Pyrosequencing

Alix Groom
• high-throughput CpG methylation analysis platform
• real-time, sequence-based detection and quantification
• % methylation at multiple adjacent CpG sites
• 80-100 bases sequenced per assay
• 2ug DNA analyse 3 assays/regions of interest
• 24 or 96 samples/assays run at a time
DNA extraction
Bisulphite modification
PCR
Single strand template generation
Pyrosequencing
Bisulphite modification

GGTCAGTGACmCG

\begin{align*}
\text{C} & \xrightarrow{\text{Bisulphite conversion}} \text{mC} \\
\text{U} & \xrightarrow{\text{PCR amplification}} \text{mC} \\
\text{U} & \xrightarrow{\text{Pyrosequencing analysis}} \text{mC}
\end{align*}

GGTmCG

\begin{align*}
\text{TAGTGAT/CG}
\end{align*}
Polymerase chain reaction

Target sequence

primer annealing

extension

copies of target sequence
Single strand generation

- Denature PCR product
- Capture PCR product with streptavidin beads
- Release single stranded DNA
- Anneal sequencing primer
- Biotin labelled PCR product
Pyrosequencing chemistry

DNA polymerase
ATP sulfurylase
Luciferase
Apyrase

5’ T A G T A G G 3’

3’ T A G T A G G 5’

Polymerase

DNA polymerase
ATP sulfurylase
Luciferase
Apyrase

DNA_{(n)} + dNTP

APS
Luciferin

DNA_{(n+1)} + PPI

Polymerase

Light

Time

Luciferase

ATP
Light

Sulfurylase

APS + PPI
ATP

Apyrase

deNTP

dNDP + dNMP + phosphate

ATP

Apyrase

ADP + AMP + phosphate

Nucleotide sequence

G T - A G G
Nucleotide added

G T A G G
Pyrosequencing timeline

Day 1
- **Bisulphite modification**
 - Sample preparation: 15min-1hr
- DNA-reagent incubation: 3hrs

Day 2
- **PCR**
 - PCR set up: 30min-1hr
 - PCR cycles: 1.5hr
 - Agarose gel: 1hr

Day 3
- **Single strand template generation**
 - Sample prep: 30min-1hr
- **Pyrosequencing**
 - Pyrosequencing run: 10min-1.5hr
Pyrosequencing applications

- Gene specific methylation analysis identified target loci through gene expression studies, literature search, methylation arrays etc.

- Global methylation analysis
 - Methylation of repetitive elements
 - LUMA
Case study

Illumina 27K/450K top hit → verify → Pyrosequencing
VeraCode
Sequenom

Check
no SNPs in probe
which DNA strand CpG site is measured
Case study

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest
Case study: promoter region

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

- genomatix Gene2Promoter software
Case study: promoter region

- **identify if CpG in promoter region**
- **identify CGI within/adjacent to promoter**
- **capture sequence 4000bp flanking CGI**
- **identify TFBM that contain CpG**
- **select CpG of interest**

- genomatix Gene2Promoter software

You submitted 1 genes/keywords/phrases:

Looking for **PTPN20B** in Homo sapiens ...

- protein tyrosine phosphatase, non-receptor type 20B
 (PTPN20B / GeneID: 26095 / GXL_228069) on chromosome 10 of human

- Additionally list orthologous genes in output

 - Continue
 - Reset Form
identify if CpG in promoter region

identify CGI within/adjacent to promoter

capture sequence 4000bp flanking CGI

identify TFBM that contain CpG

select CpG of interest

• genomatix Gene2Promoter software
identify if CpG in promoter region

identify CGI within/adjacent to promoter

capture sequence 4000bp flanking CGI

identify TFBM that contain CpG

select CpG of interest

- genomatix Gene2Promoter software

Case study:

promoter region

...
Case study: CpG Island

- Identify if CpG in promoter region
- Identify CGI within/adjacent to promoter
- Capture sequence 4000bp flanking CGI
- Identify TFBM that contain CpG
- Select CpG of interest

