Fetal exposure to alcohol and cognitive development: results from a Mendelian randomization study

Sarah Lewis
Is moderate drinking during pregnancy really harmful?

Alcohol and pregnancy - conflict and confusion

Shouldn't pregnant women be afforded the right to exercise personal choice when deciding whether to drink alcohol?

- GUARDIAN NOVEMBER 12, 2009

Drinking alcohol occasionally when pregnant 'does no harm

- Times 30 October, 2008
Problems of observational studies of alcohol intake and cancer

- Measurement error
- Reporting/interviewer bias
- Disease affects drinking habits
- CONFOUNDING
Aim of the project

- To investigate associations between polymorphisms of the main alcohol metabolizing genes in mother and child and growth and neurodevelopmental outcomes in infants and children.
Metabolism of alcohol

Ethanol $\xrightarrow{\text{ADH, CYP2E1}}$ Acetaldehyde $\xrightarrow{\text{ALDH}}$ Acetic acid

* Mainly occurs in the liver, but some activity is also present in the oral cavity and digestive tract
ADH genes and SNPs investigated

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH4</td>
<td>rs4699714</td>
</tr>
<tr>
<td>ADH4</td>
<td>rs3762894</td>
</tr>
<tr>
<td>ADH4</td>
<td>rs4148884</td>
</tr>
<tr>
<td>ADH1A</td>
<td>rs2866151</td>
</tr>
<tr>
<td>ADH1A</td>
<td>rs975833</td>
</tr>
<tr>
<td>ADH1A</td>
<td>rs1229966</td>
</tr>
<tr>
<td>ADH1B</td>
<td>rs2066701</td>
</tr>
<tr>
<td>ADH1B</td>
<td>rs4147536</td>
</tr>
<tr>
<td>ADH1B</td>
<td>rs1229984</td>
</tr>
<tr>
<td>ADH7</td>
<td>rs284779</td>
</tr>
</tbody>
</table>
Main Outcomes

- IQ at age 8 years: WISC-III (Wechsler, Golombok and Rust, 1992), age-adjusted
- SATS test results at age 11
OR 0.69 (0.56-0.86)

OR 0.57 (0.45-0.72)

OR 0.54 (0.39-0.74)

Binging during pregnancy

Binging after pregnancy

Weekly intake in 3 categories before pregnancy
Association between ADH1B genotype and alcohol intake

<table>
<thead>
<tr>
<th>Time period</th>
<th>Absolute number</th>
<th>Proportion carrying rare allele - %</th>
<th>Chi-square test for trend</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal alcohol consumption levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>never</td>
<td>511</td>
<td>6.5</td>
<td>13.15/1df</td>
<td>0.0003</td>
</tr>
<tr>
<td><1 drink/wk</td>
<td>2,693</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6 drinks/wk</td>
<td>3,084</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7+ drinks/wk</td>
<td>837</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First trimester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>never</td>
<td>3,242</td>
<td>5.8</td>
<td>14.81/1df</td>
<td>0.0001</td>
</tr>
<tr>
<td><1 drink/wk</td>
<td>2,833</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6 drinks/wk</td>
<td>1,030</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7+ drinks/wk</td>
<td>138</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Association of confounding variables with maternal ADH1B genotype and maternal alcohol intake

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rare allele carrier (n=361)</th>
<th>Rare allele non-carrier (n=7265)</th>
<th>P*</th>
<th>Drink < 1 unit per wk (n=5568)</th>
<th>Drink ≥ 1 unit per wk (n=6753)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s age (mean, SD)</td>
<td>28.5 (4.7)</td>
<td>28.2 (4.8)</td>
<td>0.248</td>
<td>27.6 (4.9)</td>
<td>28.5 (4.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Parity (1st baby)</td>
<td>157 (45.9%)</td>
<td>3137 (45.6%)</td>
<td>0.945</td>
<td>3538 (64.3%)</td>
<td>3209 (48.0%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Higher than O-level education</td>
<td>131 (39.2%)</td>
<td>2386 (35.6%)</td>
<td>0.189</td>
<td>1424 (28.0%)</td>
<td>2632 (41.8%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Manual social class</td>
<td>173 (59.9%)</td>
<td>3435 (62.7%)</td>
<td>0.344</td>
<td>2419 (54.1%)</td>
<td>2336 (39.2%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mother smoked during 1st trimester</td>
<td>70 (20.1%)</td>
<td>1678 (24.2%)</td>
<td>0.094</td>
<td>1372 (24.7%)</td>
<td>1734 (25.7%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Calcium mg per week (mean, sd)</td>
<td>6741 (2010)</td>
<td>6555 (1945)</td>
<td>0.106</td>
<td>6432 (1990)</td>
<td>6731 (1945)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Vitamin C mg per week (mean, sd)</td>
<td>582 (247)</td>
<td>561 (240)</td>
<td>0.132</td>
<td>533 (237)</td>
<td>585 (241)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Iron mg per week (mean, sd)</td>
<td>74.6 (23.3)</td>
<td>72.6 (22.7)</td>
<td>0.126</td>
<td>71.1 (23.1)</td>
<td>74.7 (22.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Folate mg per week (mean, sd)</td>
<td>1786 (513)</td>
<td>1741 (501)</td>
<td>0.128</td>
<td>1712 (512)</td>
<td>1781 (498)</td>
<td><0.0001</td>
</tr>
<tr>
<td>High EPDS score</td>
<td>57 (17.2%)</td>
<td>1076 (19.9%)</td>
<td>0.841</td>
<td>925 (18.3%)</td>
<td>1046 (16.7%)</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Association between maternal ADH1B and children’s cognitive outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sample</th>
<th>Number</th>
<th>Average difference in score (SE)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Stage 2 Score</td>
<td>Original sample</td>
<td>6,637</td>
<td>1.99(0.57)</td>
<td>0.00045</td>
</tr>
<tr>
<td></td>
<td>Original sample adjusted for pre-pregnancy alcohol</td>
<td>6,342</td>
<td>2.25(0.56)</td>
<td>0.00006</td>
</tr>
<tr>
<td></td>
<td>UK born only</td>
<td>5,579</td>
<td>1.92(0.60)</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>UK born & adjusted for ASPM, MCPH1 & lactase persistence</td>
<td>5,410</td>
<td>2.83(1.31)</td>
<td>0.031</td>
</tr>
<tr>
<td>IQ score</td>
<td>Original sample</td>
<td>4,175</td>
<td>0.72(1.16)</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Original sample adjusted for pre-pregnancy alcohol</td>
<td>4,103</td>
<td>0.98(1.17)</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>UK born only</td>
<td>3,704</td>
<td>0.41(1.22)</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>UK born & adjusted for ASPM, MCPH1 & lactase persistence</td>
<td>3,588</td>
<td>-1.02(2.77)</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Other genotypes

