0

2
eσ ) 

 
Proc nested data=chem; 
Class lea school;  
Var Ascore;  
Run; 

0β = 5.81 (0.051) 

0
2
vσ =0.0075  

0
2
uσ =2.521 

0
2
eσ =8.491 

 
0.13" 

 
Proc mixed noclprint covtest 
data=chem;  
Class school lea;  
Model Ascore=gcse /s;  
Random int /type=un sub=lea;  
Repeated /type=cs sub=school;  
Run; 

0β = 5.621 (0.031) 

1β = 2.473 (0.017) 

0
2
vσ = 0.015 (0.014) 

0
2
uσ = 1.166 (0.056) 

0
2
eσ = 5.154 (0.043) 

-2LogL=141,696.89 

 
3'18" 

G: Variance 
component with 
covariates 'GCSE' 
(x1)  

Fixed 
( 0β , 1β ) 
Random 
Level 3: (

0
2
vσ ) 

Level 2: (
0

2
uσ ) 

Level 1: (
0

2
eσ ) 

 
Proc mixed noclprint covtest 
data=chem;  
Class school lea;  
Model y=gcse /s;  
Random int /type=un sub=lea;  
Random int /type=un 
sub=school;  
Run; 
 

0β = 5.621 (0.031) 

1β = 2.473 (0.017) 

0
2
vσ = 0.015 (0.014) 

0
2
uσ = 1.166 (0.056) 

0
2
eσ = 5.154 (0.043) 

-2LogL=141,696.89 

 
2:10'44" 

Note: All models were run on a computer of Pentium 433 with 398 RAM under Windows NT4. 

 

(Note: The results of Model G  in the table are based on the raw GCSE average uncentred. They will be rerun) 
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Table 5 PROC NLMIXED specifications for 2-level binary response models  
 

Parameter   
 Logit link Probit link 
0β  -1.692(0.148) -1.029(0.087) 

1β  0.732(0.119) 0.449(0.072) 
2β  -0.027(0.008) -0.016(0.005) 

3β  1.109(0.158) 0.670(0.095) 

4β  1.377(0.175) 0.835(0.105) 
5β  1.346(0.180) 0.815(0.107) 

0
2
uσ  0.216(0.073) 0.080(0.027) 

-2LL 2413.4 2412.8 
Time to run 47" 35" 

0β  -1.712(0.160) -1.042(0.095) 

1β  0.816(0.171) 0.500(0.104) 
2β  -0.027(0.008) -0.016(0.005) 

3β  1.126(0.160) 0.682(0.096) 

4β  1.368(0.177) 0.831(0.106) 
5β  1.355(0.183) 0.825(0.109) 

0
2
uσ  0.388(0.129) 0.143(0.047) 

01uσ  -0.403(0.175) -0.150(0.064) 

1
2
uσ  0.663(0.321) 0.247(0.119) 

-2LL 2398.4 2397.6 
Time to run 3'31" 3'25" 
SAS Syntax 

 
Random intercept 

model 

Proc nlmixed data=use;  
Parms b0=-1 b1=0.4 b2=-
0.02 b3=0.7 b4=1 b5=1 
sigma=0.4;  
y=b0+u+b1*urban+b2*age+b3
*lc2+b4*lc3+b5*lc4; 
p=1/(1+exp(-y)); 
Model use ~ binary(p); 
Random u ~ 
normal(0,sigma) 

Proc nlmixed data=use;  
Parms b0=-1 b1=0.4 b2=-0.02 
b3=0.7 b4=1 b5=1 sigma=0.4;  
y=b0+u+b1*urban+b2*age+b3*lc2+b
4*lc3+b5*lc4; 
p=probnorm(y); 
Model use ~ binary(p); 
Random u ~ normal(0,sigma) 
subject=district; 
Run; 
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subject=district; 
Run; 

SAS Syntax 
 

Random intercept 
and random slope 

model 

Proc nlmixed data=use;  
Parms b0=-1 b1=0.4 b2=-
0.02 b3=0.7 b4=1 b5=1 
ss1=0.4 s1s2=-0.01 
ss2=0.2;  
y=b0+u0+(b1+u1)*urban+b2*
age+b3*lc2+b4*lc3+b5*lc4; 
p=1/(1+exp(-y)); 
Model use ~ binary(p); 
Random u0 u1 ~ 
normal([0,0],[ss1,s1s2,ss
2]) subject=district; 
Run; 

Proc nlmixed data=use;  
Parms b0=-1 b1=0.4 b2=-0.02 
b3=0.7 b4=1 b5=1 ss1=0.4 s1s2=-
0.01 ss2=0.2;  
y=b0+u0+(b1+u1)*urban+b2*age+b3
*lc2+b4*lc3+b5*lc4; 
p=probnorm(y); 
Model use ~ binary(p); 
Random u0 u1 ~ 
normal([0,0],[ss1,s1s2,ss2]) 
subject=district; 
Run; 
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Table 6 Model estimates for 2-level repeated measures data 

Parameters SAS (REML) 
Fixed  

0β  148.98 (1.570) 

1β  6.166 (0.357) 

2β  1.091 (0.353) 

3β  0.468 (0.164) 

4β  -0.340 (0.302) 

5β   

6β   

Random at level 2  

0

2
uσ  64.012 (18.121) 

1

2
uσ  2.875 (0.830) 

2

2
uσ  0.660 (0.238) 

01uσ  8.312 (3.206) 

02uσ  1.416 (1.491) 

12uσ  0.910 (0.363) 

Random at level 1  
2
eσ  0.220 (0.025) 

ρ   
-2log-likelihood 629.825 

Time to converge 2.0" 
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Table 7 Estimates of two-level ordinal and nominal models for Social Attitudes data  
Parameters Ordinal category Parameters nominal category 
 SAS (ML)  SAS (ML) 
Fixed effects  Fixed effects  

α )1(  -3.858(0.498) (1)
0β  -1.165 (0.280) 

α )2(  -2.104(0.459) (2)
0β  -0.377 (0.235) 

α )3(   0.692(0.451) (3)
0β   1.144 (0.201) 

α )4(   1.628(0.454) (4)
0β   0.463 (0.211) 

α )5(   2.521(0.460) (5)
0β   0.421 (0.212) 

α )6(   3.571(0.469) (6)
0β   0.629 (0.208) 

β 1   2.243(0.507)   

β 2   0.976(0.535)   

β 3   3.010(0.509)   

Random effect  Random effect  
2
uσ   5.162(0.667) 2

uσ   5.342 (0.540) 

    
Time to converge 58.7”  1'47" 
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Table 8 Estimates of two-level cross-classification model 
Parameters SAS 

 REML ML 

0β  5.754 (0.185) 5.756 (0.181) 

1β  0.499 (0.098) 0.499 (0.098) 

2
pσ  1.110 (0.204) 1.104 (0.202) 

2
sσ  0.370 (0.173) 0.346 (0.161) 

2
eσ  8.055 (0.199) 8.053 (0.199) 

-2LL 17129.9 17123.5 
Time to converge 3" 2" 
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