- UCSC Genome Bioinformatics
- CpG Island explorer
Case study: CpG Island

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

UCSC Genome Bioinformatics
http://genome.ucsc.edu/
Case study: CpG Island

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

Human BLAT Results

BLAT Search Results

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>QUERY</th>
<th>SCORE</th>
<th>START</th>
<th>END</th>
<th>QSIZE</th>
<th>IDENTITY</th>
<th>CHRO</th>
<th>STRAND</th>
<th>START</th>
<th>END</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>browser details YourSeq</td>
<td>612</td>
<td>1</td>
<td>612</td>
<td>612</td>
<td>100.0%</td>
<td>10</td>
<td>48827823</td>
<td>612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>608</td>
<td>1</td>
<td>612</td>
<td>612</td>
<td>99.7%</td>
<td>10</td>
<td>46610902</td>
<td>612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>585</td>
<td>1</td>
<td>612</td>
<td>612</td>
<td>97.9%</td>
<td>10</td>
<td>4934868</td>
<td>592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>29</td>
<td>267</td>
<td>300</td>
<td>612</td>
<td>96.9%</td>
<td>17</td>
<td>79420091</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>26</td>
<td>568</td>
<td>595</td>
<td>612</td>
<td>100.0%</td>
<td>X</td>
<td>129627074</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>25</td>
<td>133</td>
<td>158</td>
<td>612</td>
<td>100.0%</td>
<td>17</td>
<td>18393131</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>24</td>
<td>131</td>
<td>159</td>
<td>612</td>
<td>96.2%</td>
<td>8</td>
<td>38554758</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>22</td>
<td>445</td>
<td>468</td>
<td>612</td>
<td>87.0%</td>
<td>7</td>
<td>104654081</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>22</td>
<td>552</td>
<td>574</td>
<td>612</td>
<td>100.0%</td>
<td>7</td>
<td>63223715</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>22</td>
<td>552</td>
<td>574</td>
<td>612</td>
<td>100.0%</td>
<td>7</td>
<td>63223715</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>20</td>
<td>122</td>
<td>141</td>
<td>612</td>
<td>100.0%</td>
<td>9</td>
<td>94406683</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>20</td>
<td>264</td>
<td>283</td>
<td>612</td>
<td>100.0%</td>
<td>1</td>
<td>43896606</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>browser details YourSeq</td>
<td>20</td>
<td>135</td>
<td>154</td>
<td>612</td>
<td>100.0%</td>
<td>6</td>
<td>166825789</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study: CpG Island

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

- UCSC Genome Bioinformatics
 - http://genome.ucsc.edu/
Case study: CpG Island

- UCSC Genome Bioinformatics http://genome.ucsc.edu/

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

CpG Island Info

- Position: chr10:48827593-48828126
- Band: 10q11.22
- Genomic Size: 534
- View DNA for this feature (hg19/Human)
- Size: 534
- CpG count: 47
- C count plus G count: 372
- Percentage CpG: 17.6%
- Percentage C or G: 69.7%
- Ratio of observed to expected CpG: 0.79
Case study sequence capture

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

- CGI Chr10:48 827 593-48 828 126
- 4000bp downstream 48 823 593
- 4000bp upstream 48 832 126
Case study: sequence capture

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

Chr10: 48823593 - 48832126

- Identify if CpG in promoter region
- Identify CGI within/adjacent to promoter
- Capture sequence 4000bp flanking CGI
- Identify TFBM that contain CpG
- Select CpG of interest
Case study

sequence capture

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest
Case study sequence capture

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

Identify if CpG in promoter region

Identify CGI within/adjacent to promoter

Capture sequence 4000bp flanking CGI

Identify TFBM that contain CpG

Select CpG of interest
Case study: sequence capture

- Identify if CpG in promoter region
- Identify CGI within/adjacent to promoter
- Capture sequence 4000bp flanking CGI
- Identify TFBM that contain CpG
- Select CpG of interest

UCSC Genome Bioinformatics
http://genome.ucsc.edu/

Extended DNA Output:

>chr10:48823593-48823126

GCCTCCAGATTCAGTGTCCTTCCGCCTCCAGATTCAGT

Case study sequence capture
Case study

sequence capture

- UCSC Genome Bioinformatics
 http://genome.ucsc.edu/

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest
Case study: transcription factor binding module

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

- TFBM defined 2+ TFBS in defined order and orientation
- HNF1
- GATA
- TTGTACTAA CGATATGCCATGCTA

- UCSC TFBS: single binding factor information
- JASPAR: http://jaspar.cgb.ki.se
- TransCompel
- Genomatix ModelInspector
Case study: transcription factor binding module