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Mother (coef, 95% CI, p-value)</th>
<th>Child (coef, 95% CI, p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH4</td>
<td>rs4148884</td>
<td>-2.23 (-4.13 to -0.33) p=0.022</td>
<td>1.86 (-0.11 to 3.82) p=0.064</td>
</tr>
<tr>
<td>ADH1A</td>
<td>rs2866151</td>
<td>1.01 (-0.70 to 2.71) p=0.247</td>
<td>-2.81 (-4.51 to -1.10) p=0.001</td>
</tr>
<tr>
<td>ADH1A</td>
<td>rs975833</td>
<td>1.14 (-0.68 to 2.96) p=0.219</td>
<td>-2.39 (-4.24 to -0.54) p=0.011</td>
</tr>
<tr>
<td>ADH1B</td>
<td>rs414736</td>
<td>0.62 (-1.17 to 2.41) p=0.498</td>
<td>-2.26 (-4.11 to -0.42) p=0.016</td>
</tr>
<tr>
<td>ADH7</td>
<td>rs284779</td>
<td>0.11 (-0.93 to 1.16) p=0.829</td>
<td>-1.20 (-2.22 to -0.175) p=0.022</td>
</tr>
</tbody>
</table>

Per allele effects - Model selected by AIC (Akaike's information criterion) - best model based on data
Conclusions and Future work

- Maternal ADH1B genotype is associated with maternal alcohol intake during pregnancy and offspring school performance at age 11.

- Child’s genotype at the ADH1A, ADH1B, ADH4 and ADH7 locus is associated with IQ score at age 8.

- Results need to be replicated in other cohorts, but suggest that mothers’ alcohol intake affects offspring cognition and school performance.
Prenatal alcohol exposure, childhood development and teenage drinking: a study of trans-generational effects

4-year project funded by UK Medical Research Council, start October 2010

Research fellowship awarded to Luisa Zuccolo (Bristol, UK) l.zuccolo@bristol.ac.uk

Cohorts

Sponsors

G Davey Smith (Bristol, UK)
C Stoltenberg (Oslo, Norway)
C Relton (Newcastle, UK)

Collaborators

S Lewis, DA Lawlor, D Evans, Y Ben-Shlomo, J MacLeod (Bristol, UK)
T Sorensen, E Aagaard-Nohr (Denmark)
D Leon (London, UK)
L Palmer (Perth, W Australia)
M Schuckit (San Diego, USA)
Prenatal alcohol exposure, childhood development and teenage drinking: a study of trans-generational effects

Methods

- Life-course modelling
- Maternal/paternal comparisons
- Within-siblings comparisons (MoBa)
- Epigenetic effects – candidate genes DNA methylation
- Mendelian Randomization
- Instrumental variable analyses
Acknowledgements

National Perinatal Epidemiology Unit, University of Oxford
Ron Gray,
Nicola Fitz-Simon.

Department of Social Medicine, University of Bristol
Luisa Zuccolo
George Davey Smith
Jean Golding
Jon Heron
Sue Ring

School of Community Health Sciences, University of Nottingham
Kapil Sayal

Department of Health Sciences
University of Leicester
Elizabeth Draper

Clinical Genetics,
University Hospitals of Leicester
Margaret Barrow

School of Medicine, University of Sheffield
Robert Fraser

School of Population Health
University of Queensland
Rosa Alati