- Identify if CpG in promoter region
- Identify CGI within/adjacent to promoter
- Capture sequence 4000bp flanking CGI
- Identify TFBM that contain CpG
- Select CpG of interest

Genomatix
http://www.genomatix.de/
Case study

transcription factor binding module

identify if CpG in promoter region

identify CGI within/adjacent to promoter

capture sequence 4000bp flanking CGI

identify TFBM that contain CpG

select CpG of interest

Genomatix

http://www.genomatix.de/
Case study: transcription factor binding module

- Identify if CpG in promoter region
- Identify CGI within/adjacent to promoter
- Capture sequence 4000bp flanking CGI
- Identify TFBM that contain CpG
- Select CpG of interest

Genomatix
http://www.genomatix.de/

A total of 23 matches was found in 1 sequences.
Identify if CpG in promoter region

- Case study: transcription factor binding module

Identify CGI within/adjacent to promoter

Capture sequence 4000bp flanking CGI

Identify TFBM that contain CpG

Select CpG of interest

Genomatix

http://www.genomatix.de/

Inspecting sequence PTPN20B_6_shelf (1 - 2000):

Model: NRSF_GATA_01 (161 - 190 (+))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4BF1INFA.01</td>
<td>(+)</td>
<td>CTCAGGCTTGCTGGAATGCTTATT</td>
<td>1.000</td>
<td>0.911</td>
<td>11 bp</td>
</tr>
<tr>
<td>VSN4BF1INFA.02</td>
<td>(+)</td>
<td>CTGAGGATATTACG</td>
<td>1.000</td>
<td>0.911</td>
<td>—</td>
</tr>
</tbody>
</table>

Model: SMAD_E2F_01 (170 - 149 (-))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4SMAD01SMAD</td>
<td>(+)</td>
<td>GGAAGAAGAC</td>
<td>0.750</td>
<td>0.710</td>
<td>8 bp</td>
</tr>
<tr>
<td>VSB2F1E2F14.01</td>
<td>(+)</td>
<td>CTGAGGATATTACG</td>
<td>1.000</td>
<td>0.963</td>
<td>—</td>
</tr>
</tbody>
</table>

Model: GATA_NKXH_01 (274 - 245 (-))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4GATAVSN4GATA.02</td>
<td>(-)</td>
<td>GAAATTTGCTTCAA</td>
<td>1.000</td>
<td>0.929</td>
<td>14 bp</td>
</tr>
<tr>
<td>VSN4GATAVSN4GATA.01</td>
<td>(-)</td>
<td>CTGAGGATATTACG</td>
<td>1.000</td>
<td>0.926</td>
<td>—</td>
</tr>
</tbody>
</table>

Model: CEBP_NFAT_01 (555 - 582 (+))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4CEBP1CEBP</td>
<td>(+)</td>
<td>GAAATTTGCTTCAA</td>
<td>1.000</td>
<td>0.929</td>
<td>14 bp</td>
</tr>
<tr>
<td>VSN4NFAT1NFAT.02</td>
<td>(-)</td>
<td>CTGAGGATATTACG</td>
<td>1.000</td>
<td>0.926</td>
<td>—</td>
</tr>
</tbody>
</table>

Model: NRCH_NKXH_CEBP_01 (574 - 713 (+))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4NRCHVSN4CEBP.01</td>
<td>(-)</td>
<td>CCAAGGAAAGTGGCAAATG</td>
<td>1.000</td>
<td>0.936</td>
<td>58 bp</td>
</tr>
<tr>
<td>VSN4NRCHVSN4CEBP.02</td>
<td>(+)</td>
<td>GTGCAAGTAATTTAATTG</td>
<td>0.000</td>
<td>0.765</td>
<td>58 bp</td>
</tr>
<tr>
<td>VSN4NRCHVSN4CEBP.03</td>
<td>(+)</td>
<td>GTGCAAGTAATTTAATTG</td>
<td>1.000</td>
<td>0.927</td>
<td>—</td>
</tr>
</tbody>
</table>

Model: HIF1_GATA_01 (850 - 863 (-))

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Str</th>
<th>Sequence</th>
<th>Core sim.</th>
<th>Mat. sim.</th>
<th>Distance to next element</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSN4HIF1HIF1.04</td>
<td>(+)</td>
<td>GTTATTACG</td>
<td>1.000</td>
<td>0.988</td>
<td>13 bp</td>
</tr>
<tr>
<td>VSN4GATAVSN4GATA.06</td>
<td>(+)</td>
<td>CTGAGGATATTACG</td>
<td>1.000</td>
<td>0.943</td>
<td>—</td>
</tr>
</tbody>
</table>
identify if CpG in promoter region
identify CGI within/adjacent to promoter
capture sequence 4000bp flanking CGI
identify TFBM that contain CpG
select CpG of interest
Case study

1. Identify if CpG in promoter region
2. Identify CGI within/adjacent to promoter
3. Capture sequence 4000bp flanking CGI
4. Identify TFBM that contain CpG
5. Select CpG of interest

- If analysing specific CpG can capture adjacent CpGs
- Do you want to analyse
 - CGI
 - CpG Shore
 - CpG Shelf
 - CpG Open Sea
Case study

PSQ design software

• Paste in bisulphite modified sequence of interest flanked by ~300bp
• Select target CpG
• Maximum amplicon length ~600bp
• Ensure primers do not cover SNPs or CpGs
Case study: PyroMark CpG assays

- 84,000+ predesigned assays
 - 30,000+ human assays
 - 30,000+ mouse assays
 - 24,000+ rat assays

Search for and order PyroMark CpG Assays

Enter one or more search terms (such as Entrez Gene ID, Ensembl Gene ID, RefSeq ID, or gene symbol) to find and order PyroMark CpG Assays.

Search for: **PTPN20B**

<table>
<thead>
<tr>
<th>Name</th>
<th>Details</th>
<th>Cat. no.</th>
<th>List price</th>
<th>Your price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyroMark CpG Assay (200)</td>
<td>PCR and sequencing primers for Pyrosequencing analysis of gene-specific CpG methylation after DNA bisulfite conversion (200 reactions; tube format)</td>
<td>Varies</td>
<td>£44.50</td>
<td>Log In*</td>
</tr>
<tr>
<td>PyroMark CpG Assay 96 well (50)</td>
<td>PCR and sequencing primers for Pyrosequencing analysis of gene-specific CpG methylation after DNA bisulfite conversion (50 reactions; plate format); minimum order of 24 assays per plate</td>
<td>Varies</td>
<td>£30.00</td>
<td>Log In*</td>
</tr>
<tr>
<td>PyroMark CpG Assay 96 well (200)</td>
<td>PCR and sequencing primers for Pyrosequencing analysis of gene-specific CpG methylation after DNA bisulfite conversion (200 reactions; plate format); minimum order of 24 assays per plate</td>
<td>Varies</td>
<td>£44.50</td>
<td>Log In*</td>
</tr>
</tbody>
</table>

Select all

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Species</th>
<th>Entrez Gene ID</th>
<th>siRNAs</th>
<th>shRNA</th>
<th>Real-Time Assays</th>
<th>DNA methylation Assays</th>
<th>Long-Range PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPN20B</td>
<td>Human</td>
<td>26095</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pttn20b</td>
<td>Rat</td>
<td>306281</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Free delivery on online orders over 300 GBP!
• Level of methylation, accuracy within ~ 5%
 exclude assays with <5% or >95% methylation

• No preferential amplification of unmethylated or methylated DNA

• Bisulphite conversion is completed
Pyrosequencing run

- Run time dependent on sequence length, 10min-1.5hr
Pyrosequencing analysis

![Pyrosequencing Analysis Image]
Pyrosequencing analysis

- Samples run in duplicate are within 5%
- 0% and 100% controls are comparable between plates
- inter/intraplate replicates are comparable
- negative DNA control no signal
• high-throughput CpG methylation analysis platform

• real-time, sequence-based detection and quantification

• % methylation at multiple adjacent CpG sites

• genotyping
References

• Helen E. White, *Clinical Chemistry* 52:6 1005–1013 (2006) Quantitative Analysis of *SRNPN Gene Methylation* by Pyrobequencing as a Diagnostic Test for Prader–Willi Syndrome and Angelman Syndrome

• http://www.pyrosequencing.com/

• http://www.qiagen.com/products/bytechnology/pyrosequencing

• UCSC Genome Bioinformatics http://genome.ucsc.edu/

• Genomatix http://www.genomatix.de/
Pyrosequencing

Alix Groom